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1. Introduction
Kisspeptins, the peptide products of the KiSS-1 gene, bind 
to the G protein-coupled receptor 54 (GPR54), a critical 
regulator of GnRH secretion. The N-terminally truncated 
peptide metastin 45-54 exhibits 10-fold higher receptor-
binding affinity than full-length metastin; it also shows 
agonistic KISS-1R activity (1). 

Kisspeptins are known to play a role in puberty, 
cancer metastasis, and vasoconstriction (2,3–7). 
They are synthesized in the arcuate and anteroventral 
periventricular hypothalamic neurons and in the perioptic 
area  (8). Kisspeptin expression is variable according 
to sex in rats; its expression is more marked in female 
animals  (9). Its known derivatives are kisspeptin-10, 
kisspeptin-13, kisspeptin-14, and kisspeptin-54 (10–
12). All kisspeptins seem to have the same interactions 
under in vitro conditions. Kiss-10 is well characterized 

in mammals, in which it is found in large concentrations 
(10,11). It has been suggested, however, that Kiss-54 is the 
most effective form (12). Kisspeptin has been reported to 
also be synthesized in the testes, ovaries, pancreas, gut, 
liver, lung, muscle tissue, kidney, nervous system, and 
most densely in the placenta (13,14). As for its receptor, G 
protein-coupled receptor-54 (GPR54) is mostly expressed 
in the hypophysis, placenta, and pancreas (10,15,16). 
Kisspeptins are highly potent neuropeptides that stimulate 
the secretion of LH and FSH from the hypophysis, an 
effect exerted through the release of GnRH (7,17). While 
this pathway has been satisfactorily defined in several 
mammal species, the molecular and cellular events at 
the proencephalic origin of this process are incompletely 
elucidated. In recent years, studies have indicated that 
kisspeptin plays a role in the transition to puberty (18,19). 
Kiss-1 knockout mice showed hypogonadism and low 

Background/aim: To study the effect of kisspeptin, a gonadotropin release stimulator, on the testicular tissue of the rat. 

Materials and methods: Four groups were formed as follows: control, Kiss-10 50 nmol administration for 1 day, Kiss-10 administration 
for 13 days, and one last group kept for 7 days following Kiss-10 applied for 13 days. Testicular tissues were stained with hematoxylin-
eosin, periodic acid Schiff, Masson trichrome staining, terminal deoxynucleotidyl transferased UTP nick-end labeling, and Ki-67 
immune staining. Serum testosterone levels were determined.

Results: Serum testosterone level increased following acute application, while it was reduced by chronic treatment. Spermatogenic 
cells as stained by Ki-67 and TUNEL increased in the treated groups compared to the controls. Following a 7-day rest after treatment, 
a decrease in testosterone levels and Ki-67–stained cell numbers and an increase in TUNEL-stained cells were observed. Leydig cells 
showed increased vacuolization in the Kiss-1 group. Leydig cell vacuolization continued in the Kiss (13) group and was reduced in the 
Kiss (13 + 7) group. 

Conclusion: Kiss-10 increased spermatogenic cell proliferation, while testosterone level and proliferation decreased and apoptosis 
increased during the waiting period.
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levels of circulating gonadotropin  (20,21). Kisspeptin 
has been shown to control seasonal fertility in sheep (22) 
and hamsters (23,24). A literature search revealed only a 
limited number of studies on the effects of kisspeptin.

The aim of the present study was to study the 
structural and biochemical effects of acute and chronic 
kisspeptin administration on seminiferous tubular cells, 
spermatogenesis, apoptosis, and Leydig cells and the 
reversibility of such effects.

2. Materials and methods
2.1. Experimental animals
All experimental protocols were performed according to 
the guidelines for the ethical treatment of experimental 
animals and were approved by the Animal Care and Use 
Local Ethics Committee. Eight-week-old male Wistar 
albino rats (200–230 g) were housed at a constant room 
temperature (21 ± 2 °C) under a 12-h light/dark cycle. 
They were fed standard rat chow (210 kcal/100 g per day) 
and drank tap water.	

Twenty-four male Wistar rats weighing 200–300 g 
were used in the study. Four groups were constructed: 

Control group (n = 6): Received intraperitoneal normal 
saline only. 

Kiss (1) (n = 6): Kiss-10 [metastin (45-54) amide, 
M2816-1MG, SIGMA], 50  nmol, intraperitoneally was 
given once to these animals. 

Kiss (13) (n = 6): These animals received Kiss-10, 
50 nmol, intraperitoneally daily for 13 days.

