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The purpose of our study was to investigate the effect of iterative reconstruction 
(IR) as a dose reduction system on the image quality (IQ) of the adult head com-
puted tomography (CT) at various low-dose levels, and to identify ways of setting 
the amount of dose reduction. We performed two noncontrast low-dose (LD) adult 
head CT protocols modified by lowering the tube current with IR which were 
decided in the light of a group of phantom studies. Two groups of patients, each 
100 underwent noncontrast head CT with LD-I and LD-II, respectively. These 
groups were compared with 100 consecutive standard dose (STD) adult head CT 
protocol in terms of quantitative and qualitative IQ. The signal-to-noise ratio (SNR) 
of the white matter (WM) and gray matter (GM) and contrast-to-noise ratio (CNR) 
values in the LD groups were higher than the STD group. The differences were 
statistically significant. When the STD and the LD groups were compared 
qualitatively, no significant differences were found in overall quality. By 
selecting the appropriate level of IR 34%, radiation dose reduction in adult head 
CT can be achieved without compromising IQ.
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I.	 INTRODUCTION

Following its introduction by Godfrey Hounsfield in 1972,(1,2) CT has become an important 
method in medical diagnosis.(3) The development of spiral CT — and thereafter multidetec-
tor CT (MDCT) — in the past few years has allowed a shorter examination time and thinner 
sections. CT use for diagnostic evaluation has increased dramatically all over the world.(4-7) 
The total number of CT examinations performed annually in the US has risen from 3.3 million 
in 1980–82 to 68.7 million in 2007.(4,8) As head CT has evolved as the technique of choice 
to assess traumatic and nontraumatic neurological conditions, its use has become particularly 
frequent.(9) In the US, 19 million head CTs were performed (i.e., 28.4% of all CT procedures)  
in 2007.(4)

The most important problem with the increasing use of CT is the associated dose of ionizing 
radiation and the potential risk of cancer development later in life.(7,10-13) To date, attention has 
focused on risks from pediatric CT scans. However, Berrington de González et al.(13) estimate 
that, in terms of absolute numbers, the potential public health impact of current use patterns 
is highest for adults aged 35 to 54 years because of the high frequency of use. It is important 
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for the radiologist to be sure that CT examination is required for the patient and that all efforts 
are made for reducing the radiation dose. Radiologists should have a control mechanism while 
reducing the dose in order not to sacrifice the image quality (IQ).

For that reason, many dose methods to reduce radiation exposure during CT examinations 
have been developed.(14-16) Radiation dose reduction can be obtained by reducing tube poten-
tial (kVp) or current (mAs), resulting in increased image noise and decreased IQ.(14,17) With 
increasing computational power, a reconstruction method, statistical iterative reconstruction 
(IR), has become an alternative in overcoming these concerns while reducing radiation expo-
sure.(18) iDose4 (Phillips Healthcare, Best, the Netherlands) is one of the IR techniques can be 
used effectively, that was investigated in previous papers.(19,20) 

In this article, we study the effect of the radiation dose reduction on IQ in adult head CT 
with IR technique (iDose4) using a 256 slice MDCT. Because IQ decreases with the radiation 
dose, careful choice of the appropriate IR level is necessary. We try to describe a roadmap, 
while reducing the radiation dose, in order to achieve an optimal balance between image noise 
and quality, and compared our findings with the previous studies.

 
II.	 MATERIALS AND METHODS

When we decided on the application of the IR in our department, we performed two noncontrast 
low-dose (LD) adult head CT protocols with IR which were constituted in the light of a group 
of phantom studies. The local institutional review board approved this study. Because vendor 
experience and our prior phantom studies suggest preservation of diagnostic image quality at 
all dose levels used in our study, informed consent of patients was waived and all examinations 
were performed as standard of care.

All phantom and patient CT examinations were performed by using a 256 slice MDCT 
scanner (Brilliance iCT, Phillips Healthcare).

A. 	 Phantom studies
A female adult anthropomorphic phantom (model 702-D; CIRS, Norfolk, VA), which contains 
tissue-equivalent epoxy resins in all aspects of the phantom (the manufacturer supplied infor-
mation, model 702-D; CIRS) was used.

