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Abstract—The analysis, design, experimental development,
and test results of a high-gain pattern reconfigurable antenna
array are presented. Unlike traditional phased arrays, the pro-
posed array has a compressed footprint making it suitable for
handheld device applications. The array pattern is reconfigured
at 0°, 70°, and 290° in the azimuth plane with the help of low loss
RF switches while the utilization of a collinear geometry allows
narrow elevation plane beamwidth and high peak gain (between
9.7 and 11 dBi using FR4 material). System level analysis shows
about 59% increase in signal-to-interference-plus-noise ratio level
compared to omnidirectional antennas.

Index Terms— Array, handheld, multiple-input multiple-
output (MIMO), pattern reconfigurable, smart antenna.

I. INTRODUCTION

ULTIPLE-INPUT multiple-output (MIMO) wireless

systems are defined as systems that comprise multiple
antenna elements at both the transmitter and receiver ends [1].
MIMO offers important advantages over conventional anten-
nas both in terms of data reliability and data capacity [2].
Considered as one of the most promising candidates of future
smart antenna systems, MIMO has already been adopted for
IEEE 802.11n [3], worldwide interoperability for microwave
access [4], [5], and long-term evolution [6].

MIMO for handhelds is an important research area that
has the potentials to bring significant advances on antenna
and antenna array designs that can be housed within the
smaller form factor of a mobile handheld terminal, such as
a smartphone or a tablet (iPad). Traditional antennas that are
frequently used in handheld devices are fixed beam anten-
nas such as planar inverted-F antennas (PIFAs) [7]-[11] and
monopole antennas [12]-[14].

These are inefficient antennas, because due to low antenna
gain and lack of pattern reconfiguration capability, much
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of the radiated RF power is absorbed by the head or the
body resulting in wasted battery power. Furthermore, losses
due to multipath fading result in signal degradation or loss.
To circumvent the fading problem, diversity [15]-[18] have
been proposed. Research has shown that only using diversity
in a handheld unit signal-to-noise ratio (SNR) improvement
of over 8-10 dB can be achieved [18]. This increase in SNR
in turn decreases the bit-error-rate [19] resulting in improved
spectral efficiency.

MIMO for the handheld [20]-[22] offers great deal of
flexibility especially if it can be combined with high gain
and pattern reconfiguration. Other MIMO antenna examples
include [23]-[25].

The focus of this paper is to introduce a smaller form
factor high-gain pattern reconfigurable MIMO antenna array
for handheld terminals. The array is designed and developed
using the concept of parasitic arrays [26]—[33] where a driven
and one or more closely coupled parasitic elements work in
tandem to allow pattern reconfiguration. Since the parasitic
elements can be brought very close to the driven antenna
element, the form factor of the array will be much smaller
compared to a traditional phased array making them more
suitable for handheld device applications. Although many
articles have been published in the literature on parasitic
arrays that address dipole or monopole antennas for base
stations [27], [28], patch antenna arrays [29], [30], and dipole
antenna arrays for wearable wireless applications [31]-[33],
this is the first ever reported detailed work on a high-gain
pattern reconfigurable collinear parasitic array for the handheld
to the best of our knowledge. Very preliminary results of this
paper were presented at a conference recently [34]. This paper
presents more significant design, analysis, and experimental
results and system level simulation results.

The application domain for the proposed array is illustrated
in Fig. 1(a). It is a collinear array of dipole antennas arranged
at one edge of a handheld terminal. Although proposed here
for handheld terminal, the concept is valid for many other
applications. The proposed antenna array offers two important
features: it can steer the beam in three different directions, and
has high gain with narrow e plane beamwidth. High gain is
achieved by employing the collinear array geometry consisting
of multiple “subarrays” that allow narrow e plane beamwidth.
Pattern reconfiguration, on the other hand, is achieved with
the help of the parasitic array idea which can be explained
with the help of one subarray. Each subarray contains
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Fig. 1. (a) Conceptual drawings for the application domain of the proposed
array: array at the top and side edges of the device. (b) Illustration of the
working principle of the proposed pattern reconfigurable array.

three dipole elements—one driven and two parasitic
[Fig. 1(b)]. The parasitic dipoles function as reflectors once
activated using RF switches that are located at their centers.
This allows array pattern reconfiguration in three different
directions for three cases. For example, when switch 1 is ON,
the parasitic on the left works as a reflector making the beam
point at ¢ = 70°, when switch 2 is ON, the parasitic on the
right works as a reflector making the beam point at ¢ = 290°,
and when both switches 1 and 2 are ON, both parasitics work
as reflectors and the beam points at ¢ = 0°.