Kiss (13 + 7) (n = 6): After receiving Kiss-10, 50 nmol, 
intraperitoneally daily for 13 days, these animals were 
kept for 7 days without any treatment. Kisspeptin-10 
was used because it is the minimal sequence required for 
full receptor binding and activation (10,11). The single 
injection treatment was defined as acute and the 13-day 
treatment as chronic. The rats were weighed before the 
study and at its termination. Testes were removed and 
weighed. Gonadosomatic index percent (GSI %) was 
determined using the following formula (25):

GSI (%) =  Testes weight    × 100   
                     Body weight

2.2. Biochemistry
Blood was drawn under anesthesia from the inferior vena 
cava, centrifuged at 1000 × g for 20 min, and kept at –20 °C. 
Total testosterone level was measured using an ELISA kit 
(USCN Life Science Inc., Wuhan, E90458Ra, L101101379, 
P.R. China). The measurement was performed following 
the instructions provided with the kit. 
2.3. Light microscopy
The left testes were fixated in a 10% solution of neutral 
formalin. The right testes were frozen at –96 °C to 
examine with immunofluorescence microscopy. Blocks 

were prepared after routine preparation. Sections were 
stained with hematoxylin-eosin, periodic acid Schiff 
(PAS), and Masson’s trichrome methods; the diameters 
of the seminiferous tubules were measured. Staining with 
Ki-67 was performed (9106S1003B, Thermo Scientific, 
USA) for marking proliferating cells and with terminal 
deoxynucleotidyl transferased UTP nick-end labeling 
(TUNEL) (ApopTag Plus Peroxidase In Situ Apoptosis 
Detection Kit, S7101, Chemicon International; Lot 
PSO1736498) for apoptotic cells. The numbers of apoptotic 
and proliferating cells were determined by counting 
stained dark-brown nuclei in 10 cross-sectional fields of 
seminiferous tubules per testis section. Tissues were frozen 
at –96 °C for immune fluorescence determination of Kiss-
10 expression. Sections 15-µm thick obtained by a freezing 
microtome were stained using a Kiss-1 antibody [(C-20), 
goat polyclonal IgG, #H1910, Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA] and examined under an immune 
fluorescence microscope.
2.4. Electron microscopy
Tissues were taken and fixed in 2.5% glutaraldehyde in 
0.1 M sodium phosphate buffer (pH 7.2) for 24 h. After 
rinsing with phosphate buffer, tissues were postfixed 
with 2% osmium tetroxide in sodium phosphate buffer. 
Dehydration was accomplished by gradual ethanol series 
and embedded in epoxy resin. Semithin sections (1 µm) 
were stained toluidine blue. Sections were then viewed and 
photographed with light microscopy.
2.5. Statistical evaluation
The study data were evaluated using GraphPad Prism 
software (version 3.00, GraphPad Software, La Jolla, CA, 
USA). The Kruskal–Wallis test was used for between-
group comparison of apoptotic and Ki-67(+) cell counts 
and Dunn’s multiple comparison test for within-group 
evaluations. Subject weights, testosterone levels, testis 
weights, gonadosomatic index (GSI %), and tubular 
diameters were evaluated by the Mann–Whitney U test. 
Biochemical measurements were compared using one-
way ANOVA, while within-group comparisons used 
Tukey’s test. P-values smaller than 0.05 were accepted as 
significant.

3. Results
There was no difference in body weight, testicular weight, 
GSI %, or diameter of seminiferous tubules among the 
groups. Kiss-1 immune positive cells were not detected in 
any group (data not shown).
3.1. Serum testosterone levels
While serum testosterone levels were significantly elevated 
after a single administration of kisspeptin (P < 0.03) they 
decreased in the Kiss (13) and Kiss (13 + 7) groups, 
although with no significant difference from the controls 
(Figure 1). 
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3.2. Proliferating cell count
Ki-67 immune staining was applied to determine the 
number of proliferative cells in the seminiferous tubules. 
The Ki-67–stained spermatogenic cells were counted for 
all groups. Ki-67–stained cell counts were higher in the 
Kiss (13) group compared to both Kiss (1) and the controls 
(P < 0.001). As for the (13 + 7) group, after a 7-day rest 
following 13 consecutive days of treatment, the stained cell 
count was higher than that in both the controls and Kiss 
(1) (P < 0.001 and 0.01, respectively) but lower than that of 
Kiss (13). No statistical significance was detected between 
the Kiss (13) and Kiss (13 + 7) groups (Figure 2).
3.3. Apoptotic cell count
TUNEL staining was applied to mark apoptotic cells in the 
seminiferous tubules. TUNEL (+)-stained spermatogenic 
cells were counted in all groups (Figure 3).

