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Abstract—Integration of the finite-difference time-domain
(FDTD) method into the iterative multiregion (IMR) technique,
an iterative approach used to solve large-scale electromagnetic
scattering and radiation problems, is presented in this paper.
The idea of the IMR technique is to divide a large problem
domain into smaller subregions, solve each subregion separately,
and combine the solutions of subregions after introducing the
effect of interaction to obtain solutions at multiple frequencies
for the large domain. Solutions of the subregions using frequency
domain solvers has been the preferred approach as such; solu-
tions using time domain solvers require computationally expensive
bookkeeping of time signals. In this paper, we present an algorithm
that makes it feasible to use the FDTD method, a time domain
numerical technique, in the IMR technique to obtain solutions
at a prespecified number of frequencies in a single simulation. A
hybrid method integrated into the IMR technique is also presented
in this paper. This hybrid method combines the desirable features
of the FDTD method and the method of moments (MoM) to solve
radiation problems more efficiently. As a result, a considerable
reduction in memory storage requirements and computation time
is achieved.

Index Terms—Electromagnetic scattering, finite-difference
time-domain (FDTD) methods, hybrid solution methods, iterative
methods, moment methods.

I. INTRODUCTION

S OLUTION of large-scale electromagnetic scattering and
radiation problems has been one of the major challenges

of computational electromagnetics because the solution of such
problems requires long computation time and large computer
memory. In this paper, we present an algorithm that allows us
to use the finite-difference time-domain (FDTD) method in the
iterative multiregion (IMR) technique, a divide and conquer
algorithm, to obtain solutions at a prespecified number of
frequencies.
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The decomposition of a problem domain into smaller
domains is known as the domain decomposition method
(DDM) [1]–[17], which in general requires either common
boundaries or overlapping regions between subregions. It is
possible to solve each subregion with the same method such
as finite-element method (FEM) [3]–[7] or finite-difference
frequency-domain (FDFD) method [8]–[13]. IMR is one of
such methods that divides a problem space into smaller sub-
regions. In the case of IMR, a problem space contains multiple
objects with separations from each other, and each subregion
contains one or more of the objects. The subregions do not need
to have common boundaries or overlapping regions.

IMR, as originally introduced by Al Sharkawy et al. [9]–
[12], uses the FDFD method to solve Maxwell’s equations in
subregions to calculate the scattering from many objects. This
technique requires the solution of the fields in the subregions a
number of times instead of one solution of the complete compu-
tational domain at a single frequency. In this paper, we adapt the
use of the FDTD method instead of the FDFD method; as a con-
sequence, a problem can be solved at a number of frequencies
instead of a single frequency in a single simulation. In the IMR
technique, scattered fields (SFs) confined to each subregion are
calculated in the time domain, but radiation from one subregion
to another is calculated in the frequency domain; thus, time
domain to frequency domain and frequency domain to time
domain transformations are needed. A key point in this paper
is the time waveform construction (TWC) used to obtain the
frequency domain to time domain transformations; we present
an algorithm to construct time-limited waveforms whose fre-
quency spectrums contain the required magnitudes and phases
of the prespecified frequencies.

The iterative procedure in [9]–[12] is similar to the proce-
dure denoted as the iterative field bouncing (IFB) method and
described briefly in [14]. The DDM using the FDTD method
[15] and using the fast multipole method [16] was used to
solve a two-dimensional sparse multicylinder scattering prob-
lem. The multiple-region FDTD (MR/FDTD) proposed in [17]
was introduced to solve a sparse modeling problem. In [15]–
[17], the interaction and coupling effects between the objects
are not considered very much because the separation distances
between the objects are much larger than the largest dimension
of one object.

A. IMR Technique Using FDTD Method

In this paper, the FDTD method is integrated into the IMR
technique to obtain solutions at multiple frequencies in a single
IMR simulation using broadband excitation waveforms. The
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procedure of the presented technique is used to analyze large-
scale radiation and scattering problems which are difficult to
handle using the conventional FDTD method.

In the case of scattering problems, a large-scale scattering
problem is divided into smaller separated subregions, and each
subregion is solved using the FDTD method independently. In
each subregion, the SFs are calculated due to the same orig-
inal incident plane wave. Then, electric and magnetic surface
currents are calculated from the SFs over an imaginary surface
(IS) of each subregion, using the surface equivalence princi-
ple [18] in frequency domain at a finite number of frequencies.
Radiated fields generated by these currents are imposed as the
new excitation fields on the opposing subregions in a new itera-
tion. Since the new excitation fields are in the frequency domain
at a number of frequencies, these fields must be converted into
time-limited waveforms, using a TWC algorithm which obtains
the magnitudes and phases of the desired frequencies, before
exciting the FDTD problem space.