The operating frequency considered here is the 5-GHz
WLAN band. The rapid growth and interest in mm wave fre-
quencies and massive MIMO will allow much larger arrays to
be implemented using this concept in a variety of application
scenarios, e.g., handhelds and base stations, stationary device
to device, and chip to chip in computer systems.

This paper is organized as follows. First, the array configu-
ration parameters are defined. Preliminary simulation studies
are performed considering the array implementation in free
space where the effects of parameters, such as the interelement
distances and spacing between subarrays on array input return
loss and mutual coupling, are investigated. Upon selection of
appropriate design parameters, array models with implemen-
tation scopes in free space and on FR substrates are developed
and analyzed both in terms of S-parameters and radiation
patterns. Next, measured S-parameter results and radiation
pattern characteristics of the array are presented followed
by system level simulations demonstrating performance under
communication scenarios.

II. ARRAY CONFIGURATION
A. Collinear Array

The geometry and dimensions of the array are shown
in Fig. 2(a). There are n subarrays with the edge to edge
separation between two consecutive subarrays being s. The
length of the array is L. The array axis is the z-axis for our
analysis with the beam pointing orthogonal to the axis. With
increasing n or s, the e plane beamwidth decreases resulting
in increased directivity. The choice of n and s is determined
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Fig. 2. (a) Proposed array geometry, (b) top view, and (c) front view of a
single subarray. I; is the dipole length. Wy is the dipole width.

primarily by the space available in terms of the operating
wavelength. The parameter, s is also critical as it governs the
coupling between two consecutive subarrays.

B. Subarray

As stated, a single subarray [Fig. 2(b) and (c)] consists of
one driven and two parasitic elements. Planar dipole elements
on three planar surfaces each approximately half-wavelength
long at the operating frequency are considered. The driven
element is on the yz plane labeled “Front face” [Fig. 2(c)]. The
parasitic elements are on two xz planes labeled “Left face”
and “Right face,” respectively. The left and right faces are
separated by distance, W. The distance between the driven
and the parasitic is d [Fig. 2(b)]. The Front, Left, and Right
faces could be considered to constitute the edge of a handheld
device.

C. Operation of the Subarray

The driven element is fed using a 50-Q source at its center.
The parasitic elements contain RF switches at their centers.
Consider the operation of one of the parasitic elements. With
the switch OFF, each piece of the parasitic is electrically too
small to have any effect on the antenna. With the switch ON,
currents are induced in the parasitic. Following [31], the
voltages and currents in the driven and parasitic elements are
related by the impedance (Z) matrix given in (1)

Vil _|Zun Zn2 5L
)=l 2 [e) o

Z matrix
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where the subscripts 1 and 2 correspond to the driven ele-
ment and the parasitic element, respectively. The parameters
Zyn and the Zyn are the self and mutual impedances in
the Z matrix. The excitation voltage in the driven element
is Vj. Clearly, Zyn will strongly depend on the distance, d
[Fig. 2(b)]. Once the (Z) matrix is calculated, (2) should be
used to determine the magnitude and phase of the coupling
coefficient, ao;. The phase angle of a»; determines if a
certain parasitic element will act as a reflector or director;
reflector if phase is positive and director if phase is nega-
tive [35]. The magnitude of ay; will affect the impedance
matching of the array. If the parasitic elements are con-
trolled using RF switches or varactor didoes, then the X
in (2) should represent the equivalent circuit to represent its
ON- and OFF-states.

III. MODELING DETAILS AND SIMULATION RESULTS
A. Array in Free Space

Initially, the array was designed for operation in free space
in order to obtain a clear understanding of the effects of
dielectric loss for the array. Given that material choices can
vary, e.g., flexible film, plastics, low loss microwave materials,
and FR4. performance data in free space will serve as a
benchmark for comparison. Thus, the surfaces on which the
dipole elements reside in Fig. 2(a) are considered to be
nondielectric (¢, = 1.0, tand = 0). As mentioned, the design
frequency was 5 GHz.