A lower number of TUNEL (+) cells were detected in 
the Kiss (1) group, but the difference was not significant. 
Apoptotic TUNEL (+) cell counts were significantly higher 
in the Kiss (13) and Kiss (13 + 7) groups compared to the 
controls (P < 0.05) and Kiss (1) (P < 0.001).
3.4. Light microscopy findings
Kisspeptin expression was not observed in either the 
control or the treatment groups

(data not shown). Seminiferous tubules in treated 
animals were largely similar to those of the control group 
(Figures 4a–4d). Cell shedding was present but not 
widespread in the lumens of some tubules in the treatment 
groups. Tissues from all groups were stained with PAS. 
No disruption or thickening of the basal membrane was 
seen with PAS staining in the treatment groups. Staining 
intensity was comparable throughout all animal groups. 
Connective tissue proliferation among seminiferous 

tubules was not observed following Masson trichrome 
staining (data not shown).

The appearance of Sertoli and Leydig cells, 
spermatogonia, primary spermatocytes, spermatids, 
developing acrosomes, and spermatozoa was by definition 
normal for the control group (Figure 5a). The seminiferous 
tubule basal membrane was markedly corrugated in the 
Kiss (1) group, where vacuolization in the Sertoli cells 
and spermatocytes, increased intercellular intervals, and 
numerous vacuoles in Leydig cells were observed (Figure 
5b). Leydig cell vacuolization continued in the Kiss (13) 
group (Figure 5c). In the Kiss (13 + 7) group, such vacuoles 
in the Leydig cells were fewer; excessive intercellular 
distances remained (Figure 5d). 

The cells that stained positive with Ki-67 were generally 
identified as spermatogonia. No immune staining was 
found in Leydig or Sertoli cells. Mitotic activity was least 
in the controls and highest in the Kiss (13) group (Figures 
6a–6d). 

TUNEL (+)-stained cells, the spermatogonia, were very 
few in the controls and more abundant in the treatment 
groups. TUNEL (+) immune staining was not observed in 
the Sertoli or Leydig cells (Figures 7a–7d).

4. Discussion
Since 2003, research has revealed the important role 
of kisspeptins in initiation and timing of puberty 
and in regulating fertility in adulthood. Continuous 
administration of kisspeptins downregulates the 
hypothalamic–gonadal–pituitary (HPG) axis (26). 
Kisspeptin is a potent peptide that initiates luteinizing 
hormone (LH) release in male and female mice (27), in both 
prepubertal and adult rats (28) and in prepubertal donkeys 
(29). Plasma LH and testosterone levels were reported to 

Figure 1. Plasma testosterone levels. *P < 0.03 compared to other groups.
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Figure 2. Number of Ki-67(+) cells. Ki-67 staining cells in the acute treatment, Kiss (1) (*), chronic treatment Kiss (13) 
(**) and additional waiting period
Kiss (13 + 7) (***) groups were statistically significantly higher than in the control group (P < 0.001) 
*Control vs. Kiss (1) group, P < 0.001 
**Control vs. Kiss (13) group, P < 0.001  
***Control vs. Kiss (13 + 7) group, P <0.001 
#Kiss (1) vs. Kiss (13) group, P < 0.001 
##Control vs. Kiss (13 + 7) group, P <0.01

Figure 3. Apoptotic TUNEL (+) cell counts were significantly higher in the Kiss (13) and Kiss (13 + 7) groups 
compared to the controls (*P < 0.05) and Kiss (1) (**P < 0.001).  
*Control vs. Kiss (13) group, P < 0.05  
***Control vs. Kiss (13 + 7) group, P < 0.05  
**Kiss (1) vs. Kiss (13) group, P < 0.001  
**Kiss (1) vs. Kiss (13 + 7) group, P < 0.001
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be increased on the day following the first administration 
of Kisspeptin-54 (50 nmol/day), an effect that disappeared 
after the second day of treatment, when hormone levels 
returned to normal. This result was interpreted as being 
due to desensitization of the HPG axis by the continuous 
use of kisspeptin (12). A single dose of Kiss-54 was 
reported to cause ovulation in rats (30) and to significantly 
increase sex steroid levels in prepubertal fish (31). 
Gonadotropin increases were registered following a single 
IV or IM dose of Kiss-10 in prepubertal cats (32), sheep 
(33), and goats (34). It was reported that Kiss-10 given at 
varying doses reduces testosterone levels, a reduction that 
was attributed to testicular degeneration rather than a fall 
in LH secretion (25). However, another published study 
indicated that different doses of Kiss-10 were all followed 
by a testosterone increase within 20 min of administration 
(35). We observed that Kiss-10 significantly increased 
total testosterone plasma levels in the acute phase while 

chronic administration was associated with a decrease, 
which continued in the additional waiting period without 
reaching the control levels. The increased vacuolization in 
the Leydig cells was interpreted as a possible enlargement 
of endoplasmic reticulum, consistent with active secretion. 
Kisspeptin mRNA, characterized in human testicular 
tissue (11), was not identified in rat testes (36). Wang et al. 
reported that Kiss-10 expression is strong in Leydig cells of 
5-week- and 15-week-old mice, while it is weak in 2-week-
old mice (37). Salehi et al., while observing Kisspeptin 
expression in Leydig cells, found no development in germ 
cells or Sertoli cells at any stage (38). We did not detect 
any positive immune staining for Kiss-1 in any group in 
our study.

