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Abstract: Cancer has become one of the main leading causes of morbidity and mortality worldwide. One of the critical 

drawbacks of current cancer therapeutics has been the lack of the target-selectivity, as these drugs should have an effect 

exclusively on cancer cells while not perturbing healthy ones. In addition, their mechanism of action should be 

sufficiently fast to avoid the invasion of neighbouring healthy tissues by cancer cells. The use of conventional 

chemotherapeutic agents and other traditional therapies, such as surgery and radiotherapy, leads to off-target interactions 

with serious side effects. In this respect, recently developed target-selective Antibody-Drug Conjugates (ADCs) are more 

effective than traditional therapies, presumably due to their modular structures that combine many chemical properties 

simultaneously. In particular, ADCs are made up of three different units: a highly selective Monoclonal antibody (Mab) 

which is developed against a tumour-associated antigen, the payload (cytotoxic agent), and the linker.  The latter should 

be stable in circulation while allowing the release of the cytotoxic agent in target cells. The modular nature of these drugs 

provides a platform to manipulate and improve selectivity and the toxicity of these molecules independently from each 

other. This in turn leads to generation of second- and third-generation ADCs, which have been more effective than the 

previous ones in terms of either selectivity or toxicity or both. Development of ADCs with improved efficacy requires 

knowledge at the atomic level regarding the structure and dynamics of the molecule.  As such, we reviewed all the most 

recent computational methods used to attain all-atom description of the structure, energetics and dynamics of these 

systems. In particular, this includes homology modelling, molecular docking and refinement, atomistic and coarse-grained 

molecular dynamics simulations, principal component and cross-correlation analysis. The full characterization of the 

structure-activity relationship devoted to ADCs is critical for antibody-drug conjugate research and development. 
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1. INTRODUCTION 

 Cancer is the most wide-spread disease across countries, 
cultures and ethnicities, affecting both developed and 
developing regions [1]. It is defined as the formation of 
abnormal cells caused by uncontrolled cell division, and it is 
the leading cause of morbidity and mortality with an 
estimated 14,100,000 new cases in 2012 and 8,200,000 
deaths worldwide [2]. Cancer has a complex aetiology that 
often starts with a mutation in cell’s DNA in which the cell 
loses normal functionality and instead gains the ability to 
indefinitely multiply until impairing normal tissue properties 
[3]. Many aspects that contribute to its development and 
progression are still not fully understood. Therefore, there is 
an emerging need for development of novel approaches that 
help potentiate innovative therapeutic targets and effective 
drugs. There are currently ca. 200 different types of cancer 
identified, including solid tumours such as breast and lung  
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 cancer, as well as blood-based malignancies, namely, 
leukaemia and lymphoma [4]. Breast, prostate and lung 
cancer are common types whereas 22% of rest of cancers are 
considered as rare [5] appearing in a small percentage of the 
population [6]. The “hallmarks of cancer” can be categorized 
in 6 sections as indicated in Hanahan et al. [7]. The first is 
Self-Sufficiency in Growth Signals. Unlike normal cells, 
cancer cells are able to move to an active proliferative state 
without extracellular signalling which are received by 
transmembrane receptors. Second, insensitivity towards 
antigrowth signals- meaning that in cancer cells antigrowth 
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mechanisms do not work properly, but rather they provoke 
the cells to grow and replicate continuously. The third 
hallmark is the, evading apoptosis, while cell proliferation is 
a stimulatory factor in the onset of cancer, the cell death 
avoidance is an alternative way for the cancer development. 
Fourth, Limitless replicative potential: this acquired 
capability emerges as a combination of the previous three 
stimulators, that result in lack of communication between the 
cell and environment, either environmental or self-cell 
related. This causes tumour cells to escape from a limit that 
usually applies to normal cells, above which they can no 
longer replicate. Sustained angiogenesis is the fifth hallmark. 
Angiogenesis, which is known as the promotion of the 
generation of new blood vessels, allows cancer cells to 
provide enough supplies. Cancer cells can interfere with 
angiogenesis by releasing angiogenesis promoting factors, 
such as Vascular Endothelial Growth Factor (VEGF) or by 
regulating proteases, that can degrade the existing factors[8]. 
Lastly, tissue invasion and the metastasis: the previous steps 
result in an overstepping of a set of cells’ boundaries into 
new areas where they should not be in high numbers 
otherwise. This occurrence requires changes in cells’ 
interactions with surroundings, otherwise they would be 
recognized by the immune system and would be forced to 
undergo apoptosis. Cancer cells tend to have proteins 
responsible for communication with the altered environment, 
such as Cell-cell Adhesion Molecules (CAM) – members of 
the immunoglobulin and calcium-dependent cadherin 
families that mediate cell-cell interactions – and integrins 
that facilitate cell-extracellular adhesion. Furthermore, 
extracellular proteases can be activated, thus promoting the 
elimination of extracellular communication factors. 
 Despite the genetic factors, the high incidence of cancer 
is widely related to changes in diet, physical inactivity, 
smoking and excessive alcohol consumption as well as 
environmental changes [9]. To combat with this disease, 
prevention is always a better approach than treatment. This 
can be done, primarily, by avoiding the external factors 
mentioned above. Furthermore, early detection of primary 
tumours should be done to avoid cancer progression and 
metastases. Medical imaging technologies, which provide a 
better diagnosis, have grown rapidly over the past few years 
[10], and can be used in all phases of cancer management 
including diagnosis and staging, using specific markers, as 
well as treatment follow-up [11]. Recently, the simultaneous 
combination of imaging with therapy, named theranostic, has 
gained importance in both research and in the clinical field 
[12] as it provides an understanding of underlying molecular 
mechanisms, better diagnosis strategies and therapeutic 
efficiency [13]. That leads to a shift from traditional 
chemotherapy to targeted cancer therapy. This new approach 
has been enhanced by distinguishing specific features of 
tumour cells to provide a framework for development of 
more selective drugs [14]. 
 

