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Abstract—Body Area Networks (BANs) are the most important
building stone of pervasive healthcare, which enables remote,
continuous and real-time health monitoring. Biosensors, consti-
tuting the BANs, collect highly sensitive medical information
from their hosts and communicate these data. Considering the
nature of the wireless medium, the privacy requirements of the
individuals and the extreme energy and storage limitations of
the biosensors, BANs require a light-weight and secure key
management infrastructure. It has been suggested that the
security of a BAN can be guaranteed using the body itself
as the communication channel by means of bio-cryptography.
Explicitly, physiological parameters generated from different
body parts are used to protect the data exchanged among the
biosensors. In this paper, we (i) define a novel physiological
parameter generation technique, and (ii) identify and evaluate an
appropriate physiological parameter that can be used in a bio-
cryptographic key management protocol, namely the inter-pulse
interval (IPI). For experimental data analysis, we use the blood
pressure (BP) signal, for the first time in the literature, together
with the electrocardiogram (ECG) and photoplethysmogram
(PPG) signals. Our results show that the IPI values derived
from the ECG, PPG and BP signals are good candidates of
physiological parameters that can be used as cryptographic keys
in order to ensure secure key management in BANs.

Keywords—Cryptographic Key Generation; Body Area Net-
works; Physiological Signals; Key Management; Network Secu-
rity; Bio-cryptography

I. INTRODUCTION

Healthcare concerns with the maintenance or restoration
of an individual’s health by preventing or treating well-
being through medical services. With the use of pervasive
computing, healthcare systems can be constituted so as to
monitor a patient’s health status in real-time, continuously and
remotely. While using pervasive healthcare, physical presence
of the health professionals are required only during emer-
gencies; meaning that there is no restriction on the time and
space of the patient monitoring process. Body Area Networks
(BANs), whose infrastructure is as depicted in Figure 1, are the
principal enabling technology for pervasive healthcare [1]–[3].
They provide effective, efficient and accurate monitoring of the
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vital body signals through the use of interconnected wearable
biosensors, without disturbing the daily lives of the patients.

In fact, the general infrastructure of a BAN also consists
of (i) a central server, in which the collected data is stored,
(ii) health professionals, who may try to access the stored
data, and (iii) an aggregating device, which transports the
aggregated data to the central server. Whereat, BANs include
two types of communications: (i) intra-BAN and (ii) beyond-
BAN communication. The former addresses the communica-
tion between the biosensors (including the aggregating device),
while the latter defines secure data sharing over the central
server, which indeed is out of the scope of this paper.
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Fig. 1: Body Area Network Infrastructure

Biosensors collect sensitive personal medical data from
patients and communicate these data through wireless medium,
which exposes a potential for both passive and active at-
tacks [4]. Besides, loosing such information may also lead
to privacy leakage [5], [6]. Therefore, secure data protection
and secure node-to-host association mechanisms are required
before any data transmission [7]. However, due to the crucial
power and memory constraints of the biosensors, establishing
and maintaining the security of the exchanged data is not
a trivial problem. Conventional solutions for generic sen-
sor networks are not applicable in BANs. Essentially, bio-
cryptography best suits with the light-weight security protocol
requirement, since the BANs are context-aware networks.
Using bio-cryptographic approaches, security of the network
can be provided in a plug-n-play way; neither a network setup
nor a key predistribution mechanism will be needed. On top of
it, re-keying will be done automatically. Cryptographic keys
can be generated within the network on the fly, when and as
needed, through the use of the data collected by the biosensors.
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Key establishment requires the communicating entities to have
something only they know and it is the physiological signals
of the individuals in the context of using bio-cryptography in
BAN security. In this respect, random numbers generated from
the physiological signals derived from different body parts is
used to protect the exchanged data.

At this point, the choice of the physiological parameter to
be used is of great importance. Physiological signals captured
at different parts of the same subject, which will be used to
compute the physiological parameter of the security protocol,
should be highly correlated independent of the source of
measurement and should be chaotic in nature. When the
physiological parameters constructed at different biosensors
match with each other, it is a very important indication
that these biosensors belong to the same host. This outcome
avoids potential interference attacks among different BANs
and provides secure node-to-host association naturally. In this
paper, we propose a novel physiological parameter generation
technique and identify an appropriate physiological parameter
together with the related physiological signals that can be used
in a bio-cryptographic key management protocol designed to
secure the BAN communication. Our contributions include:
(i) defining a new physiological parameter generation method,
(ii) for the first time in the literature, using the blood pressure
(BP) signal to generate a physiological parameter, (iii) demon-
strating the suitability of the inter-pulse interval (IPI) values
derived from the electrocardiogram (ECG), photoplethysmo-
gram (PPG) and BP signals on generating cryptographic keys,
and (iv) experimentally analyzing the quality and performance
of the generated keys.