In the case of radiation problems, one of the subregions
contains an antenna, and other subregions contain scattering
objects. First, the antenna is driven in isolation so that there is
no incident field in the subregion containing the driven antenna,
and the incident fields in all the other subregions consist of the
field of the driven antenna in isolation.

B. IMR Technique Using Hybrid Method

Moreover, a hybrid method which combines the desirable
features of the method of moments (MoM) and the FDTD
method is also integrated into the IMR technique in this paper.
Such a hybrid method has been extensively studied in [19]–
[22] to simulate the interaction between a linear antenna and a
scattering object. In [19] and [20], the coupling between sub-
regions is simulated by employing the equivalence principle
on the boundary surface surrounding each subregion. In [21]
and [22], the electromagnetic coupling is performed between
the scattering objects by applying the equivalence principle and
the current distribution on the surface of an antenna. Their iter-
ative approach of a hybrid method provides the solution at a
single frequency in a single simulation. In this work, however,
we integrate the FDTD method and MoM into the IMR tech-
nique to obtain solutions at multiple frequencies using the TWC
algorithm in a single IMR simulation.

C. Speeding Up Techniques

Initially, the SF formulation [23] has been used to excite the
FDTD domains. The SF formulation requires the computation
of new excitation fields at all field points in the problem space.
It has been realized that a considerable amount of computa-
tion time is spent for the calculation of new excitation fields
due to the fictitious surface currents. Therefore, the total-field
SF (TF/SF) technique [24] is used to speed up the calculation
of the new excitation fields. Thus, these fields are calculated
on the TF/SF boundary rather than the entire computational
domain in subregions. Then, an interpolation process is applied
to source points over the IS and observation points on the TF/SF

Fig. 1. Scattering from multiple objects: (a) original problem and (b) uncon-
nected subregions. (Dashed line: TF/SF boundary, dotted line: IS, and solid
line: CPML outer boundary).

boundary in subregions. These two techniques provide remark-
able reduction in the computation time of the new excitation
fields.

II. IMR TECHNIQUE FOR THE SCATTERING PROBLEMS

A. Objective

The objective for the scattering problem is to determine the
bistatic radar cross sections (RCSs) at multiple angular fre-
quencies {ω = ωn, n = 1, 2, . . . , N} of a group of scattering
objects. Here, ωn is one of N known angular frequencies of
interest. Illustrated in Fig. 1, the problem space is divided into
D unconnected subregions. For simplicity, there is one scat-
tering object in each subregion. The subregion boundaries are
terminated by convolution perfectly matched layers (CPMLs)
[25] indicated by solid lines in Fig. 1 to simulate open-space
scattering problems.

The group of scattering objects is illuminated by a plane
wave. For {d = 1, 2, . . . , D}, the electromagnetic field of this
plane wave on the TF/SF boundary in subregion d consists of
the electric field e inc (r, t) and the magnetic field h inc (r, t)
given by

einc (r, t) = Einc
0 g

(
t− t0 −

(
k̂ · (r− r0)

)
/c
)

(1)

hinc (r, t) =
1

η

(
k̂ ×Einc

0

)
g
(
t− t0 −

(
k̂ · (r− r0)

)
/c
)
,

(2)

where k̂ is the unit vector that is constant and is in the direction
of propagation of the incident plane wave, E inc

0 is a purely real
vector that is perpendicular to k̂, r is the radius vector from the
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global origin which is somewhere in the vicinity of the scat-
tering objects, c is the speed of light, t is time, r0 is a spatial
shift, t0 is a time shift, and η is the intrinsic impedance of the
medium. If einc is a combination of both orthogonal polariza-
tions, then application of nonzero phase factors in each E inc

0

can be delayed until a solution is done for each polarization.
The TF/SF boundary is shown in Fig. 1. The TF exists in the
region between the scattering object in subregion d and the
TF/SF boundary in subregion d, and the SF exists beyond the
TF/SF boundary in subregion d. The function g (t) in (1) and
(2) and its Fourier transform G (ω) are given by

g(t) = e−(t/τ)2 (3)

G(ω) = τ
√
πe−(τω/2)2 . (4)

The bistatic RCS at ωn is σn given by

σn =
4πr2|Escat

n |2
|Einc

n |2 . (5)

In (5), E scat
n is evaluated at the distance r from the global

origin, and r is in the far field region of all the scattering objects.