1.1. The concept of Antibody-drug conjugates (ADCs) 

 

ADCs are humanized or fully human monoclonal 

antibodies (mAbs) that are covalently bound to highly 

cytotoxic small molecules (cytotoxic payloads) through 

chemical linkers. Due to the high binding specificity of 

mAbs for tumour-specific cell-surface antigens (found 

uniquely on the surface of tumour cells) and for tumour-

associated cell-surface antigens (found overexpressed on the 

surface of tumour cells, but also present in healthy cells) [15-

16], these immunoconjugates may combine the anticancer 

efficacy of small-molecule chemotherapeutics with high 

selectivity, stability, and favourable 

Pharmacokinetics/Pharmacodynamics (PK/PD) profile of 

mAbs. The ADCs can be recognized as sophisticated 

delivery systems for drugs with anticancer activity, in which 

the antibody may effectively guide the cytotoxic drug to 

target tumour cells, where the drug can be chemically and/or 

enzymatically released from the immunoconjugate to induce 

the cytotoxic activity [17]. Structurally, the ADCs can be 

divided into three main structural units: a humanized or a 

fully human mAb, a stable linker, and a cytotoxic payload 

(Figure 1).  

 

Figure 1. Schematic description of an ADC. 

 

It is utmost importance to understand the key features of 

each of the three components, and so the mechanism of 

action, in order to be able to develop ADCs with clinical 

efficacy. A general mechanism of action of ADCs is 

represented in Figure 2. In order to avoid the proteolytic 

degradation of mAbs by gastric acids and proteolytic 

enzymes, the ADCs are preferentially administered via the 

intravenous route and released into the bloodstream (Figure 

2, step 1). When circulating into the bloodstream the mAb 

component of ADCs is recognized by tumour-specific or 

tumour-associated cell-surface antigens (Figure 2, step 2) 

and, subsequently, the ADC-target antigen complex is 

primarily internalized via clathrin-mediated endocytosis 

(Figure 2, step 3) [18]. After the formation of a clathrin-

coated early endosome, the acidic environment of 

endosomes promoted by an influx of H+ ions enables the 

association of the mAb unit of a fraction of ADCs to human 

neonatal Fc Receptors (FcRns) present in early endosomes. 