The rest of this paper is organized as follows. Section II
provides detailed information on the physiological signals that
are viable to be used in a security protocol. In Section III,
we explore our novel approach on generating physiological
parameters and in Section IV, we evaluate the performance
and quality of the generated physiological parameters to
decide on their applicability on being used as cryptographic
keys in BANs. Section V investigates the bio-cryptographic
approaches proposed in the literature to secure the BAN
communications and their physiological parameter generation
methods. Finally, in Section VI, we conclude the paper and
provide insights for future work.

II. SUITABLE PHYSIOLOGICAL SIGNALS

In a remote health monitoring system, medical professionals
generally keep track of the ECG, BP, oxygen saturation (via
PPG) and body temperature (BT) signals of the patients. Each
of these vital signs has a different device specifically designed
for the required recording and each of these devices has a
specific place on the human body to be attached. Therefore,
in a generic remote health monitoring system, patients should
be using at least 4 biosensors. In order for these biosensors to
exchange data securely using a bio-cryptographic infrastruc-
ture, each biosensor should be able to sense the physiological
signal(s) used while generating the predefined physiological
parameter. Hence, the choice of the physiological signal(s) to

be adopted for physiological parameter generation depends on
the ability of the biosensors on retrieving the relevant data.
Additionally, this choice also depends on the fact that the
generated physiological parameter should meet the require-
ments of being used as a cryptographic key [8]. First of all,
it should be universal; meaning that the biometric trait should
be measurable from every user of the system. Secondly, it
should be different for different users, at any given time. The
reason behind this requirement is not to be able to retrieve
any data secured using the biometric features of one person
with another person’s biometric features. Thirdly, it should
be time varying; meaning that it should be different for the
same user, at different times. In other words, it should be
indistinguishable only for simultaneous captures so that the
keys can be renewable. Finally, it should be cryptographically
random in order to provide security.

Heart rate variability (HRV) measures the intervals between
the heart beats. It is the analysis of the beat-to-beat alterations
of the heart rate. HRV meets the requirements of a physio-
logical parameter being used as a cryptographic key: (i) it is
universally measurable, (ii) it is unique for individuals [9],
(iii) it is chaotic in nature [10], and (iv) it is characterized
by a bounded random process [11]. Being readily available in
several kinds of physiological signals like ECG, PPG and BP,
HRV can be approved to be a good candidate for a security
providing physiological parameter. The features that can be
extracted from HRV include:

• (Normalized) Temporal distances between the fiducials
of the physiological signals (difference between the peak
points of the signal on the x-axis) [9], [12], [13]

• (Normalized) Amplitude distances between the fiducials
of the physiological signals (difference between the peak
points of the signal on the y-axis) [12], [13]

• IPI of the physiological signals [8], [14]–[16]
• Frequency features of the physiological signals [17]–[22]

Frequency-domain analysis includes spectral methods,
while time-domain analysis determines the heart rate at any
point in time between successive complexes [23]. Considering
a specific physiological signal, frequency-domain analysis of
two signals measured at different parts of the human body have
similar values independent of the point of measurement, in
contrast to time-domain analysis, which results in similar trend
but a little diverse values [22]. In light of this fact, frequency-
domain methods should be preferred to time-domain ones
when short-term recordings are of interest, in order not to
increase the overall latency of the system [23]. However,
using frequency-domain features of HRV as the physiological
parameter of a security protocol necessitates the biosensors to
collect the same kind of physiological signals from their hosts.
A similar inference can also be made for the (normalized)
temporal and/or amplitude distances between the fiducials of
the physiological signals, which depend on the physiological
signal itself. For instance, the fiducials of the ECG signals and
the fiducials of the PPG signals are different from each other.
Therefore, none of these HRV features are viable to be used



as the physiological parameter of a security protocol, as in the
way that they have been proposed in the literature.