B. Iterative Procedure

The SF is the sum of the SFs found in the iterations. The
iterations consist of iteration #k for {k = 0, 1, 2, . . . ,K}.
Iteration #0 is the initialization. The SF found in the initial-
ization is the SF that would exist if the TF/SF boundary in each
subregion, isolated from the other subregions, was illuminated

by the incident electromagnetic field that consists of
N∑

n=1
of the

ejωnt dependent electric and magnetic fields whose coefficients
of ejωnt are the Fourier transforms at ω = ωn of the incident
electric and magnetic fields (1) and (2). By the equivalent prin-
ciple, electric and magnetic currents on the IS in the subregion
radiate their part of the scattered electromagnetic field beyond
the IS in the subregion and no field elsewhere, where elsewhere
is the region bounded by the IS in the subregion. These electric
and magnetic currents are due to the incident field on the TF/SF
boundary. For {k = 1, 2, . . . ,K} , the SF found in the iteration
#k is the field of the electric and magnetic currents induced by
the electric and magnetic currents found in iteration #(k − 1).
For {d = 1, 2, . . . , D}}, the induced electric and magnetic cur-
rents on the IS in subregion d radiate the part of the SF due
to the illumination of the TF/SF boundary in subregion d by
the field of all the electric and magnetic currents of iteration
#(k − 1) except those currents in subregion d. The iterative
procedure is shown in Fig. 2.

1) Initialization: In the initialization, the set of operations
to be described is done for {d = 1, 2, . . . , D}. The TF/SF
boundary in subregion d, isolated from all the other subregions,
is illuminated by the incident electromagnetic field whose elec-
tric and magnetic fields are given by (1) and (2) whose Fourier
transforms E inc(r, ω) and H inc(r, ω) are given by

Einc (r, ω) = Einc
0 G(ω)e−jω(t0+(k̂·(r−r0))/c) (6)

Hinc (r, ω) =
1

η

(
k̂ ×Einc

0

)
G(ω)e−jω(t0+(k̂·(r−r0))/c), (7)

Fig. 2. (a) Iterative procedure between subregions. (b) NF/NF–TWC algo-
rithm. (NF/NF, near field to near field; TWC, time waveform construction).

where G(ω) is given by (4). Henceforth, as in (6) and (1), a
Fourier transform will be an upper case letter and its inverse
will be the corresponding lower case letter. The TF/SF bound-
ary in subregion d and the IS in subregion d are divided into
subsurfaces. The vector r in (1) and (2) is sampled on each
subsurface of the TF/SF boundary and a vector called rIS is
sampled on each subsurface of the IS. For each sample of
r, there are six rectangular components of the incident elec-
tromagnetic field: three rectangular components e inc (r, t) and
three rectangular components of h inc (r, t). These six rectan-
gular components of the incident field on the TF/SF boundary
in subregion d start an FDTD procedure that finds the six
rectangular components of the scattered electromagnetic field
(e0d (rIS, t), h0

d (rIS, t)) at rIS on the IS in subregion d. In e0d and
h0
d, the superscript zero indicates the initialization, and the sub-

script d indicates subregion d. Electric and magnetic currents
j0d (rIS, t) = n̂ × h0

d (rIS, t) and m0
d (rIS, t) = −n̂ × e0d (rIS, t)

and their Fourier transforms J0
d (rIS, ω) = n̂ ×H0

d (rIS, ω) and
M0

d (rIS, ω) = −n̂ ×E0
d (rIS, ω) are defined at rIS on the IS in

subregion d where n̂ is the outward directed unit vector that is
perpendicular to the IS in subregion d.
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For each combination of a sample of r and a sample of
rIS, the Fourier transforms J0

d (rIS, ω) and M0
d (rIS, ω) are

due to the Fourier transforms E inc(r, ω) and H inc(r, ω).
Multiplication of E inc(r, ω) and H inc(r, ω) by 2 πδ (ω − ωn)
is accompanied by multiplication of J0

d (rIS, ω) and M0
d (rIS, ω)

by 2πδ (ω − ωn), where δ is the Dirac delta function and
(1 ≤ n ≤ N ). Now, the Fourier transforms J0

d (rIS, ωn)
2πδ (ω − ωn) and M0

d (rIS, ωn) 2πδ (ω − ωn) are due
to the Fourier transforms E inc (r, ωn) 2πδ (ω − ωn) and
H inc (r, ωn) 2πδ (ω − ωn). Taking inverse transforms and
knowing that the inverse transform of 2πδ (ω − ωn) is ejωnt,
we see that J0

d (rIS, ωn) e
jωnt and M0

d (rIS, ωn) e
jωnt are

due to E inc (r, ωn) e
jωnt and H inc (r, ωn) e

jωnt. Thus, a
relation among Fourier transforms of time limited functions is
converted to a relation among ejωnt dependent time functions.
The conversion is implemented by the setting ω = ωn in the
Fourier transforms of the time limited functions and then
multiplying them by ejωnt.