The ADC-FcRn complexes are released into the 
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bloodstream, where the physiological pH of 7.4 facilitates 

the dissociation of the ADC from the FcRn (Figure 2, step 4) 

[19]. Inside the cancer cell, the remaining unbound ADCs in 

the endosome form the late endosome. Afterwards, the late 

endosomes fuse with the cell lysosomes, allowing the 

lysosomal degradation of the immunoconjugate (Figure 2, 

step 5) and subsequent release of the cytotoxic drug in its 

bioactive form (Figure 2, step 6). The released cytotoxic 

drug interferes with the cellular machinery through various 

mechanisms of cell death, depending on the class of the 

cytotoxic drugs  [20].  

Figure 2. Mechanism of action of ADCs. 

 

From the intravenous administration of ADCs and 

circulation into the bloodstream to the molecular target 

located in the tumour tissues, the ADCs are exposed to 

different conditions on their journey. The understanding of 

the mechanism of action of ADCs at cellular and molecular 

level as well as the distinct challenges faced by ADCs in 

each step may provide new insights for the design of novel 

immunoconjugates with desirable pharmacokinetic and 

pharmacodynamics properties through optimization of each 

of ADC components [21]. The first-generation of ADCs 

were typically used to selectively deliver clinically approved 

chemotherapeutic drugs such as methotrexate (a competitive 

inhibitor of dihydrofolate reductase), doxorubicin (a DNA 

intercalating agent), and vinblastine (an inhibitor of 

microtubule formation) with a well-established mechanism 

of action and a well-known toxicity profile [22-23]. These 

early experiments which were made to create an effective 

ADC have revealed to be unsuccessful for various reasons 

including the low potency of the loaded chemotherapeutic 

drugs, the restricted number of cytotoxic drug molecules that 

can be carried on the mAb without impairing the antibody-

antigen interaction, the use of unstable linkers, the low 

antigen selectivity, and the restricted number of antigen 

molecules on the surface of the tumour cells, all of which 

limit the therapeutic efficacy of these immunoconjugates 

[24]. Moreover, the first-generation ADCs, which were 

achieved by using murine mAbs, have shown to induce a 

significant immunogenicity, which is a major determinant 

for half-life of ADCs when circulating in the blood. The 

unwanted immunogenicity compromises the clinical efficacy 

of these immunoconjugates [25-26]. To overcome these 

challenges and failures, several technical approaches have 

been focused intensively on the optimization of the 

functionality of each component of the ADCs (the antibody, 

the cytotoxic payload, and the linker) for the construction of 

drug delivery systems with improved efficacy and 

tolerability.   

The selection and optimization of antibodies have been 

extremely relevant in the ADC design. For direct delivery of 

cytotoxic drugs to tumour cells, the humanized and/or fully 

human mAbs with high target-affinity and target-specificity 

to the same antigen determinant are preferentially used to 

minimize immunogenicity issues [25-26]. The ideal antibody 

also needs to target well-characterized and tumour-specific 

or tumour-associated antigens with sufficient binding affinity 

and specificity. In addition, the antigen-binding 

characteristics of antibodies are needed to be maintained 

when connected to the required number of cytotoxic drug 

molecules via linker [27].  

The choice of cytotoxic payloads is of maximum 

importance for the development of highly effective ADCs 

[28]. It is imperative that the cytotoxic drug loaded on the 

ADC possesses a sustained stability for circulation in the 

blood stream in order to avoid the damage of non-tumour 

cells and increase the drug bioavailability in tumour cells. 

Most of these cytotoxic drugs target mainly the DNA (these 

are cytotoxic for tumour and non-tumour cells) or the 

microtubules (these are cytotoxic for tumour cells), and 

should possess a cytotoxic potency in the nano-molar or 

pico-molar concentrations so that only a small number of 

cytotoxic drug molecules can be loaded [29]. In addition, the 

solubility of the cytotoxic drugs is also a critical factor. In 

fact, the lipophilic drugs can pass the cell membranes and, 

therefore, after the lysosomal degradation of the ADC 

complex, the cytotoxic drug has the ability to escape from 

the lysosome. On the other hand, the cytotoxic payload must 

be sufficiently hydrophilic to enable conjugation with the 

antibody in aqueous solutions since the use of high 

concentrations of organic solvent can promote the 

denaturation of mAbs. The problem of low water solubility 

of many drug candidates may be solved by using hydrophilic 

linkers [30].  