On the other hand, IPI, which is the time elapsed between
the successive nerve impulses, can be extracted from the HRV
derived from any cardiovascular signal, with close values.
Hence, the IPI feature of the HRV is readily available in
all of the physiological signals required in a remote health
monitoring system, except for the BT signal, as depicted in
Figure 2. Nevertheless, a BT sensor can be attached to each of
the other biosensors capturing the ECG, PPG and BP signals,
since the device used to measure the BT signal is far simple
and cheaper than the devices used to measure the other signals.
Therefore, it can be deduced that the IPI of the HRV is the
most suitable physiological feature and the ECG, PPG and BP
signals are the most suitable physiological signals to be used in
a bio-cryptographic security infrastructure designed for BANs.

Inter Pulse Interval

Fig. 2: Ideal ECG (top), PPG (middle) and BP (bottom)

III. PROPOSED PHYSIOLOGICAL
PARAMETER GENERATION TECHNIQUE

In this section, we describe our physiological parameter
generation technique, which is visualized in Figure 3 and
defined as in Algorithm 1, where the utilized symbols are
listed in Table I. This technique can be applied on the ECG,
PPG and BP signals in order to derive IPI-based physiological
parameters that can be used as cryptographic keys.

Physiological
Signal

Peak
Detection

IPI
Calculation

QuantizationBinarizationPhysiological
Parameter

Fig. 3: Proposed IPI-based Physiological Parameter Generation
Technique

First of all, the peak points of the sensed ECG, PPG and BP
signals are determined using a generic peak detection function.
Then, IPI sequences of length l are generated by computing
the time elapsed between the adjacent (l + 1) peak points.
After that, in order to decrease the effect of the measurement

Algorithm 1 Pseudocode of the Proposed IPI-based
Physiological Parameter Generation Technique

INPUT: Signal, l, g, min, max, s, n
OUTPUT: PhysParam

1: P = FindPeakLocations(Signal)
2: for all i ∈ {1, ..., l} do
3: IPIiniti = Pi+1 − Pi

4: end for
5: IPI = zeros (l/g)
6: k = 1
7: for i = 1 : g : l do
8: for all j ∈ {1, ..., g} do
9: IPI(k) = IPI(k) + IPIinit(i+ j − 1)

10: end for
11: k = k + 1
12: end for
13: lenpart = floor (max−min)/s
14: part = zeros (lenpart)
15: code = zeros (lenpart + 1)
16: for all i ∈ {1, ..., lenpart} do
17: part(i) = min+ i ∗ s
18: code(i) = i mod 2n

19: end for
20: IPIquant = Quantization (IPI, part, code)
21: PhysParam = GrayEncoding (IPIquant)

TABLE I: Symbols used in Physiological Parameter Generation
and Evaluation

Symbol Description

IPI
(c,d),j

(a,b),i

i IPI index
a, b User index
j Signal type ∈ sig = {ECG,PPG,BP}
c, d Start time index of IPI

l Length of the initial IPI sequence

g Size of the IPI groups

s Step size for quantization

min,max Minimum and maximum values of an IPI

n Bit length of a quantized and binarized IPI

D(d,s,t)

D Distance between physiological parameters
d of different hosts
s of the same host at same time
t of the same host at different times

FAR False Accept Rate

FRR False Reject Rate

HTE Half Total Error Rate

FARHTE , FRRHTE FAR and FRR at HTE

t
Expected value of the elapsed time to generate

two matching physiological parameters

errors, each IPI sequence is divided into groups of length
g and the elements in each group are summed up. At the
end of this process, the constructed IPI sequences are of the
form IPIji , where 1 ≤ i ≤ l/g defines the IPI index and
j ∈ {ECG,PPG,BP} defines the related physiological



signal. For instance, if l = 6, g = 2, and the initial IPI
sequence is {6, 8, 6, 3, 8, 9}, then we have IPIj = {14, 9, 17}.

Thereafter, these IPI sequences are quantized in order to
further decrease the measurement errors. Here, we apply a
circular uniform quantization method, in which the value range
of the IPI sequences, min <= IPIji <= max (∀i, j), are
partitioned into blocks using a step size, s, and each partition
is mapped to a value from the set {0, 1, . . . , 2128/(l/g) − 1},
circularly, where l/g is length of the constructed IPI sequence.
We determine the min and max values for the IPI sequence
range using 5 minute ECG, PPG and BP recordings of
50 different individuals that are obtained from PhysioBank
MIMIC II Waveform database [24]. For instance, if min = 1,
max = 40, s = 4 and l/g = 64, then the partitions are defined
as {1− 4, 5− 8, . . . , 37− 40} and the IPI values that appear
in the first, fifth and ninth partitions are assigned to 0, the
ones that appear in the second, sixth and tenth partitions are
assigned to 1, and so forth.