To do the conversion described in the previous paragraph
where Fourier transforms of time limited responses due to
Fourier transforms of time limited excitations are converted
to ejωnt dependent responses due to ejωnt dependent excita-
tions, we need to know the Fourier transforms E inc (r, ωn),
H inc (r, ωn), J0

d (rIS, ωn) and M0
d (rIS, ωn). The Fourier trans-

forms E inc (r, ωn) and H inc (r, ωn) are obtained by setting
ω = ωn in (6) and (7). Also, J0

d (rIS, ωn) and M0
d (rIS, ωn)

are calculated concurrently with j0d (rIS, t) and m0
d (rIS, t) by

means of an on-the-fly numerical Fourier transform (NFT) [23]
by which

J0
d (rIS, ωn) = Δt

Nsteps∑
i=1

j0d,ie
−jωniΔt (8)

M0
d (rIS, ωn) = Δt

Nsteps∑
i=1

m0
d,ie

−jωniΔt, (9)

where Δt is the duration of a time step, j0d,i and m0
d,i are

j0d (rIS, t) and m0
d (rIS, t) at the ith time step, and N steps is

the number of time steps over which
∣∣∣j0d,i∣∣∣ and

∣∣∣m0
d,i

∣∣∣ are

appreciable.
2) Iteration #k for k ≥ 1: For {(n = 1, 2, . . . , N) , d′ =

1, 2, . . . , D}, the electric and magnetic currents
Jk−1
d′ (rIS, ωn) e

jωnt and Mk−1
d′ (rIS, ωn) e

jωnt were
obtained in iteration #(k − 1). In iteration #k for
k ≥ 1, the set of operations to be described is done for
{(n = 1, 2, . . . , N) , d = 1, 2, . . . , D} In iteration #k, the
field of all of the electric and magnetic currents that were
obtained in iteration #(k − 1) except those for which d′ = d
is incident on the TF/SF boundary in subregion d. Calculated
in the frequency domain by using several near field/near field
(NF/NF) transformations [18], this field, which consists of
(ejωnt, n = 1, 2, . . . , N ) dependent fields, is the time unlimited
incident field.

Heretofore, e−jωnt was not involved and the real part was
taken after all manipulations with ejωnt were done. If the
real part is taken now, then one of the six rectangular com-
ponents of the time unlimited incident field at one of the

sample points r is

�
c (r, t) =

1

2

N∑
n=1

[
Cn (r) e

jωnt + C*
n (r) e

−jωnt
]

(10)

where Cn(r) is a previously calculated complex number and
the asterisk denotes the complex conjugate. The corresponding
component of the time limited incident field at the same r is
chosen to be

c (r, t) = g (t)

N∑
m=1

(Bm (r))
k
d cos

(
ωmt+ (θm (r))

k
d

)
(11)

whose Fourier transform is

C (r, ω) =
1

2

N∑
m=1

{
(Bm (r))

k
d

(
G (ω − ωm) ej(θm(r))kd

+G (ω + ωm) e−j(θm(r))kd

)}

(12)

where
{
(Bm(r))

k
d , (θm(r))

k
d ,m = 1, 2, . . . , N

}
are

2N real unknowns that are determined by substitut-
ing

(
C (r, ωn) =

1
2Cn(r), n = 1, 2, . . . , N

)
into the

N complex equations that are obtained by setting
(ω = ωn, n = 1, 2, . . . , N) in (12)

1

2
Cn (r) =

1

2

N∑
m=1

{
(Bm (r))

k
d G (ωn − ωm) ej(θm(r))kd

+(Bm (r))
k
d G (ωn + ωm) e−j(θm(r))kd

}

(13)

where (n = 1, 2, . . . , N ) and Cn(r) appears in (10). If (13)
holds, then an auxiliary equation, which is (13) with Cn(r)
replaced by C∗

n(r) and ωn replaced by −ωn, also holds because
replacement of ωn by −ωn replaces the right-hand side of (13)
by its complex conjugate.

Proceeding as in the initialization, we find the Fourier trans-
forms of the electric and magnetic currents due to the Fourier
transform (12). According to the conversion in the initializa-
tion, each of these Fourier transforms is evaluated at ω = ωn

and multiplied by ejωt. In particular, the Fourier transform
(12) converts to 1

2Cn(r)e
jωnt in (10). In the same conversion

with ω replaced by −ωn, the Fourier transform (12) con-
verts to 1

2C
∗
n(r)e

−jωnt in (10). The algorithm that uses the
time limited waveform (11) to obtain the electric and mag-
netic currents which are the real parts of Jk

d (rIS, ωn) e
jωnt and

Mk
d (rIS, ωn) e

jωnt is called the TWC algorithm.
3) Reckoning at Iteration # K: A convergence criterion for

the coefficients of ejωnt in the temporal expression for the
electric current is εk defined by

εk =
‖Jk

d (rIS, ωn) ‖
‖∑k

i=0 J
i
d (rIS, ωn) ‖

× 100% (14)

where “‖ ‖” indicates the Euclidean norm [26] of the enclosed
vector. The convergence criterion for the magnetic current is
similar to that for the electric current. The iterations stop at
iteration #K where K is the first value of k for which the con-
vergence criterion is small for both the electric and magnetic
current for {d = 1, 2, . . . , D} and {n = 1, 2, . . . , N}.
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Fig. 3. Iterative procedure between source subregion and scatterer subregions.