The STD head CT protocol that is recommended by the vendor was the beginning point. 
The scan parameters are shown in Table 1. Subsequently, phantom scanning was repeated by 
reducing the mAs by 30 mAs, while all other scan parameters remained constant (300, 270, 240, 
210, 180, 150). Each scan was reconstructed by the filtered backprojection (FBP) algorithm 
and five levels of the IR technique (iDose4 1–5) that were predefined by the vendor. A total of 
36 scans were analyzed. The noise (in SD) of each study was evaluated while 1 cm2 region 
of interest (ROI) was drawn in the same place (Fig. 1). According to our experience, multiple 
ROI measurements will lead to the more accurate conclusion. In this study, all (phantom and 
patient) ROI measurements were done in three consecutive slices and their average value was 
used. Additionally, we repeated the same protocol and method with 100 kV and 140 kV in 
order to check the reliability. 

Table 1.  The STD head CT protocol’s scan parameters recommended by the vendor.

	 tube voltage  	 120-kVp
	 tube current	 300 mAs 
	 pitch	 0.391 
	 Gantry rotation time  	 0.5 s
	slice thickness and reconstruction interval	 5 mm
	 detector collimation 	 64×0.625
	 field-of-view	 25 cm
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As a result of the noise information acquired through the anthropomorphic phantom measure-
ments, Catphan 504 phantom (Phantom Laboratory, Salem, NY) was scanned with a STD and 
two LD head CT protocols. CT parameters were: STD protocol (as defined before) with mAs 
300 and FBP reconstruction, LD-I head CT protocol 250 mAs with iDose42, LD-II head CT 
protocol 200 mAs with iDose43. All scanning parameters were identical, except mAs. These 
protocols were compared by using the four modules of the Catphan phantom for objective IQ 
before the patient applications. 

The effect of dose and IR (iDose4) on image noise, SNR, CNR, uniformity, low-contrast 
resolution, and high-contrast resolution were evaluated. The methods and formulas were based 
on the literature(21-23) and the information supplied by the manufacturer (Catphan 504 Manual, 
The Phantom Laboratory). 

To measure the image noise, SNR and CNR linearity module (CTP 404) was used. Image 
noise was defined as SD of the 10 mm diameter ROI located in background at the center of 
the module.  

SNR was determined by dividing the mean Hounsfield units (HU) value by the SD of the 
same ROIs. 

	 SNR = Mean HU of the ROI/SD of the ROI	 (1)

CNR was determined by dividing the difference between the mean value obtained from 
the ROI in one of the round objects (acrylic) within the phantom and the mean value of the 
background by the SD of the background. 

	 CNR = Mean HU of the acrylic-Mean HU of background/(SD of the background)	 (2)

The CT number (CTn) uniformity according to the location, edge, and center, was determined 
by using the image uniformity module (CTP 486). We measured the CTn (in HU) from the 
center of the module and at 3, 6, 9 and 12 o’clock locations of the module. All CTn for all five 
ROIs must be within ± 5 HU of the center ROI mean value.

The low-contrast module (CTP 515) was used for contrast detail evaluation. This module 
is made of several sets of cylindrical low contrast objects. We chose the 1.0% contrast level 
to determine whether the contrast detail changed visually and numerically. We evaluated the 
number and the diameter of the objects that are visible. 

Fig. 1.  CIRS phantom: (a) lateral scout; (b) the axial slice scanned at 300 mAs, demonstrating region-of-interest placement.
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For the assessment of high-contrast resolution, the high resolution module (CTP 528) was 
used.(19) The high-resolution bar patterns and the corresponding line pairs/cm (lp/cm-1) were 
evaluated and the scans were compared.

B.  	Patient groups 
The first 100 patients underwent noncontrast LD-I head CT protocol and the second 100 patients 
underwent LD-II head CT protocol between October and December 2013. These groups were 
compared with 100 consecutive STD head CT protocol that we used before the application 
of the IR in our department during August to September 2013. No limitations were used for 
the indications. The CT scans (totally 18) with motion artifacts were excluded from the study.

C. 	 Radiation dose 
The CTDIvol and DLP were obtained at the end of each scan from the dose information page of 
the scanner. ED in mSv was calculated by multiplying DLP (mGy*cm) with a constant adult 
head specific conversion factor (κ) 0.0021 mSv/ (mGy*cm).(24)  

D. 	 CT data analysis
Head measurements were done for every patient from the CT images. We looked for the homo-
geneity between the patient groups. Anatomic landmarks were chosen. The distance between 
glabella and opisthocranion (GOD) and biparietal diameter (BPD) was measured. 