Finally, Gray encoding, i.e. {0, 1, 2, 3} 7→ {00, 01, 11, 10},
is applied on the resulting quantized IPI sequences in order to
increase the error margin of the physiological parameters gen-
erated in different BANs. For instance, if IPI = {14, 9, 17}
and n = 2, then the resulting quantized IPI sequence will
be {3, 2, 0} and the encoded physiological parameter will be
{10, 11, 00}.

At the very end of the physiological parameter generation
method described above, a 128 bit binary sequence is gener-
ated as the physiological parameter.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the gener-
ated physiological parameters in terms of their randomness,
distinctiveness, temporal variance and error rates. We conduct
our experiments on the ECG, PPG and BP signals obtained
from the publicly available PhysioBank MIMIC II Waveform
database [24]. We downloaded 5 minutes of data (per subject),
sampled at 125 Hz, from 50 different subjects. Each recording
includes a simultaneous measurement of all ECG, PPG and BP
signals.

We randomly selected 10 different starting points to com-
pute IPI sequences with lengths l = 32, l = 64 and l = 128,
from each of the aforementioned signals. These IPI sequences
are then used to generate 5 different physiological parameters:

• IPI sequences of length 32 and 64 are used as they are
(g = 1 and l = 32 or l = 64);

• IPI sequences of length 64 and 128 are divided into
groups of 2 (g = 2 and l = 64 or l = 128);

• IPI sequences of length 128 are divided into groups of 4
(g = 4 and l = 128)

We implemented and analyzed our physiological parameter
generation methods using Matlab. As discussed in the below
subsections one by one, results of the evaluation metrics show
that most of the generated physiological parameters meet the
requirements of being used as cryptographic keys.

A. Randomness

Being random is one of the requirements of a physiological
parameter for it to be used as a cryptographic key. In order
to evaluate the randomness of the generated IPI-based physi-
ological parameters, we use the Shannon’s entropy, which is
computed as in Equation 1, where P (·) is the probability mass
function. According to this evaluation metric, the randomness
level of the input sequence increases as H approaches to 1.

H = −
∑
i

P (IPIi)log2P (IPIi) (1)

Table II shows the average randomness of the generated
physiological parameters, where l is the length of the initial
IPI sequence, g is the group size and s is the step size. Results
reveal that the physiological parameters generated using the
accumulated IPI sequences appear to be more random than
the ones that are generated using the singleton sequences, for
most of the step size values. For instance, the physiological
parameters generated using l = 64 and g = 2 or l = 128 and
g = 4 are more random than the ones generated using l = 32
and g = 1. Among the generated 36 different physiological
parameters, 23 of them (∼ 64%), the ones with a Shannon’s
entropy of greater than 0.7, are applicable to be used as
cryptographic keys.

TABLE II: Randomness of the IPI-based Physiological Parameters
- Underlined values indicate that the corresponding physiological
parameters have high level of randomness.

PPPPPPl,g
s

2 3 4 5 6 7

32,1 0.91 0.37 0.85 0.99 0.87 0.99

64,1 0.65 0.43 0.39 0.99 0.39 0.99

64,2 0.99 0.96 0.86 0.53 0.85 0.84

128,2 0.99 0.95 0.91 0.72 0.51 0.42

128,4 0.96 0.89 0.86 0.79 0.99 0.69

B. Distinctiveness

Another requirement of a physiological parameter for being
used as a cryptographic key is that it should be different
for different users, at any given time. This requirement also
implies that the two physiological parameters generated at
the same time by the two different biosensors of the same
host should have similar values. In order to evaluate the
distinctiveness of the generated IPI-based physiological pa-
rameters, we use the average Hamming distance metric, as
defined in Equation 2, where Ds is the distance between the
physiological parameters that are generated from the same
host, Dd is the distance between the physiological parameters
that are generated from different hosts, |sig| is the length of
the utilized physiological signal set, a and b defines the subject
indexes, i defines the IPI index, and j and k defines the signal
types.