The array presented in this paper consists of four subarrays,
i.e., n = 4; hence, there are four driven elements and eight
parasitic elements. The parasitics are controlled using discrete
RF switches. The choice of n = 4 was governed by a device
that is about 150-mm long. The length and width of each
planar dipole element were 25.4 and 2 mm, respectively. The
parameter W was selected to be 10 mm considering it to be
representative of the thickness of a typical handheld device.
In addition, we will select the distance, d such that the parasitic
elements function as reflectors. Simulations were performed
using Ansys HFSS to optimize the array design. To represent
the ON-state, each switch was modeled using a 5-pF capacitor
that represented the equivalent dc blocking capacitance for the
switch. To represent the OFF-state, each switch was modeled
using a 0.1-pF capacitor that represented the 8-dB isolation
for the switch at this frequency.

Preliminary simulations were performed to select the para-
meters, d and s such that they allow the parasitics to work as
reflectors, provide good impedance matching, and low mutual
coupling. For these simulations, all switches on the parasitics
were modeled as ON. First, s was kept constant at 14 mm
(34/4 center to center distance between two consecutive sub-
arrays) and d was varied. A set of simulations were performed
varying d from 2 to 18 mm. These simulation results showed
that for d < 2 mm, the parasitic elements worked as directors.
Since we wanted the parasitic elements to work as reflectors,
it was concluded that d > 2 mm. Important things to consider
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Fig. 3. Effects on S-parameter with variation of d with All switches ON.
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Fig. 4. Effects on S-parameter with variation of s with All switches ON.

after this was the | S| response of each array and the mutual
coupling between two consecutive arrays as function of d.
Therefore, |S11| for subarray 1 and the coupling between
subarrays 1 and 2 were studied as functions of frequency,
given that the coupling between two consecutive subarrays
is the highest. The results presented in Fig. 3 show that for
d > 12 mm, |S11] < —10 dB, and |S21| < —18 dB. In order
to obtain even better |S1;| performance, d = 14 mm was
selected.

Next, while d was fixed at 14 mm, s was varied from
6 to 18 mm. As can be seen from Fig. 4, |S11| does not vary
much with s, but |S>;| does. For the initially assumed value
of s (14 mm), the |S21| is around —20 dB at 5 GHz, so this
value was kept unchanged.

B. Computed S-Parameters for Array in Free Space

The array with d = 14 mm and s = 14 mm was
then analyzed for three switching cases: Left switches ON,
Right switches ON, and All switches ON. The simulated
S-parameters as functions of frequency are shown in Fig. 5.
The array shows overall satisfactory S-parameters: |[S;;|
n =1,2,3,4) < —15 dB and |Syuu| (m, n = 1,2,3,4;
m #n) < —15 dB.

C. Simulated Radiation Patterns for Array in Free Space

Simulated array realized gain patterns at 5 GHz in the &
plane (xy) and the e plane (xz) are shown in Fig. 6(a) and (b),
respectively. As seen from Fig. 6(a), the pattern has its peak at
0° when All switches are ON, at 30° when the Left switches are
ON, and at 330° when the Right switches are ON. The e plane
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Fig. 5. Simulated S-parameters versus frequency for array in free space.
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Fig. 6. Computed realized gain patterns in free space in (a) & plane (xy) and
(b) e plane (xz).

pattern shows a narrow beam [18° half-power beamwidth
(HPBW)] as expected. The HPBW in the A plane is 120°.
The peak gain ranges from 10.7 to 11.7 dBi.

TABLE I
ARRAY PARAMETERS FOR ARRAY ON FR4
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Fig. 7. Simulated S-parameters versus frequency for array on FR4.

D. Array on FR4

In order to be able to experimentally fabricate and test an
array, the free-space design was slightly modified. For the
driven and parasitic dipoles on the various faces [Fig. 2(a)],
three separate 0.8-mm-thick FR4 substrates (g, = 4.5,
tano = 0.02) were considered. Dipole lengths were reduced
from 25.4 to 20.2 mm in order to not change the operating
frequency significantly. All other parameters were unchanged.
The parameters for the array on FR4 are listed in Table I. The
simulated S-parameters for this array as functions of frequency
are shown in Fig. 7. It is apparent that the array operates
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Fig. 9. Configuration of the array with (a) ground plane and (b) ground
plane and dielectric housing (not drawn to scale).

at 5 GHz with |Sy,|(n = 1,2,3,4) < —15 dB and [Sp,
[((m,n =1,2,3,4;,m #n) < —15 dB.