E. 	 Quantitative image analysis 
One radiologist who was not involved in the qualitative IQ analysis made quantitative mea-
surements on CT images.

Image noise measurement was made by recording the SD of the circular ROI in the air, 
cerebrospinal fluid (CSF), bone, WM, and GM. SD and CTn were obtained for all series in all 
groups. The size, shape, and position of the ROIs were kept constant among the image sets for 
comparison by applying a copy and paste function at the workstation (Brilliance Workspace, 
Philips Healthcare). The ROIs of 1 cm2 in-air were placed at the level of frontal sinus 1 cm 
away from the bone. The ROIs (15–20 mm2) of CSF were drawn in the lateral ventricle corpus 
or the frontal horn. The ROIs (50–60 mm2) for WM were placed in the frontal lobe and GM 
was placed in the thalamus. The ROIs (25–30 mm2) for bone were placed in the clivus.

The SNR of the images were calculated for the WM and GM which were drawn in the frontal 
lobe and thalamus, respectively. SNR: CTn/SD. 

In order to calculate the CNR, four ROIs with 4 mm2 measurements in the GM and WM at 
the level of centrum semiovale of three consecutive slices were detected and get the averages 
of the CTn and SD values. The calculations were made by the following equation, as defined 
in the literature previously.(25-27) 

	 CNR: (mean GM HU-mean WM HU)/ [(SD GM)2 + (SD WM)2]1/2 	 (3)

	
F. 	 Qualitative image analysis 
All datasets were randomized and reviewed on the workstation (Brilliance Workspace, Philips 
Healthcare) for assessment of qualitative analysis. Two radiologists with more than 10 years 
of experience assessed all image datasets independently. They were blinded to the whole scan 
parameters. Images were graded for subjective noise, artifacts, and descriptiveness of the pos-
terior fossa contents, GM–WM differentiation, and overall image quality on a five-point Likert 
scale (1 worst to 5 best). For grading the descriptiveness of posterior fossa contents: visual-
ization of the brain stem structures, contours of the basal cisterns and ventricular system, and 
cerebellar folia were evaluated. WM and GM differentiation: visualization and differentiation 
of the basal ganglia and the cortex were graded. We thought that these parameters reflect the 
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lesion detectability of the images. Grades for image quality were averaged across both readers 
for further analysis. 

G. 	 Statistical analysis 
For the statistical analysis of the quantitative imaging parameters, one-way ANOVA was used. A 
p < 0.05 indicated statistical significance. The homogeneity of the variance of the study groups 
were analyzed by the Levene test. The groups that have p > 0.05 were considered homogenous. 
Tukey’s HSD test for homogenous groups and Tamhane’s T2 test for nonhomogenous groups 
were used for post hoc analysis. The chi-square test was used for gender comparison.

A nonparametric Kruskal-Wallis variance analyze test and the Mann-Whitney U test was 
used to determine statistical significance for the qualitative image analysis. Interobserver agree-
ment in the assessment of image quality was quantified by weighted statistics (kappa statistics). 
Kappa value is a statistical measure of interobserver agreement for qualitative measurements. 
The κ value can be interpreted as 0.21–0.40 fair, 0.41–0.60 moderate, and 0.61–0.80 good.

 
III.	 RESULTS 

A. 	 Phantom study
CIRS phantom studies demonstrated noise reduction when the same tube current was recon-
structed with increasing levels of iDose4 (Table 2). The noise levels at 20% and 30% decreased 
mAs reconstructed by iDose42 and iDose43, respectively, were almost equal to the STD with 
FBP algorithm. For that reason these iDose4 and mAs reduction levels were chosen for further 
study. The results were the same for the different tube voltages (100, 120, 140 kV, Table 2).

Table 2.  The noise data (in SD) scanning of the CIRS head phantom at intervals of decreasing mAs and increasing 
iDose4 levels relative to STD head CT protocol using 120 kVp. The same protocol and method with 100 kVp and 
140 kVp. mAs = tube current; FBP = filtered backprojection; CTDIvol = volume CT dose index; kVp = tube voltage; 
LD = low dose; STD = standard dose.