Figure 4 shows the average differences between the gener-
ated physiological parameters, where l is the length of the
initial IPI sequence, g is the group size and s is the step
size. In order for the generated physiological parameters to



Fig. 4: Distinctiveness of the IPI-based Physiological Parameters - In each sub-figure, diagonal and non-diagonal cells hold the average
Hamming distances between the IPI-based physiological parameters generated from the same host and from different hosts, respectively. The
value at the cell (x, y) is the average Hamming distance between the physiological parameters of the xth and yth hosts and the darkness
of this cell represents the proximity of these physiological parameters, i.e., if the average Hamming distance is close to 0, then the cell will
be darker, indicating that the related physiological parameters are identical.

be distinctive for different users, Hamming distances between
the IPI-based physiological parameters that are generated
from the same host (diagonal cells), should be as dark as
possible, i.e. close to 0, and Hamming distances between the
ones that are generated from different hosts (non-diagonal
cells), should be as light as possible, i.e. close to 1. Results
show that the average Hamming distance between the IPI-
based physiological parameters derived by different BANs’
biosensors are quite large, while the average Hamming dis-
tance between the IPI-based physiological parameters derived
simultaneously by the same BAN’s biosensors are very low.
Results also show that using the accumulated IPI sequences

better separates different users than using the singleton IPI
sequences, independent of the step size, considering the fact
that the color tone difference between the diagonal and non-
diagonal cells indicates the degree to which the interpersonal
distinction can be accomplished.

Ds =

 ∑
a=b,j 6=k

(|IPIja,i − IPIkb,i|)

 /

(
|sig|
2

)

Dd =

∑
a 6=b

(|IPIja,i − IPIkb,i|)

 / |sig|2

(2)



C. Temporal Variance

Being different for the same user at different time intervals
is another requirement for a physiological parameter to be
used as a cryptographic key. Temporal variance evaluates the
similarity between the two physiological parameters that are
generated by the biosensors of the same BAN at different
time intervals. In order to evaluate the temporal variance of
the generated IPI-based physiological parameters, we define a
new metric: the average temporal ratio metric, which iden-
tifies whether the average Hamming distance between the
physiological parameters that are generated from the same
host at different time intervals, Dt, is close to the average
Hamming distance between the physiological parameters that
are generated from the same host at the same time, Ds, or
from different hosts, Dd. This metric is evaluated as defined in
Equation 3, where Ds and Dd are as given in Equation 2, and
Dt is as given in Equation 4, where |sig| is the length of the
utilized physiological signal set, c and d defines different start
times, i defines the IPI index, and j and k defines the signal
types. According to this temporal ratio metric, having R value
that is greater than 1 implies that the generated physiological
parameters will not match with each other, meaning that they
have temporal variance.

R =
Ds −Dt

Dd −Dt
(3)

Dt =

∑
c6=d

(|IPIc,ji − IPId,ki |)

 / |sig|2 (4)

Table III shows the average temporal ratio of the generated
physiological parameters, where l is the length of the initial
IPI sequence, g is the group size and s is the step size. Results
reveal that the physiological parameters that are generated us-
ing the singleton IPI sequences do not have temporal variance,
except for the one with l = 64 and s = 2, which was already
eliminated because of the randomness level it exhibits. Among
the 18 physiological parameters that are generated using the
accumulated IPI sequences, 14 of them (∼ 78%) are applicable
to be used as cryptographic keys.

TABLE III: Temporal Variance of the IPI-based Physiological
Parameters - Underlined values indicate that the corresponding
physiological parameters have temporal variance.

PPPPPPl,g
s

2 3 4 5 6 7

32,1 0.71 0.43 0.36 0.29 0.27 0.23

64,1 1.31 0.66 0.88 0.47 0.42 0.46

64,2 4.99 2.62 1.45 1.47 0.58 0.48

128,2 3.98 2.55 1.42 1.24 1.09 0.78

128,4 2.63 2.07 1.41 1.21 1.17 0.87

D. Error Rates

Performance of the biometric systems are generally evalu-
ated using the False Accept Rate (FAR), which is the percent-
age of the imposters accepted by the system, and the False

Reject Rate (FRR), which is the percentage of the genuines
rejected by the system. In the context of bio-cryptographic
key generation, FAR corresponds to the percentage of the
matched physiological parameters that should be unmatched,
while FRR corresponds to the percentage of the unmatched
physiological parameters that should be matched. Equal Error
Rate (EER), on the other hand, is defined as the rate at which
the FAR and FRR are equal to each other. Basically, EERs of
different systems are compared so as to pick the one with the
lowest EER as the most accurate system. The EER value of a
system can be obtained through the Receiver Operating Curve
(ROC) that plots the characterization of the trade-off between
the FAR and FRR.