After the initialization and iteration #k for {k =
1, 2, . . . , }K are done, electric and magnetic currents

jd (rIS, t) = R
K∑

k=0

N∑
n=1

Jk
d (rIS, ωn) e

jωnt and md (rIS, t) = R

K∑
k=0

N∑
n=1

Mk
d (rIS, ωn) e

jωnt will be at rIS on the IS in subregion

d for {d = 1, 2, . . . , D}. The field scattered by all of the
scatterers is the field radiated by all of the above electric and
magnetic currents. Once evaluated in the far zone by using a
near field to far field transformation [23], this SF can be used
to obtain the phasor Escat

n that appears in (5).

III. IMR TECHNIQUE FOR THE RADIATION PROBLEMS

In this section, we extend the iterative approach to radiation
problems. The problem domain is divided into separate regions:
one of them is the source subregion containing an antenna and
the others are the scatterer subregions containing scattering
objects. Illustrated in Fig. 3, the iterative procedure among the
subregions of a radiation problem is similar to the iterative pro-
cedure for the scattering problem: the major difference is that
the antenna is driven by a voltage source instead of an incident
electric field.

In the initialization, the free-space field of the antenna is
incident on the scatterer in each scatterer subregion, causing
electric and magnetic currents to be induced on the IS in each
scatterer subregion. These currents are the first bounce cur-
rents. In iteration #1, the induced currents that were obtained
in the initialization on the IS in each scatterer subregion induce
second bounce currents on the ISs in all the other scatterer sub-
regions and the source subregion. The second bounce currents
on the ISs in the scatterer subregions and the source subre-
gion induce third bounce currents on the ISs. The arrows that
point away from the upper box in iteration #1 shown in Fig. 3

Fig. 4. Geometry of the problem.

Fig. 5. Convergence (εk) of the iteration steps.

obtain the part of the third bounce currents that is induced by
the second bounce currents on the IS in the source subregion.
Thus, iteration #1 also obtains this part of the third bounce cur-
rents. Iteration #2 and subsequent iterations are repetitions of
iteration #1.

IV. NUMERICAL RESULTS

In this section, we test the performance of the proposed tech-
nique for solving 3-D scattering and radiation problems. The
computer being used in this work has Intel Core i7-4770 CPU
and 32 GB DDR RAM. The program is written and compiled
in 64-bit MATLAB version 7.5.0.342 (R2007b).

Based on numerical experiments, εk = 5% in (14) is found
sufficient to indicate that convergence is achieved since RCS
values at desired frequencies do not change significantly for
smaller values of εk.

A. Results for Scattering Problem

A problem whose geometry is illustrated in Fig. 4 is ana-
lyzed to prove the validity of the IMR–FDTD technique. Two
identical dielectric spheres with the relative permittivity of 3
and radius of 0.4 m and a conducting ellipsoid are placed along
the x-axis with 0.5 m separation. The semiaxes of the conduct-
ing ellipsoid are 0.2, 0.2, and 1 m along the x-, y-, and z-axes,
respectively. This problem space is excited by a plane wave that
travels in the y-direction and has a θ-polarized incident elec-
tric field. Both incident and scattered electric fields in (5) are
θ-polarized. The problem space is composed of cells with size
0.02 m in the x-, y-, and z-directions for the full domain sim-
ulation. As for the IMR simulation, a cell size 0.02 m is used
in the ellipsoid subregion, whereas a cell size 0.04 m is used in
the other subregions. It can be seen from Fig. 5 that the IMR
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Fig. 6. Bistatic RCS/λ2 for xz-plane cuts at frequencies: (a) 200, (b) 225,
(c) 250, (d) 275, and (e) 300 MHz.

algorithm reaches the convergence criterion (εk ≤ 5%). Fig. 6
shows the bistatic RCS/λ2 for xz-plane cuts at 200, 225, 250,
275, and 300 MHz, where λ is the free space wavelength. The
data for other plane cuts are exactly over each other after two
iterations with a 60% memory reduction in the storage require-
ments, but there is no significant change in the computation
time. The computation time would be less and the memory
reduction would be more for problems that have large sepa-
ration between the objects. To prove the convergence of the

Fig. 7. Normalized average error for RCS in the xz-plane cut.