The linker chemistry plays an important role since it may 

greatly influence the safety, the therapeutic index, the 

specificity, the pharmacokinetic, and the pharmacodynamics 

profiles of ADC species [26, 31]. The ideal linkers must 

fulfil a set of requirements towards the development of 

ADCs with potential clinical efficacy [32]. Firstly, they need 

to be stable in the bloodstream to ensure that the ADCs 

remain intact until being recognized by tumour-specific or 

tumour-associated antigens of cancer cells and reaching the 

molecular target. Instability of the linker moiety can induce 

the premature release of the cytotoxic drug, leading to an 

undesired damage of healthy cells and to other adverse 
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effects as well [33-34]. Simultaneously, once the ADC 

species are internalized into the cancer cells, the linkers need 

to be labile to allow a rapid cleavage and release of the 

cytotoxic drug in the active form [33-34]. Based on these 

parameters, research efforts have been focused in the design 

of novel ADC linker structures. The latter can be classified 

into two major classes based on the mechanism of release of 

the cytotoxic drug from immunoconjugate: cleavable and 

non-cleavable linkers. Cleavable linkers have the 

characteristic to be cleaved by proteolytic enzymes in the 

lysosome or by responding to environmental differences 

present between conditions of blood stream and the 

intracellular region within tumour cells. The majority of 

ADC species possess cleavable linkers. Once the ADC-

antigen complex is internalized, the change of environmental 

conditions promotes the cleavage of the linker and 

subsequent release of the cytotoxic drug molecules in their 

active form [35]. Cleavable linkers have the ability to 

respond to different cancer-specific intracellular conditions 

and they include the linkers that are sensitive to lysosomal 

degradation (e.g. dipeptide linkage consisting of valine and 

citrulline along with a p-aminobenzylcarbamate linker [36]), 

which are sensitive to an acidic pH (e.g. hydrazones) [37], 

and reduced by glutathione such as disulfide linkers [38]. 

Contrary to the cleavable linkers, the non-cleavable linkers 

rely on cytosolic and lysosomal proteases to ensure the 

complete cleavage of the mAb component of ADC species. 

After the cleavage,  a single amino acid residue (usually a 

lysine or a cysteine) derived from the degraded mAb is still 

attached to the linker and the cytotoxic drug molecule [39]. 

Subsequently, the cytotoxic drug-linker-amino acid residue 

complex is then liberated into the cytoplasm to become the 

active drug. Examples of non-cleavable linkers include the 

thioether linker Succinimidyl-4-(N-Maleimidomethyl) 

Cyclohexane-1-Carboxylate (SMCC) and maleimidocaproic 

acid linker [40]. In this case, the structure of the cytotoxic 

drug must be precisely designed so that the cytotoxic drug 

can induce a similar or an improved anticancer activity in a 

modified form. Additionally, the toxicity, pharmacodynamic, 

and pharmacokinetic profiles of all possible products of 

degradation of ADC species containing non-cleavable 

linkers need to be carefully examined [39].        

The conjugation chemistry has been also a crucial 

component for the construction and activity of ADCs and 

novel conjugation techniques are continuously being 

developed. Chemical and enzymatic conjugation are two 

techniques that are presently in use for the association of 

mAb and the cytotoxic payload components. [41]. 

Traditional strategies for the association of cytotoxic drugs 

to mAbs have been focused on the presence of reactive side 

chains of solvent accessible naturally occurring amino acid 

residues including the epsilon-amino end of the lysine 

residues and the thiol groups of cysteine residues in the 

reduced form, as attractive sites for conjugation [42-44]. 