Simulated realized gain patterns for this array are shown in
Fig. 8(a) and (b). Fig. 8(a) shows the & plane (xy) and Fig. 8(b)
shows the e plane (xz) realized gain patterns at 5 GHz. As
seen in Fig. 8(a), the pattern has its peak at ¢ = 0° when All
switches are ON, at ¢ = 70° when the Left switches are ON,
and at ¢ = 290° when the Right switches are ON. The HPBW
in the e plane is 20°. The HPBW in the & plane is 120°. The
peak gain ranges from 9.7 to 11 dBi. The degradation in gain
(about 0.7—1 dB) is due to the tan ¢ of the FR4 material.

The effect of the presence of a ground plane on antenna per-
formance was studied. A copper ground plane (150 x 40 mm?)
was created on the same plane as one of the parasitic antenna
planes [Fig. 9(a)]. It was placed at a distance, d, from the
corresponding parasitic elements. Two cases were considered,
namely, d; = 5 mm and d, = 10 mm. For both cases, it was
found that the effect of adding a ground plane on S-parameters
was insignificant. On the other hand, a tilt in the radiation
patterns was visible. When the ground plane was placed next
to the right parasitic elements, the peak beam directions were
at ¢ = 75° ¢ = 355° and ¢ = 240°, respectively, for Left
switches ON, All switches ON, and Right switches ON cases.
The gain reduced by 1 dB.

The effect of a generic dielectric housing and the ground
plane on the antenna was also studied. We considered
a 150 x 70 x 10 mm? dielectric housing (¢, = 4.4 and
tand = 0.02) [Fig. 9(b)]. The thickness of the dielectric
material for the housing was 0.8 mm and d, was 10 mm. It was
found that the presence of the housing caused 5% lowering of
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Fig. 10. Photo of the built antenna prototype. (a) Array components and
control circuit. (b) Side view and (c) top view of the setup in anechoic
chamber.

the antenna center frequency. Nevertheless, the array remained
operational at 5 GHz. The radiation patterns and gain were
nearly identical to those obtained for the array with a ground
plane.

Since the array would most likely be manufactured for
placement at the edge of a mobile device, other thin, low
dielectric constant, low loss materials can be used, such as
plastic for example. It is unlikely that the antenna array will
be made from FR4, because the device housing will not be
made from FR4. Nevertheless, we think it is safe to assume
that such material will be thin, have low dielectric constant
and lower loss compared to FR4.

IV. EXPERIMENTAL FABRICATION AND
EXPERIMENTAL RESULTS

A laboratory prototype of the array was fabricated and
measured (photographs shown in Fig. 10). Each face of the
array shown in Fig. 2(a) was photo-etched on a separate
0.8-mm-thick FR4 substrate. The dimension of each substrate
was 145 x 9 x 0.8 mm?>. Each driven dipole was fed using
a 2.2-mm diameter semi-rigid 50-Q coaxial cable and a split
coax balun made from the same cable (Fig. 10). Each parasitic
element was controlled using a p-i-n diode (Skyworks Inc.
SMP1345) switch. The switch biasing circuit shown in Fig. 10
contains current limiting resistor, R = 470 Q, inductors,
L = 10 nH, and capacitors, C = 10 pF. To turn the
switches ON, 5 V dc supply was applied. The application of
5 V dc results in 9 mA of forward current allowing the diode
ON-state resistance to be 1.5 Q. And thus, the expected
insertion loss is 0.4 dB.

A. S-Parameter Measurements and Results

S-parameter measurements were performed for the proto-
type shown in Fig. 10(a). Since a two-port vector network
analyzer was used at each time when the S-parameters of
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Fig. 11. Measured S-parameters for the fabricated array prototype.

two ports were measured the other two ports were terminated
using 50-Q loads. The measured S-parameter data for the array
are shown in Fig. 11.