Figure 5 shows the ROCs for the generated IPI-based
physiological parameters, which are resolved to be applicable
for being utilized as cryptographic keys in consequence of the
above discussions, with respect to different threshold values,
where l is the length of the initial IPI sequence, g is the group
size, s is the step size. In each subfigure, the point at which
the ROC and the black dotted linear line intersects defines the
EER of the related technique. Table IV, on the other hand,
includes the statistics derived from the related data, where
FARHTE and FRRHTE are the FAR and FRR values at
the half total error rate, HTE = (FAR+FRR)/2, and t is the
expected value of the time elapsed to generate two matching
physiological parameters, which is computed as in Equation 5,
where 0.0142 is the common IPI of adults in minutes.

t =
1

1− FRRHTE
∗ l ∗ 0.0142 (5)

Results reveal a trade-off between the delay of generating
two matching physiological parameters and the security level
of the system. For instance, according to the EER values, the
physiological parameter that is generated with l = 128, g = 4
and s = 6 performs better than the other two, which has the
highest expected delay.

TABLE IV: Statistical Information of the IPI-based Physiological
Parameters

l,g s EER FARHTE FRRHTE t (minute)

64, 2 4 0.135 0.139 0.131 0.97

128, 2 5 0.096 0.111 0.081 1.91

128, 4 6 0.059 0.058 0.060 1.92

V. RELATED WORK AND DISCUSSIONS

Approaches for securing the communication among the
biosensors by means of bio-cryptography consists of feature
extraction and fuzzy cryptography. Fuzzy cryptography can be
divided into three categories [25]: (i) fuzzy commitment based
key binding, (ii) fuzzy vault based key binding, and (iii) key
generation. In the former two methods, biosensors use the
physiological parameters, which are derived from the sensed
signals, to conceal a shared key, while in the last method, they
use the computed physiological parameters as the shared key
itself. In all of these approaches, biosensors simultaneously
sense a predefined set of physiological signals for a predefined



Fig. 5: ROCs for the IPI-based Physiological Parameters

period of time and generate pseudorandom numbers from
these signals. The pseudorandom number generation process
includes feature extraction, which can be done by either
frequency-domain or time-domain analysis.

Venkatasubramanian et al. [17], [18], Banerjee et al. [20],
Zhang et al. [21] and Miao et al. [19] propose fuzzy vault
based bio-cryptographic key binding protocols and Venkata-
subramanian et al. [22] propose a bio-cryptographic key gener-
ation protocol that are specifically designed for BANs. In each
of these proposals, frequency-domain features of either ECG
or PPG signals are utilized as the physiological parameter. The
authors first divide the corresponding signal into x overlapping
windows of y samples each. Then, they perform y point FFT
(Fast Fourier Transform) on each of these parts and pass the
first z FFT coefficients of the x windows through a peak
detection function. Finally, they quantize the peak index and
peak value pairs into binary strings, according to the standard
deviations and means of these values, and concatenate them.
The most important drawback of these protocols is that the
authors assume that all of the BAN nodes are capable of
measuring the predefined physiological signal, either ECG or
PPG. In fact, using frequency-domain features induces this
drawback, as also discussed in Section 2.

Besides, Bao et al. propose a fuzzy commitment based
key distribution protocol [15] and an entity authentication
protocol [14], in which the IPI values derived from the
PPG signals are used as the physiological parameters. In
their proposals, the authors use adaptive segmentation to
divide the value range of the IPI sequence into segments and
map the values in each segment into binary words. Poon et
al. [8] further evaluate the performance of this physiological
parameter generation approach, using both ECG and PPG
signals, with respect to their error rates. In their subsequent
work, Bao et al. [16] propose another physiological parameter
generation method that can be used in a bio-cryptographic
security protocol. In this method, the authors first divide the
ECG and PPG signals into segments so that each segment
contains 16 IPI values. Then, they add up the IPI values of
each segment, randomize these values by computing their 2p