Fig. 8. Magnitude of the reflection coefficient of a single 0.5-m dipole antenna.

full domain and IMR technique results, the normalized aver-
age error for RCS in xz-plane cut is calculated using (15) and is
shown in Fig. 7

Error(ωn) = mean

(∣∣σIMR(ωn)− σFull(ωn)
∣∣

max (|σFull(ωn)|)

)
× 100% .

(15)

B. Results for Radiation Problem

A radiation problem with a dipole antenna and scattering
objects is analyzed to prove the validity of the IMR technique.
In the problem, there is a 0.5-m dipole antenna configured as
two rectangular rods with square base of side length equal to
31.25 mm. The thickness of the dipole is four cells in both x and
y directions. A voltage source with 50-ΩΩ internal impedance
and 1-V magnitude is placed along four cells between the rods.
A cell size of 7.8125 mm is used for the antenna. The antenna
is simulated alone using the FDTD method to determine the
frequency bands in which it radiates well. The frequencies 230,
240, 250, 260, and 270 MHz are found to be in the band of oper-
ation. Fig. 8 shows the magnitude of the reflection coefficient
of the dipole antenna.

The geometry of the radiation problem is presented in Fig. 9,
where the dipole antenna is placed a distance of 1.25 m away
from two conductor shapes (shape-A and shape-B) along the
x-direction. The separation between shapes is 2.5 m along the
x-direction. The dimensions of the shape-A are 25 cm, 1 m, and
1 m along the x-, y-, and z-directions, respectively. The dimen-
sions of shape-B on the yz-plane are shown in Fig. 9(b). The
dimension of shape-B along the x-direction is 25 cm. The cen-
ter of the dipole antenna is at the origin, the bases of the shapes
A and B are at z = −0.5m, and the leading edges of these
bases are at y = −0.5m and −1.25m, respectively. A cell size
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Fig. 9. (a) Geometry of the radiation problem and (b) geometry of the
conductor shape-B on the yz-plane.

Fig. 10. Convergence (εk) of the iteration steps.

of 15.625 mm on a side is used to simulate the scatterer sub-
regions. It can be seen from Fig. 10 that the IMR algorithm
reaches the convergence criterion (εk ≤ 5%) after three itera-
tions. Fig. 11 shows the power gain patterns (Gainθ) of the
configuration for xz-plane cuts. The data for other plane cuts
are exactly over each other after three iterations with a 93%
memory reduction in the storage requirements. The computa-
tion time of the IMR technique is 45% less than that of the full
domain after three iterations. To prove the convergence of the
results of the IMR and the full domain solution, the normalized
average error for Gainθ in xz-plane cuts is calculated using (16)
and shown in Fig. 12

Error (ωn) =mean

(∣∣GainIMR(ωn)− GainFull(ωn)
∣∣

max (|GainFull(ωn)|)

)

× 100%. (16)

V. IMR ALGORITHM AS A HYBRID METHOD

A problem domain shown in Fig. 13 is divided into two
subregions: one is the MoM subregion containing a thin wire
antenna and the other is the FDTD subregion containing a
dielectric object. The iterative procedure between subregions
is shown in Fig. 14. The procedure consists of the initialization
and iteration #k for (k = 1, 2, . . . ,K). For k ≥ 2, iteration #k
is a repetition of iteration #1.

Fig. 11. Power gain pattern (Gainθ) for xz-plane cut at frequencies: (a) 230,
(b) 240, (c) 250, (d) 260, and (e) 270 MHz.

Fig. 12. Normalized average error for Gainθ in the xz-plane cut.
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Fig. 13. Geometrical representation of the MoM and FDTD subregions.

Fig. 14. Iterative procedure between MoM and FDTD subregion.

The procedure uses the MoM solution [27] for the electric
current on the thin wire. This solution is

[I MoM(ωn)] = [Z(ωn)]
−1

[V (ωn)] , n = 0, 1, . . . , N (17)

[V (ωn)] =< E inc (r, ωn) , t (r− rm) > (18)

where <> indicates the scalar product of the two enclosed vec-
tor functions of r, r is the radius vector from the origin to a point
on the antenna, ωn is one of the angular frequencies of interest,
t (r− rm) is the mth testing function, rm is a specified point on
the mth testing function, and E inc (r, ωn) is the incident electric
field. In (17) and (18), IMoM , E inc, and V are actually the pha-
sors of quantities that have ejωnt dependence. If M expansion
functions are used, then [Z(ωn)] is the M ×M moment matrix
and [V (ωn)] and [IMoM (ωn)] are M × 1 matrices. The elec-
tric current on the antenna due to the incident electric field is
a linear combination of the expansion functions where the mth
element of [IMoM (ωn)] in (17) multiplies the mth expansion
function.