The measured results show that the array operates in the
frequency range of 4.4-5.1 GHz (as |S11|] < —10 dB, and
|S21] < —15 dB is satisfied). Comparing the measured results
of Fig. 10 to the simulated results of Fig. 7, it can be seen that
the operating frequency for the measured is slightly lower than
the simulated. The decrease in frequency is probably due to
a combined effect of imperfections in the fabrication process,
nonideality of FR4 material, and the adverse effect of long
bias wires which were used to supply dc voltage to the switch
control circuit.

B. Gain and Pattern Measurement Results

The array gain and radiation patterns were measured in a
SATIMO anechoic chamber. The setup is shown in Fig. 10(b).
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As shown in Fig. 10(a) and (b), each driven dipole is first
connected to a split-coax balun and a coaxial cable. The balun
resides between two pieces of foam, each 5-mm thick. This
coaxial cable then connects to another 152.4-mm-long coaxial
cable via a female-female SMA adapter. This cable assembly
along with three similar assemblies from the other three driven
dipoles are then connected to the four output ports of a
4-to-1 combiner (Minicircuits ZN4PD-642W-S+-). The input
of the combiner is connected to the measurement cable of the
chamber.

A microcontroller (Arduino Duemilanova) fed by a 9 V
battery was used to control the bias states of all eight switches.
The 16 pieces of 381-mm-long dc bias wires were connected
from the parasitic elements to the microcontroller circuit
board. The assembly is shown in Fig. 10(c).

The cables, connectors, adapters, and the combiner were
measured to quantify the combined insertion loss for the
pattern and gain measurement setup that preceded the array
elements. The insertion loss was between 1.1 and 1.3 dB. The
insertion loss was added to the measured gain data from the
anechoic chamber.

Measured realized gain patterns at several frequencies
within the operating frequency band are shown in Fig. 12.
Array pattern reconfiguration in the / plane is apparent from
Fig. 12(a)—(e). For all three cases, namely, All switches ON,



4312

TABLE 11
COMPARISON OF PROPOSED ARRAY WITH AVAILABLE DESIGNS

Publication Ele- Meas.  Freq. of Size Steering
ment gain operation (mm?) angles
no. (dBi) (GHz) (degree)

Qin et al 2 6 5.2 30%30 Not well-

[21] x30.2 defined

Kishor and 4 2.5 2.3 90x30x% 30, -30

Hum[20] 5

Rhee et al. 4 5.4 5.2 120x40 30, -30

[22] x6

Proposed 4 10 5 123x10 70,0, 290

array x14

Left switches ON, and Right switches ON measured peak gain
is between 8 and 10 dBi. Measured antenna efficiency is
about 80%. The individual patterns for the three cases provide
a near hemispherical coverage with an average array gain
of 8 dBi. The HPBW for the All ON case is wider than the
HPBW for the other cases. Average HPBW is about 100°.
The e plane patterns for one frequency shown in Fig. 12(f)
show that the beams are narrower as expected with the HPBW
of about 25°. Comparing the measured patterns of Fig. 12
with the simulated patterns shown in Fig. 8, there are signs of
reflections and distortions in the measured patterns. These are
more pronounced for the case called the Right switches ON.
Ideally, the i plane patterns should be directed at 0°, 70°, and
290° for the All ON, Left ON, and Right ON cases, respectively.
Measured patterns for the Right ON appear to be rotated.

The differences between the simulated and measured pat-
terns can be attributed to the presence of the four coaxial
cables and split coax baluns, the 16 dc bias wires, and also
possibly the power combiner that were not present in the
simulation models. It is expected that if lumped element
chip baluns and dc bias traces made from high resistance
(>500 Q/square) lines [36] are implemented much of the
reflections and distortions in the pattern will disappear. The
simulation models did not include the cables and the wires
which are likely the cause for the discrepancies.

The performance (measured gain and steering angle) of
the proposed array is compared against available designs
in Table II. As seen, the proposed array provides higher gain
and multiple steering angles which are likely to be beneficial
for future handheld devices.