This linking strategy involving native amino acid residues 

does not require a prior modification or processing of the 

antibody. However, the conjugation of the cytotoxic drug is 

restricted to the amino acid sequence of mAb, limiting the 

control over the number and the site of the loaded cytotoxic 

drugs.  Consequently, a heterogenous mixture of ADC 

species with variable Drug-Antibody Ratios (DARs) and 

distinct tethering positions will be generated. The 

heterogeneity of DAR among ADC species is a major 

shortcoming of these types of non-specific conjugation 

techniques, influencing the stability, the efficacy, and the 

toxicity of ADC species [45-46]. In fact, a broad distribution 

of the number of cytotoxic drug molecules tethered per 

antibody, leads to a small percentage of ADC species being 

therapeutically active and, therefore, contributes to a reduced 

therapeutic efficacy. The attachment of too few cytotoxic 

molecules will reduce the efficacy. On the other hand, 

loading too many cytotoxic molecules on the antibody may 

affect the stability of ADCs, may lead to the premature 

release of the cytotoxic payload into the bloodstream and 

alter the Pharmacokinetics (PK) properties, including high 

plasma clearance and reduced half-life [45-46]. Moreover, 

the inactive ADC species can indirectly reduce the ADC 

efficacy by interacting with a restricted number of tumour-

specific or tumour-associated antigens of tumour cells or by 

blocking the interaction of active ADC species [45-46]. The 

development of site-specific drug conjugation strategies has 

emerged as a promising strategy for the production of 

homogenous ADC species with the desired DAR, potentially 

enhancing the therapeutic window, decreasing the off-target 

toxicity, and improving the PK profile. Various approaches 

used to increase the site specificity of ADC conjugation 

involve the incorporation of more discriminate residues, in 

particular non-natural amino acids (e.g. Selenocysteine (Sec) 

[47], p-AcetylPhenylalanine (pAcPhe) [48], p-AzidoMethyl-

L-phenylalanine (pAMF) [49], N6-((2-

azidoethoxy)carbonyl)-L-lysine [50]), the use of ligating 

enzymes to catalyse bond formation between specific amino 

acid sequences or chemical groups (e.g. Sortase A (Sort A) 

[51], Bacterial TransGlutaminases (BTGs) [52-53], 

Formylglycine-Generating Enzyme (FGE) [54]), the 

incorporation of aldehyde groups on N-glycan terminus of 

Asp297 residue of IgG using β-1,4-GalactosylTransferase 

(GalT) and α-2,6-SialylTransferase (SialT) [55] [56]. In 

general, the introduction of selectively reactive molecules at 

specific positions enables a more control over the number 

and the position of the loaded cytotoxic drug molecules. 

 

1.2. Applications of ADCs in clinical therapeutics 

 Advances in the research and development of novel 
ADCs have allowed the approval of several of this type of 
targeted drugs by the US Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) for clinical 
use [57]. Moreover, a large number of complexes are still 
under clinical trials.  The ADCs are being tested in both 
haematological malignancies such as leukaemia and in solid 
tumours [58] in which breast cancer is the most common 
target [59-60]. Currently approved ADCs and those under 
advanced clinical development (Phases III and II) are listed 
in Table 1. 
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Table 1. Selected ADCs in clinical development. 
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 The knowledge of the detailed three-dimensional (3D) 
structure is fundamental for full understanding and 
development of ADCs with higher efficacy. In this review, 
we focused on a variety of up-to-date methods that can be 
used to attain 3D structure, energetics and dynamics of these 
emerging systems including their interactions with the target 
protein (antigen). 

1.3.  Computational methodologies used for 

optimization of ADCs 

 With the aim of developing ADCs with high specificity 
and efficacy various computational approaches are currently 
in use. In particular, the computational methods which rely 
on Machine-Learning (ML) approaches, can be used as 
effective tools for the selection of the best target for ADCs. 
Also, homology modelling and molecular docking and 
refinement can help devise the most probable fit between 
antibodies and antigens and to understand the linker-drug 
interaction. This is a crucial step in ADC development, as it 
determines the specificity of the molecules in the overall 
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system. Molecular dynamics (MD) is also another tool to 
clarify aspects that consider antibody and antigen. 
Particularly, MD can be used to help for the selection of the 
best drug candidate by exploring possible conformations that 
the antibody might acquire, rendering important information 
on drug-antibody complementarity. Other tools have been 
also discussed in order to assess the best approaches for 
selecting the best ADC candidates by considering their 
selectivity and effectivity, which is mostly inherent to the 
drug. 
 