Kisspeptins were reported to have a predominately 
autocrine and paracrine action in the testes (39,40). 
Our results are similar to those reported by Thompson 
et al. in that testosterone levels decreased over a 13-day 

Figure 4. Light microscopic view of seminiferous tubules in experimental groups. The seminiferous tubules structure can 
be seen to resemble each other. Control (4a), Kiss (1) (4b), Kiss (13) (4c), and Kiss (13 + 7) (4d) groups. Hematoxylin and 
eosin stain.
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Figure 5. Semithin section view of experimental groups. Seen intact spermatogenic and Sertoli cells in the control group (5a). More 
folding basement membrane, many vacuoles in the Sertoli and Leydig cell cytoplasm are seen in the Kiss (1) group (5b). Increased 
vacuoles in the Leydig cells cytoplasm of the Kiss (13) group (5c) and decreased vacuoles in the Leydig cells cytoplasm of the Kiss (13 + 
7) group (5d) are seen. Sp: Spermatid, Ps: Primary spermatocytes, SC: Sertoli cells, LC: Leydig cells. Toluidine blue stain.

Figure 6. Ki-67 immunohistochemistry stained view of groups. Control (6a), Kiss (1) (6b), Kiss (13) (6c), and Kiss (13 + 7) (6d) groups. 
Ki-67-positive–stained spermatogenic cells of Kiss (1) and Kiss (13) groups are increased compared to the control and Kiss (13 + 7) 
groups.
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treatment period and adult male rats were used (12,39). 
The increase seen in Ki-67–stained spermatogonia within 
the seminiferous tubules in our study was interpreted 
as related to the increase in testosterone levels; their 
proliferation increased with both acute and chronic 
treatment and decreased in the additional waiting period 
without, however, reaching control levels. This finding was 
attributed to the reversibility of Kiss-10 action. 

A twice-weekly high-dose (250 ng/g) Kiss-10 treatment 
for 7 weeks increased the GSI of prepubertal white bass, 
while no significant change could be detected in striped 
bass (41). Another report indicated that Kiss-15 increases 
GSI in prepubertal fish (31). Reports vary according 
to subject type and physiological development stages. 
Varying stimuli have been determined for different modes 
of administration (central or systemic) and different 
physiological stages (42,43). Kisspeptin-54, 50 nmol daily 
for 13 days, led to testicular degeneration in adult rats 
(12,39). Application of Kiss-10 led to seminiferous tubule 
degeneration in prepubertal rats; cellular degeneration was 
seen to increase along with increasing dose. Cytoplasmic 
vacuolization was demonstrated by light and electron 

microscopy in Sertoli cells and spermatogonia (25). In our 
study, no obvious degeneration was observed in seminiferous 
tubule cells even though the dose administered amounted 
to 50  nmol; in contrast, the increased testosterone level 
increased spermatogenesis. While apoptotic spermatogonia 
were identified in our study, no apoptosis was seen in the 
Sertoli or Leydig cells. Semithin sections showed a large 
degree of cytoplasmic vacuolization in the Sertoli cells 
and spermatogonia. Vacuolization decreased in the cells 
of animals in the groups subjected to chronic treatment 
and in those with the additional waiting period. Apoptotic 
cell counts were low in the acute treatment animals and 
increased in the two other treatment groups. The increase 
in Ki-67 staining cells in acute treatment animals paralleled 
the increase in testosterone level. However, proliferation 
increased in chronic treatment animals despite the 
testosterone decrease. The increased apoptotic cell count 
was possibly offsetting the increase in total cell count 
that occurred over the same period. Testosterone levels 
continued to decrease, apoptosis counts increased, and 
proliferation of spermatogenic cells decreased over the 
7-day waiting period following chronic administration. 

Figure 7. TUNEL-positive staining in spermatogenic cells in the Kiss (13 + 7) group is higher than the other groups. 
Control (7a), Kiss (1) (7b), Kiss (13) (7c), Kiss (13 + 7) (7d) groups.
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To summarize, acute or chronic administration of 
50  nmol/kg kisspeptin-10 was not observed to cause 
degeneration in the rat seminiferous tubules, while 
it increased cellular proliferation; the interruption of 
kisspeptin was associated with a decrease in proliferation 
and testosterone levels and with an increase in apoptosis. 
Kiss-10 was seen to exert its effects through testosterone 

secretion; these effects were reversible. The increased 
proliferation in spermatogenic cells may lead to new 
developments in the treatment of infertility.
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