V. SYSTEM LEVEL PERFORMANCE ANALYSIS
A. Envelope Correlation Coefficient

Envelope correlation coefficient (ECC) is a metric often
used for MIMO antennas that measures the correlation
between two antennas. For MIMO applications with N anten-
nas, the ECC between the ith and the jth elements is given
by [37]

’Zr]lvzl S;':nS”aj}z
Hk:i,j (1 - Zrllv:l S;ck,nSnak)

Fig. 13 shows the ECC for the array that was computed using
the measured S-parameter data presented in Fig. 11. As seen,
ECC < 0.01 which is excellent for an MIMO array. Note that

pe(i, j, N) = 3)
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for accurate ECC calculation, instead of S-parameters far-field
patterns should be used since the former considers lossless
antennas [38]. However, for efficient antennas, S-parameter-
based ECC calculation method yields good results [39].

B. Signal-to-Interference-Plus-Noise Ratio Performance

Finally, a system level analysis is performed to understand
the performance characteristics of the proposed array com-
pared to two other antennas: a 5-dBi gain omnidirectional
antenna and an MIMO array proposed by Kishor and Hum [20]
which has two states. Resource allocation study is carried out
among the secondary users (SUs) within the game theoretical
framework in the heterogeneous networks which consist of
16 primary users (PUs) and 20 secondary base stations with
two SUs in each under one primary network (Fig. 14).
We consider that the number of available resources is 256
under the orthogonal frequency division multiple accessing
scheme, and it is assumed that all resources are allocated
by PUs. Likewise, the SUs in each secondary network are
considered to use all resources. Since the aim is to decrease
the interference induced on the PUs, only SUs are assumed to
use the array by Kishor and Hum [20] or the proposed array,
i.e., PUs are equipped with only omnidirectional antennas.
Signal-to-interference-plus-noise ratio (SINR) of an SU u can
be expressed as follows:

pugufﬁuf
SINR, =
“ Z D wel, Po&ofPof + 2 pep Pb8bf Pur + @0
feF v#u
4)
where f = 1,2,..., F is the subcarrier index, U and B

show the total number of SUs and PUs, respectively, v is the
interfering SU index, u, veU, b is the PU index, p, denotes the
transmit power for user u, and parameter S, is the indicator
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function for the fth subcarrier. If SU u uses the fth subcarrier,
Bur =1, otherwise f,r = 0. wp is the additive white Gaussian
noise.

Fig. 15 shows the performance results of the
proposed array, omnidirectional antenna, and the
array by Kishor and Hum in terms of SINR.

As seen from Fig. 15, proposed array outperforms the
standard antennas. While 50% of the SINR values are only
below 19 and 20 dB for the omnidirectional antenna and
the Kishor and Hum [20] antenna, respectively, 50% of the
SINR values are below 33 dB for our proposed array. In
other words, the gain in mean SINR of the Kishor and Hum
antenna over the omnidirectional antenna is 2.5%. The same
for the proposed antenna over an omnidirectional antenna
is 59%. This indicates that the SUs can achieve higher SINR
values with proposed array. This result can also be confirmed
from Fig. 16 which shows the mean SINR gain obtained in
each SU. As shown in Fig. 16, almost every SU achieves
higher gain with proposed array. System level results indicate
that the proposed array is a strong candidate for the user
devices in heterogeneous networks.

VI. CONCLUSION

A four-subarray collinear pattern reconfigurable smart
antenna array was designed, developed, and tested validating
performance. Simulation results in both free space and on FR4
show that the array operates at around 5 GHz with better than
10-dB return loss and better than 17-dB mutual coupling. For
the FR4 array, the peak gain is between 9.7 and 11 dBi for the
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three different reconfiguration angles, e.g., 0°, 70°, and 290°.
Experimental fabrication and tests show that the array meets
the input |S,,| and [S),,| characteristics of <—10 dB and
<—15 dB, respectively.

Measured pattern results show the pattern reconfiguration
in three different angles in the azimuth albeit with some
degradation due to the presence of long dc bias wires.
Measured peak gain is about 1 dB lower than the simulated
gain. The reflections and distortions in the pattern can be
largely eliminated by the use of lumped element baluns and
dc bias traces made from materials with high sheet resistance
(>500 Q/square for instance) as opposed to standard copper
wires. However, in that case, instead of p-i-n diodes that are
current (mA) controlled varactor diodes or RF MEM switches
should be used that almost conduct no current (<nA). Finally,
when the radiation properties and gain results were used in
system level simulations, it was found that the high-gain
pattern reconfigurable antenna array provided 59% increase
in SINR over an omnidirectional antenna.
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