modulus and divide the resulting modulus values by 2p−q to

compensate measurement differences. The authors argue that
the physiological parameters generated using the individual
and multi-level IPI sequences have comparable randomness
and distinctiveness. They also compare the error rates of the
physiological parameters generated using the multi-level IPI
sequences with the results of their previous work [14] and
indicate that this technique can provide a lower minimum
HTE, which is 0.0283. Nevertheless, the latency of this method
is very high, i.e. 16 ∗ 16 = 256 IPI values are required
to generate a 64 bit physiological parameter, and with the
provided error rates it takes ∼ 3.7 minutes to generate
two matching physiological parameters. On the contrary, our
protocol can generate two matching 128 bit physiological
parameters in ∼ 1.92 minutes at maximum, as also mentioned
in Section IV-D. In a bio-cryptographic security infrastructure
designed for BANs, in order for the cryptographic keys to be
generated from the captured physiological signals in real-time,
the delay of the key generation process should be at minimum.

An alternative physiological parameter generation method
is also proposed by Xu et al. [26], in which the IPI values
derived from the ECG signals are used. The authors adopt
Gray encoding and map each IPI value to a 4 bit binary word
using uniform quantization, where the quantization levels are
decided based on the mean and standard deviation of a 15
minute recording of an ECG signal. The authors state that the
generated physiological parameters pass the first 9 randomness
evaluation tests provided by the NIST test suit [27]. They also
express that the generated physiological parameters possess
both distinctiveness and temporal variance, according to a
Hamming distance evaluation. Unfortunately, this work does
not include the relevant numerical data for the experimental
performance results.

VI. CONCLUSIONS AND FUTURE WORK

BANs are the most important building stone of pervasive
healthcare, enabling continuous, remote and real-time patient
monitoring through the use of biosensors. These small wear-
able sensing devices are limited in energy and storage, and
they collect very important and sensitive personal information.
Therefore, light-weight security solutions are required for



BANs in order both to preserve the privacy of the user
and to provide the security of the exchanged data. In this
paper, we propose a novel physiological parameter generation
technique and demonstrate the performance of the generated
IPI-based physiological parameters in terms of their ran-
domness, distinctiveness, temporal variance and error rates.
Results show that, when appropriate parameters are used in the
generation process, physiological parameters computed from
the IPI sequences derived from the ECG, PPG and BP signals
are applicable to be used as cryptographic keys in a bio-
cryptographic security protocol designed for BANs.

Our future work includes the design and analysis of a
new bio-cryptographic key management protocol that does
not possess the deficiencies of the existing ones, which are
analyzed in detail in [25]. Our aim will be to comprise a
security infrastructure that can provide privacy preservation
with low communication and computational overheads and low
key generation latency. We will also evaluate the performance
of the generated physiological parameters when used in the ex-
isting key binding and key generation based bio-cryptographic
security infrastructures and compare the results with that of
ours.

REFERENCES

[1] J. O’Donoghue and J. Herbert, “Profile based sensor data acquisition in
a ubiquitous medical environmet,” in Proceedings of the Pervasive Com-
puting and Communications Workshops (PerComW). IEEE Computer
Society, Washington, Pisa, Italy, 13–17 March 2006, pp. 570–574.

[2] G.-Z. Yang, Body Sensor Networks, 1st ed. London: Springer-Verlag,
2006.

[3] U. Varshney, “Pervasive healthcare and wireless health monitoring,”
Mobile Networks and Applications, vol. 12, no. 2/3, pp. 113–127, 2007.

[4] M. S. Siddiqui and C. S. Hong, “Security issues in wireless mesh
networks,” in Proceedings of the International Conference on Multi-
media and Ubiquitous Engineering (MUE). IEEE Computer Society,
Washington, Seoul, Korea, 26–28 April 2007, pp. 717–722.

[5] R. J. Anderson, “A security policy model for clinical information
systems,” in Proceedings of the IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, Washington, Oakland, CA,
6–8 May 1996, pp. 30–43.

[6] A. Bhargava and M. Zoltowski, in Proceedings of the International
Workshop on Database and Expert Systems Applications (DEXA). IEEE
Computer Society, Washington, Prague, Czech Republic, 1–5 September
2003, pp. 956–960.

[7] K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton, “Sensor networks
for emergency response: Challenges and opportunities,” IEEE Pervasive
Computing, vol. 3, no. 4, pp. 16–23, 2004.

[8] C. Poon, Y.-T. Zhang, and S.-D. Bao, “A novel biometrics method to
secure wireless body area sensor networks for telemedicine and m-
health,” IEEE Communications Magazine, vol. 44, no. 4, pp. 73–81,
2006.