A. Iterative Procedure for the Hybrid Problem

In the initialization, the antenna, driven by one volt across
its input terminals, radiates in free space in the absence of
the dielectric object. There is no incident field other than
that which produces the one volt. Substitution of the impul-
sive electric field associated with the one volt into (18) gives
[V (ωn)] = V 0(ωn) which, when substituted into (17), gives
[IMoM (ωn)] = I0

MoM (ωn). In the following iterations, the one
volt across the antenna input terminals is maintained by a zero
impedance voltage source of one volt.

At the beginning of iteration #k, using the near
field formulation for the thin wire antenna [28] at all

frequencies of interest, the free space field of the electric
current Ik−1

MoM (ωn)e
jωnt on the antenna is calculated for

(n = 1, 2, . . . , N) on the TF/SF boundary in the FDTD
subregion. Henceforth, this field will be called the inci-
dent field in the FDTD subregion. The incident field in the
FDTD subregion is simulated by a TWC field similar to
that in Section II-B2. The simulation of the incident field
in the FDTD subregion starts an FDTD procedure that finds
scattered electric and magnetic fields ekFDTD,s (rIS, t) and
hk

FDTD,s (rIS, t) on the IS in the FDTD subregion. Electric and
magnetic currents jkFDTD (rIS, t) = n̂ × hk

FDTD,s (rIS, t) and
mk

FDTD (rIS, t) = −n̂ × ekFDTD,s (rIS, t) and their Fourier
transforms Jk

FDTD (rIS, ω) = n̂ ×Hk
FDTD,s (rIS, ω) and

Mk
FDTD (rIS, ω) = −n̂ ×Ek

FDTD,s (rIS, ω) are defined at
rIS on the IS in the FDTD subregion where n̂ is the outward
directed unit vector that is perpendicular to the IS in the FDTD
subregion. Next, for (n = 1, 2, · · · , N), Jk

FDTD (rIS, ωn)
and Mk

FDTD (rIS, ωn) are calculated concurrently with
jkFDTD (rIS, t) and mk

FDTD (rIS, t) by means of the NFT [23]
[see (8) and (9)]. Similar to the ejωnt dependent parts of the
electric and magnetic currents on the IS in subregion d in
Section II-B2, the ejωnt dependent parts of the electric and
magnetic currents on the IS in the FDTD subregion due to the
incident field in the FDTD subregion are Jk

FDTD (rIS, ωn) e
jωnt

and Mk
FDTD (rIS, ωn) e

jωnt.
By the equivalence principle, the combination of the

electric and magnetic currents Jk
FDTD (rIS, ωn) e

jωnt and
Mk

FDTD (rIS, ωn) e
jωnt radiates its free space field beyond the

IS in the FDTD subregion and no field in the region enclosed
by the IS in the FDTD subregion. For (n = 1, 2, . . . , N), the
phasor of the ejωnt dependent part of this free space electric
field, calculated on the surface of the antenna in the MoM
subregion by using the NF/NF transformation [18], is substi-
tuted for E inc (r, ωn) in (18) to produce [V (ωn)] =

[
V k(ωn)

]
where

[
V k(ωn)

]
is the column matrix of phasors of incre-

mental voltages. Substitution of [V (ωn)] =
[
V k(ωn)

]
into (17)

gives [IMoM (ωn)] =
[
Ik
MoM (ωn)

]
where

[
Ik
MoM (ωn)

]
is the

column matrix of phasors of incremental currents.

B. Reckoning at Iteration # K

The iteration procedure continues until a stopping criterion
achieved. The stopping criterion is εK where K ≥ 1 indicates
the Kth iteration and εK is given by

εK = meann=1,2,...,N

(
‖IK

MoM (ωn)‖
‖∑K

k=0 I
k
MoM (ωn)‖

)
× 100%

(19)

where mea nn=1,2,...,N ()” indicates the average taken over
(n = 1, 2, . . . , N ) of the n-dependent quantity enclosed in the
parentheses. Based on numerical experiments, it is sufficient to
stop the iteration process at iteration #K in which εK ≤ 1%.

After completion of the Kth iteration, the antenna impedance
at ω = ωn is ZK(ωn) given by

ZK(ωn) =
1∑K

k=0 Iin
([
Ik
MoM (ωn)

]) (20)
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Fig. 15. Magnitude of the reflection coefficient of a single thin wire antenna.

TABLE I
ANTENNA INPUT IMPEDANCES AT FREQUENCIES OF INTEREST OF A

SINGLE THIN WIRE

Fig. 16. Geometry of the problem.

where the numerator “1” represents the 1-V source across the
antenna terminals. In the denominator, Iin

([
Ik
MoM (ωn)

])
is

the electric current determined at the input terminals of the
antenna by the elements of

[
Ik
MoM (ωn)

]
.