1.3.1. Computational selection of ADC targets 

 Within the scope of targeted cancer treatment, we should 
also take into consideration the properties of the target 
antigen in addition to those of the ADCs [86]. Target 
selection is based on the following criteria: i) target 
expression on tumour cells - the target must be 
overexpressed exclusively on the respective tumour cell 
while its population must be as low as possible on other 
cells. This allows the ADC to be specific; ii) the outcome 
associated with the target’s expression – chemogenomics 
information is the key aspect regarding this step. 
Fundamentally, it is an umbrella term that encompasses 
high-throughput techniques for simultaneous screening of 
both cell and compound libraries. By doing so, a high 
dimensional information can be  produced regarding 
genomic information of cells and biological activity of 
compounds studied [87]; iii) extraction of relevant data 
regarding the target from the literature – several approaches 
for Text-Mining (TM) have been developed and are 
reviewed in Yang et. al [88], iv) target’s subcellular location. 
TMs typically focus on determining likely target-disease or 
network-disease associations. Some tools also provide a 
mean to analyse data that come from microarray and mass 
spectrometry and to establish important phenotype-genotype 
relations.  
 A recent ML approach, which is based on the existence 
of some receptors on the cell surface, microarray data and 
cell characterization methods for epithelial, mesenchymal or 
mixed, have been developed for the selection of targets of 
ADC [89]. ML was used mainly to classify the cells’ 
receptor expression using gene expression data and to 
classify the cells as epithelial, mesenchymal and mixed. 
Genes were identified as good targets for ADC therapy 
considering their normal/cancer expression ratio. The 
method reported Human Epidermal growth factor Receptor 2 
(HER2) as the most probable target, for which trastuzumab 
emtansine – an ADC – interacts as given in Table 1.  
 Pharmacokinetics-pharmacodynamics models have also 
been used for development of ADCs. The key aspect of these 
models is the determination of the stability, permanence, 
binding kinetics and efficacy of ADC in vivo. While these 
priorities can be assessed via in vitro models, in silico 
approaches, which are based on mathematical modelling of 
ADC pharmacokinetics and pharmacodynamics [90], can 
also be used. The Conjugation in ADC development refers to 
the computational process used to investigate the structural 
basis of antibody-drug assembly. For this process, a linker 
can also be used. A simple minimization step could be 
implemented to ensure that the most realistic conformation is 
achieved [91-92]. There is also an interest in statistical 
models to correlate the Drug-to-Antibody Ratio (DAR) with 
other ADC characteristics, such as drug load distribution 

[93]. This kind of approaches allow researchers to perform a 
lower number of experiments to investigate the optimal DAR 
when aiming to reach an optimal value.  
 The study of ADCs must also focus on drug resistance 
mechanisms. Proteins associated with drug resistance, such 
as Multi-drug Resistance Proteins (MRP), Permeability-
Glycoprotein (P-gp) and Breast Cancer Resistance Protein 
(BCRP) [94] are needed to be studied in detail, in order to 
prevent expelling of drugs/toxins from the inside of the cell 
to the outside which causes an increase in the dosage used 
[95]. For instance, there are strategies to blockade these 
proteins by adjuvant drugs that prove that conjugated 
cytotoxic drugs are a poor substrate for the drug transporter 
[29]. To this and, an MD simulation on the protein, which 
displays drug resistance, together with the bound drug can be 
performed to determine the binding affinity and the 
expulsion possibility of the drug from the cell as done for P-
gp for optimal drug delivery [96]. 
 The current methods used for production of ADCs can 
lead to a heterogeneous mix where some of the molecules 
have poor performance. For such, more complex methods 
are required to increase the homogeneity of the conjugates 
[97]. For example, site-specific cysteine conjugation can be 
used to increase the homogeneity of the produced 
conjugates. To this end, three coordinate files regarding the 
drug, the antibody and the linker were selected from the 
Protein Data Bank (PDB). Subsequently, these could serve 
as input for THIOMABTM [98], which refers to antibodies 
with engineered reactive cysteine residues. According to it, 
the molecules are chosen and engineered to include cysteine 
residues that can be used to link the three components. The 
molecules can then be aligned according to well-defined 
equations, changing the relative positions of the atoms by 
Affine transformations. This procedure allows the 
preservation of the points, lines and planes while rotating 
and translating the atoms and residues to a proper 
conformation [99]. A more thorough explanation of the 
whole procedure can be found at Filntisi et al. [100]. Voynov 
et al. has also computationally designed antibody cysteine 
variants through homology modelling and evaluated them 
for their Spatial Aggregation Propensity (SAP) [101]. 
Besides using antibody-cysteine variants, it is also possible 
to incorporate amino acids into the backbone of the antibody 
or enzyme, an approach that exploit short peptide sequences 
involved in posttranslational modifications [102]. 
Independent of the method, molecular modelling approaches 
–in general- provide a platform for systematic ADC 
generation, thus shortening the experimental time required 
for development of effective ADCs. 
 