					     120 kVp
	mAs	 FBP	 iDose41	 iDose42	 iDose43	 iDose44	 iDose45	 CTDIvol

	300	 3.3	 2.9	 2.8	 2.6	 2.3	 2.1	 41.24
	270	 3.7	 3.3	 3.2	 2.9	 2.7	 2.5	 37.1
	240	 3.8	 3.5	 3.2	 2.9	 2.7	 2.4	 32.96
	210	 4	 3.6	 3,4	 3.2	 2.9	 2.6	 28.99
	180	 4.4	 3.9	 3.6	 3.4	 3.1	 2.8	 24.67
	150	 4.5	 4	 3.7	 3.4	 3.2	 2.9	 20.53

					     100 kVp

	300	 4.4	 3.9	 3.6	 3.4	 3.1	 2.7	 25.18
	270	 5.1	 4.5	 4.3	 3.9	 3.6	 3.2	 22.65
	240	 5.5	 4.8	 4.5	 4.2	 3.8	 3.4	 20.12
	210	 5.5	 4.9	 4.6	 4.4	 3.9	 3.4	 17.59
	180	 6.1	 5.5	 5.2	 4.8	 4.5	 4.1	 15.07
	150	 6.9	 6.1	 5.7	 5.3	 4.8	 4.4	 12.54

					     140 kVp

	300	 2.6	 2.5	 2.2	 2.1	 1.9	 1.7	 60.17
	270	 2.9	 2.6	 2.4	 2.2	 2	 1.8	 54.13
	240	 3.1	 2.8	 2.6	 2.4	 2.2	 2	 48.09
	210	 3.5	 3.2	 3	 2.7	 2.5	 2.3	 42.3
	180	 3.8	 3.4	 3.2	 3	 2.7	 2.5	 36
	150	 4.1	 3.7	 3.4	 3.2	 2.9	 2.6	 29.96
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When the STD, LD-I and LD-II protocols were compared by using the Catphan phantom, 
the background noise levels were lower, and the SNR and the CNR values were higher in LD 
protocols than the STD protocol (Table 3).

Field uniformity measurements were preserved, and the difference of the values according 
to the locations and the protocols were within the limitations, as described in the Materials & 
Methods section (Table 4). Comparison of low-contrast images showed comparable appear-
ances of the 4 mm objects at 1% in all of the protocols similar to data published in the literature 
(Fig. 2). There were no differences in the identification of these high-contrast resolution bar 
patterns between the groups (5 lp/cm based on phantom guidelines) (Fig. 3). The low-dose 
application with iDose4 did not decrease the high-contrast resolution.  

Table 3.  The background noise levels, the SNR, and the CNR values of the STD, LD-I and LD-II protocols were 
compared by using the Catphan phantom, module 404. LD = low dose; STD = standard dose; CNR = contrast-to-noise 
ratio; SNR = signal-to-noise ratio.

		  STD	 LD-I	 LD-II

	background noise	 3.9	 3.5	 3.7
	background SNR	 26.3	 29	 27.2
	 CNR	 5.9	 6.4	 6.2

Table 4.  Field uniformity measurements of Catphan phantom using CTP 486 module. CTn  given in HU. LD = low 
dose; STD = standard dose; CTn = CT number; HU = Hounsfield units. 

		  STD	 LD-I	 LD-II

	 Center	 17.2	 17.56	 17.56
	3 o’clock	 15.66	 15.8	 16.06
	6 o’clock	 16.03	 15.6	 15.56
	9 o’clock	 14.86	 14.83	 15.1
	12 o’clock	 15.83	 15.76	 15.7

Fig. 2.  Catphan low-contrast phantom module (CTP 515) is made of several sets of cylindrical low-contrast objects:  
(a) STD protocol (300 mAs, with FBP reconstruction); (b) LD-I (250 mAs, with iDose42); (c) LD-II (200 mAs, iDose43). 
Comparison of low-contrast images showed comparable visualization of the 7 disc objects, up to 4 mm diameter, at 1% 
in all of the protocols similar to data published in the literature. FBP = filtered backprojection; LD = low dose; STD = 
standard dose.
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B. 	 Patient demographics
There were no significant differences in the age and sex distribution between the groups (p > 
0.05) (Table 5). The BPD and GOD were similar in the groups (p > 0.05) (Table 5). We achieved 
a significant dose reduction of 16.73% in CTDIvol and 16.06% in the DLP in LD-I and 33.49% 
in the CTDIvol and 34.46% in the DLP in LD-II group (p < 0.0001) (Table 5). The ED (mSv) 
was significantly lower in both LD groups compared with the STD group.