[9] S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and B. K.
Wiederhold, “ECG to identify individuals,” Pattern Recognition, vol. 38,
no. 1, pp. 133–142, 2005.

[10] K. Vibe, J.-M. Vesin, and E. Pruvot, “Chaos and heart rate variability,” in
Proceedings of the International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBS). IEEE Press, Portland, Montreal,
Canada, 20–23 September 1995, pp. 1481–1482.

[11] S. Lu, J. Kanters, and K. H. Chon, “A new stochastic model to interpret
heart rate variability,” in Proceedings of the International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBS). IEEE
Press, Portland, Cancun, Mexico, 17–21 September 2003, pp. 2303–
2306.

[12] L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG analysis: A new
approach in human identification,” IEEE Transactions on Instrumenta-
tion and Measurement, vol. 50, no. 3, pp. 808–812, 2001.

[13] Y. Wang, F. Agrafioti, D. Hatzinakos, and K. N. Plataniotis, “Analysis
of human electrocardiogram for biometric recognition,” Eurasip Journal
on Advances in Signal Processing, vol. 2008, pp. 19:1–19:11, 2008.

[14] S.-D. Bao, Y.-T. Zhang, and L.-F. Shen, “Physiological signal based en-
tity authentication for body area sensor networks and mobile healthcare
systems,” in Proceedings of the 27th Annual International Conference
of the IEEE-EMBS on Engineering in Medicine and Biology Society,
China, 1–4 September 2005, pp. 2455–2458.

[15] S.-D. Bao, L.-F. Shen, and Y.-T. Zhang, “A novel key distribution
of body area networks for telemedicine,” in Proceedings of the IEEE
International Workshop on Biomedical Circuits and Systems. IEEE
Press, Portland, Singapore, 1–3 December 2004, pp. 1–20.

[16] S.-D. Bao, C. Poon, Y.-T. Zhang, and L.-F. Shen, “Using the timing
information of heartbeats as an entity identifier to secure body sensor
network,” IEEE Transactions on Information Technology in Biomedicine,
vol. 12, no. 6, pp. 772–779, 2008.

[17] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “PSKA:
Usable and secure key agreement scheme for body area networks,” IEEE
Transactions on Information Technology in Biomedicine, vol. 14, no. 1,
pp. 60–68, 2010.

[18] K. K. Venkatasubramanian, A. Banerjee, and S. Gupta, “Plethysmogram-
based secure inter-sensor communication in body area networks,” in Pro-
ceedings of the IEEE Military Communications Conference (MILCOM).
IEEE Press, Portland, San Diego, CA, 16–19 November 2008, pp. 1–7.

[19] F. Miao, L. Jiang, Y. Li, and Y.-T. Zhang, “Biometrics based novel
key distribution solution for body sensor networks,” in Proceedings of
the International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBS). IEEE Press, Portland, Minneapolis, MN, 3–6
September 2009, pp. 2458–2461.

[20] A. Banerjee, K. Venkatasubramanian, and S. K. S. Gupta, “Challenges of
implementing cyber-physical security solutions in body area networks,”
in Proceedings of the Fourth International Conference on Body Area
Networks. ICST, Belgium, LA, California, 1–3 April 2009, pp. 18:1–
18:8.

[21] Z. Zhang, H. Wang, A. Vasilakos, and H. Fang, “ECG-cryptography
and authentication in body area networks,” IEEE Transactions on
Information Technology in Biomedicine, vol. 16, no. 6, pp. 1070–1078,
2012.

[22] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “EKG-
based key agreement in body sensor networks,” in Proceedings of the
IEEE International Conference on Computer Communications Workshop
(INFOCOM). IEEE Press, Portland, Phoenix, AZ, 13–18 April 2008,
pp. 1–6.

[23] Task Force of the European Society of Cardiology the North American
Society of Pacing Electrophysiology, “Heart Rate Variability: Standards
of measurement, physiological interpretation, and clinical use,” Euro-
pean Heart Journal, vol. 17, pp. 354–381, 1996.

[24] D. Kreiseler and R. Bousseliot, “Automatisierte EKG-Auswertung mit
Hilfe der EKG-Signaldatenbank CARDIODAT der PTB,” Biomedizinis-
che Technik/Biomedical Engineering, vol. 40, no. 1, pp. 319–320, 2009.
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