C. Results for Hybrid Problems

For the simulations presented here, a thin wire antenna with
length of 16.65 cm and radius of 0.27 mm is used. The antenna
input reflection coefficient is computed using the FDTD method
in order to determine the frequency band in which it radiates
well. The frequencies 840, 860, and 880 MHz are found to be
in the band of operation. Fig. 15 shows the magnitude of the
reflection coefficient of this antenna.

In the MoM simulation, piecewise sinusoids are chosen as
expansion functions and point matching is used for testing.
The tangential component of the electric field produced by a
piecewise sinusoid is analytically given [29].

In order to show the difference between the results generated
by MoM and FDTD methods, the input impedances of the thin
wire antenna at frequencies of interest are shown in Table I.

In Fig. 16 which shows the geometry of the problem, the
dielectric sphere placed a distance of 2 cm away from the thin
wire antenna has a radius of 10 cm, relative permittivity of
43, and conductivity of 0.83 S/m. The thin wire antenna is
divided into 51 segments for the MoM simulation and the dis-
cretization of the dielectric sphere is 2.5 mm in all Cartesian
directions in FDTD simulations, leading to a total of 1.56 mil-
lion cells used. Also, the entire problem space is solved using

Fig. 17. Convergence of current distribution (real and imaginary part) versus
segment number at frequencies: (a) 840, (b) 860, and (c) 880 MHz. Numbers
(0–4) represent the iteration number.

TABLE II
ANTENNA INPUT IMPEDANCES AT FREQUENCIES OF INTEREST AFTER

FOUR ITERATIONS

the FDTD method as a reference. For this full domain FDTD
simulation, the discretization is 1.665 mm, which leads to a
total of 4.4 million cells used. The computation time of the
full domain simulation is 113 min, while that of the hybrid
simulation after four iterations is 87 min. The current distri-
butions over the antenna surface at 840, 860, and 880 MHz
obtained using the hybrid method are shown in Fig. 17. The
comparison of input impedances from the hybrid and the full
FDTD methods is shown in Table II. This numerical compari-
son shows that the proposed hybrid results after four iterations
are in good agreement with the conventional full domain FDTD
method results.

A more complex configuration is presented in Fig. 18 to
prove the validity of the proposed hybrid method for a prob-
lem which has multiple scattering objects close to the thin wire
antenna. A conducting box and dielectric sphere are placed dis-
tances on the x-axis of 5 and 15 cm away from the thin wire
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Fig. 18. Geometry of the problem.

TABLE III
ANTENNA INPUT IMPEDANCES AT FREQUENCIES OF INTEREST AFTER

EIGHT ITERATIONS

antenna. The dimensions of the conducting box are 5 cm on the
x-axis and 10 cm on the y- and z-axes. The dielectric sphere has
a radius of 0.1 m, relative permittivity of 43, and conductivity
of 0.83 S/m. The comparison of input impedances at 840, 860,
and 880 MHz from the hybrid and the full FDTD methods is
shown in Table III. This numerical comparison shows that the
proposed hybrid results after eight iterations are in good agree-
ment with the conventional full domain FDTD method results.
The thin wire antenna is divided into 51 segments for the MoM
simulation and the discretizations of the dielectric sphere and
conducting box are 2.5 mm in all Cartesian directions in FDTD
simulations, leading to a total of 1.88 million cells used. Also,
the entire problem space is solved using the FDTD method as a
reference. For this full domain FDTD simulation, the discretiza-
tion is 1.665 mm, which leads to a total of 6.4 million cells used.
The computation time of the full domain simulation is 176 min,
while that of the hybrid simulation after eight iterations is
269 min. A considerable reduction in the memory storage
requirements is achieved, but the computation time of the IMR
algorithm is more than that of the full domain because of small
separation between the objects. The computation time would be
less and the memory reduction would be more for problems that
have large separation between the objects and antenna.

VI. CONCLUSION

In this paper, the integration of the FDTD method into the
IMR technique is presented to obtain solutions at prespecified
frequencies for large-scale electromagnetic scattering and radi-
ation problems. Also, a hybrid method which combines the
desirable features of two different numerical methods, MoM
and FDTD, is presented to provide efficient and desirable solu-
tions at multiple frequencies to antenna problems. The key
contribution here is to construct a time-limited waveform which
includes in its frequency spectrum the required magnitudes and
phases of the time-harmonic signals of the desired solution
frequencies. Furthermore, a remarkable saving in computer
memory, and for some configurations a saving in the CPU time
is achieved.
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