C.  	Quantitative analysis
The noise levels of the CSF (STD-LD-I p = 0.001, STD-LD-II p < 0.0001), WM (STD-LD-I 
p < 0.0001, STD-LD-II p < 0.0001), and GM (STD-LD-I p < 0.0001, STD-LD-II p < 0.0001) 
in the low-dose groups were significantly less than the STD group. The noise levels of the 
bone in the low-dose groups were less than the STD group. The difference between the STD 
and LD-II group was significant (p = 0.032) and insignificant between STD-LD-I (p = 0.603). 
The average noise value for air was high in LD-II than the STD (p = 0.030) and no difference 
is detected between STD and LD-I groups (p = 0.829) (Table 6).

The SNR of the WM (STD- LD-I p < 0.0001, STD-LDII p = 0.033) and GM (STD- LD-I 
p < 0.0001, STD-LDII p < 0.0001) values and the CNR (STD- LD-I p < 0.0008, STD-LDII 
p < 0.0001) levels in the LD groups were higher than the STD group. The differences were 
statistically significant (Table 6). We did not observe any artifacts in either group that made 
interpretation impossible.

Fig. 3.  Catphan high-resolution phantom module (CTP 528) with high-resolution bar patterns: (a) STD protocol (300 mAs, 
with FBP reconstruction); (b) LD-I (250 mAs, with iDose42); (c) LD-II (200 mAs, iDose43). There were no differences 
in the identification of these high-contrast resolution bar patterns between the groups. LD = low dose; FBP = filtered 
backprojection; STD = standard dose.

Table 5.  Patient characteristics and dose parameters of the three groups. LD = low dose; STD = standard dose; M = 
male; F = female; BPD = biparietal diameter; GOD = glabella and opisthocranion; CTDIvol = volume CT dose index; 
DLP = dose-length product; ED = effective dose.

		  STD	 LD-I	 LD-II	 p

	 Age	 46.6±19.4	 45.2±20.3	 44.4±17.46	 0.7
	 Gender (M/F)	 57/43	 57/43	 48/52	 0.33
	 BPD	 146.2±6.4	 146.6±6.9	 145.3±6.2	 0.48
	 GOD	 175±8.8	 174.8±7.3	 175.2±8.5	 0.92
	CTDIvol (mGy)	 41.24	 34.34	 27.43	 <0.0001
	DLP (mGy.cm)	 770±52	 646±41	 504±30	 <0.0001
	 ED (mSv)	 1.6±0.1	 1.3±0.08	 1.05±0.06	 <0.0001
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D. 	 Qualitative analysis
When the STD and the LD-I groups were compared, no significant differences were found 
in descriptiveness of the posterior fossa contents (p = 0.225) and overall quality (p = 0.083) 
(Fig. 4). The subjective noise (p = 0.003), artifact (p = 0.038), and GM–WM differentiation 
(p = 0.045) scores were better in LD-I group than the STD group. There were no significant 
difference in subjective noise (p = 0.456), artifacts (p = 0.697), and overall quality (p = 0.306) 
between the STD group and LD-II group. Scores for descriptiveness of the posterior fossa 
contents (p = 0.027) and GM–WM differentiation (p = 0.011) were better in the STD group 
than LD-II group (Table 7).

For the subjective analysis, the kappa values for interobserver agreement in evaluating vari-
ous image quality parameters were moderate (weighted κ = 0.56-0.61).

 

Table 6.  Mean and SD of noise, SNR and CNR in various CT protocols. (p-values are mentioned in the main text). 
LD = low dose; STD = standard dose; CSF = cerebrospinal fluid; WM = white matter; GM = gray matter; SD = 
standard deviation.

		  STD	 LD-I	 LD-II

NOISE			 
      Air	 2.64±0.42	 2.60±0.33	 2.77±0.31
      CSF	 3.30±0.41	 3.09±0.42	 2.79±0.41
      WM	 2.94±0.38	 2.71±0.32	 2.75±0.34
      GM	 3.45±0.34	 3.11±0.37	 3.10±0.31
      Bone	 48.58±12.69	 46.73±14.57	 43.70±13.55
SNR WM	 9.46±1.46	 10.47±1.63	 10.00±1.49
SNR GM	 9.68±1.24	 10.75±1.96	 10.69±1.58
CNR	 3.17±0.73	 3.54±1.09	 3.82±0.65

Fig. 4.  CT axial images of various protocols: (a) and (d) STD protocol (300 mAs, with FBP reconstruction); (b) and (e) 
LD-I (250 mAs, with iDose42); (c) and (f) LD-II (200 mAs, iDose43). The overall IQ is similar. FBP = filtered backprojec-
tion; IQ = image quality; LD = low dose; STD = standard dose.
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IV.	 DISCUSSION

Due to the widespread use, MDCT has become the major source of radiation related to diagnostic 
imaging and this has raised concerns about radiation exposure in the general population. The 
risk of cancer from diagnostic X-rays reported from 0.6% to 3.0% in developed countries.(28)

Radiation dose is proportional to the total number of the photons and the photon energy 
within the X-ray beam.(29) Many strategies have been introduced to reduce the radiation dose 
including optimizing the kVp and the mAs, automated tube current modulation, adaptive dose 
collimation, and noise-reduction reconstruction algorithms.(16,27,29) Unfortunately the basic 
methods, such as lowering the kVp or mAs, sacrifice the IQ.

Image noise and resolution are the major determinants of IQ. Reconstructed image noise is 
affected mostly by radiation dose and image-processing methods.(18) IR has focused on noise 
suppression and artifact reduction associated with lowering the radiation dose.(29)  

In our study, a reduction of CTDIvol by 16.73% in LD-I and by 33.49% in LD-II protocols 
were achieved with no significant change in the overall image quality compared with the STD 
protocol. Similar findings were reported more recently. The application of various IR methods 
has been described to lower the radiation dose in head CT — in studies by Kilic et al.(30) a 31% 
decrease in DLP, by Rapalino et al.(31) a reduction of 26% in CTDIvol, by Alper et al.(32) a reduc-
tion of 38% in DLP achieved without affecting diagnostic acceptability. Another study published 
by Korn et al.(33) compared their original nonenhanced and enhanced head CT FBP protocol 
with two LD IR protocols. The authors found that a 15% dose reduction did not contribute with 
IQ, but a 30% dose reduction resulted in degradation of IQ when reconstructed with IR (IRIS).

WM, GM, and CSF demonstrated significantly decreased noise levels in our LD protocols 
relative to the STD protocol. The CSF was the most prominent region. This is similar to the 
findings of the other studies which they attributed to the propensity of IR to reduce noise in 
smoother areas more prominently.(30,34,35) Bone demonstrated significantly low noise in LD 
protocols which is not statistically significant in LD-I. In previous studies no significant differ-
ence had been shown between the noise levels in WM and bone, which is not consistent with 
our study.(30,34) Additionally, we studied the GM noise and found lower levels in LD groups. 
Air noise measurements demonstrated no significant difference between the STD and LD-I 
groups and was higher in LD-II than the STD group. We think that this might be because of 
the small FOV in front of the frontal bone. We could not change the FOV in order to compare 
the LD and the STD groups. 

The SNR of WM and GM and CNR in both LD groups were significantly higher than the 
STD group. Kilic et al.(30) had demonstrated higher CNR in their LD and IR protocol; however, 
unlike our study, WM measurements (noise and SNR) and subjective scores of noise were 
better in the STD group. Rapalino et al.(31) demonstrated that the use of IR (ASIR) improves 
measurements of SNR and CNR of GM and WM brain structures in reduced-dose head CT 
scans for adult patients similar to our results.

The subjective imaging quality is dependent on the amount of noise and the effect of blur-
ring while using IR with low radiation doses. The level of noise is inversely related to the 

Table 7.  Mean and SD, median of qualitative image scores in various CT protocols (p-values are mentioned in the 
main text). LD = low dose; STD = standard dose; SD = standard deviation.

		  STD	 LD-I	 LD-II

	 Subjective noise	 4.28±0.57(4)	 4.45±0.55(4)	 4.32±0.58(4)
	 Artifact	 4.1±0.44(4)	 4.19±0.42(4)	 4.08±0.48(4)
	Descriptiveness of posterior fossa	 4.52±0.54(5)	 4.59±0.51(5)	 4.41±0.54(4)
	 GM–WM differentiation	 4.22±0.62(4)	 4.34±0.63(4)	 4.07±0.6(4)
	 Overall image quality	 4.19±0.46(4)	 4.28±0.46(4)	 4.14±0.47(4)
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tube potential,(36) and the blurring effect is proportional to the level of IR used. They must be 
in equilibrium. If the level of IR is high, the images become blurred; if the level of IR is low, 
images will be noisy. Unlike other IR algorithms, (e.g., ASIR; GE Healthcare, Waukesha, WI), 
the exact percentage of IR in different levels of iDose4 is not clearly demonstrated in the CT 
protocol. In order to avoid excessively noisy or smooth image reconstructions,(31,35) the recom-
mended levels by the vendor might be followed. 

In our study, we tried to find out the optimum IR level by performing a group of phantom 
studies before the patient applications which is described in the literature.(34,37) We evaluate 
the low-contrast and high-resolution quality of the protocols which are especially important 
for head and neck protocols.(19) There were no differences between the protocols. The SNR 
and CNR became higher by the iDose4 levels in lower doses. 

We achieved subjective differences in sharpness by evaluating the GM–WM differentiation 
and the posterior fossa descriptiveness. They were found to be better in the STD group than 
the LD-II in qualitative evaluation, while the SNR and CNR were better in quantitative and 
phantom evaluations. Kilic et al.(30) observed better image sharpness scores in the STD group 
than in the LD group. The authors attributed this to the oversmoothing effect of IR (ASIR) as 
well as to the noise. Wu et al.(38) has mentioned that the blurring of imaging texture became 
evident in the infratentorial region. When the IR is increased unproportionately, a noiseless 
appearance occurs in the images, and radiologists may evaluate these images as oversmoothed 
or artificial, neither of which are desired.(31) Changing the algorithm of the routine procedures 
from FBP to IR might be difficult. Perhaps for that reason, while the phantom and quantitative 
evaluation of the LD-II protocol CNR and SNR values were better and comparable with the 
STD protocol, the scores of the qualitative evaluation were lower. The interobserver agreement 
for qualitative measurements (kappa values) was lower in LD-II scores, too. 

Differences in image sharpness might also depend on physical features of the patient. 
Variations in cranial thickness and amount of subcutaneous tissue surrounding the calvarium 
may contribute to subjective image sharpness.(32) For that reason we measured the BPD and 
GOD and compared them as variables. Wu et al.(38) had found that the head diameter was the 
only significant factor inversely correlated with infratentorial imaging quality. Head diameter 
cranial bone structures and thickness of the scalp might be investigated as variables while 
making the dose regulations and deciding on the amount of the radiation dosage. One of the 
limitations of our study is that we measured the diameters between the outer tabulas and didn’t 
consider the amount of subcutaneous tissue in the calvarium. The thickness of the supratento-
rial and infratentorial diploe might be measured separately and compared among the groups as 
variables. This can be studied and compared, and some standardization might be found such 
as body mass index.

The posterior fossa was the part most affected by the lowering of the dose. We evaluated the 
posterior fossa qualitatively, but did not evaluate it quantitatively. This is the one of the limita-
tions of our study. Artifacts, such as the operation materials, might be studied more specifically. 
We did not evaluate the special pathologies and the diagnostic accuracy of the protocols, which 
is another limitation of our study.

We additionally repeated the same procedure with 100 kVp and 140 kVp instead of the 
120 kVp of our STD protocol. Our phantom data suggest that additional radiation dose reduc-
tion may be feasible with similar image noise, if the studies are reconstructed with a higher 
level of IR (e.g., 120 kV 180 mAs iDose44) or by changing kV (e.g., 100 kV 300 mAs iDose43, 
140 kV 150 mAs iDose42). These protocols can be used in future studies. We used only the 
noise level, but the CNR can be added too. 
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V.	 CONCLUSIONS

Radiologists and physicists should be familiar with such dose-reduction techniques and should 
optimize the imaging protocols to achieve the best images with a lower radiation dose. For 
analyzing various protocols, the vendor’s phantoms might be used. The phantom studies can 
be used as a preview before trying a new dose-reducing method. Our study showed that, by 
selecting the appropriate level of IR, radiation dose reduction up to 34% can be achieved in 
adult head CT examinations without compromising the overall IQ.
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