1.3.2. Molecular docking of antibody-antigen complexes 

 
 The successful application of ADC as anticancer 
therapeutics is particularly dependent on the cytotoxic 
potency of the cytotoxic payload and the ability of antibodies 
or immunoglobulins to selectively recognize unique 
conformations and spatial hot points located at the surface of 
antigens with exquisite specificity and a high binding 
affinity. The association of the antibody molecule to the 
cognate antigen is driven by a considerable number of non-
covalent interactions taking place between the binding site of 
antigens and antibodies, which are known as respectively the 
epitope and the paratope. Among them are electrostatic 
interactions, hydrogen bonds, van der Waals interactions, 
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and hydrophobic interactions [103-104]. Structural 
understanding of antibody-antigen interactions has been the 
focus in the field of immunological research and 
pharmaceutical applications, including the design and 
synthesis of novel epitopes that can be used as vaccines, and 
novel antibodies with optimized properties. For a holistic 
understanding of the structural basis of antigen-antibody 
complexes, the knowledge regarding the 3D structure of 
these complexes is fundamental. The structure determination 
of protein-protein complexes has been mainly accomplished 
by two experimental techniques: X-ray crystallography and 
Nuclear Magnetic Resonance (NMR) Spectroscopy. In fact, 
inherent fluctuations of atoms that make up protein-protein 
complexes make the crystallization difficult, while the 
structures of complexes formed by high-molecular weight 
proteins are difficult to study with NMR Spectroscopy [105]. 
Such technical shortcomings associated with these 
experimental approaches have been reflected by the disparity 
between the number of experimentally solved protein-protein 
complexes which are deposited in the PDB and the number 
of complexes of structures of the individual proteins [106]. 
Over the past decade, the development of a large number of 
algorithms for predicting structure of protein-protein 
complexes by computational docking has contributed to gain 
additional insights on the structure of 
biologically/biochemically relevant protein-protein 
interactions, as in the case of antigen-antibody complexes. In 
fact, protein-protein docking has emerged as one of the most 
focal points in computational proteomics and structural 
biology. It predicts the most likely quaternary structure for 
protein-protein complexes using the information coming 
from individual proteins that make up the complex [107-
109]. The first key step is the generation of the structures of 
the individual antigen and the antibody. In a “bound” 
docking procedure, the protein structures within a co-
crystalized complex are dissociated and re-docked using a 
docking algorithm. No conformational changes are involved 
in this procedure, so that the interfaces of the protein 
structures can match ideally. The “bound” docking is 
unlikely to provide additional structural information if an 
experimentally determined protein-protein complex is 
already available. In an “unbound” docking procedure, the 
separated proteins are originated from experimentally 
determined structures either in the free form or associated 
with a different binding partner. The approaches of 
“unbound” docking have to deal with the drastic 
conformational changes occurring between the unbound and 
bound protein structures, as in the case of antibody-antigen 
complexes [110]. When no 3D structure information of the 
interacting proteins is available, the accurate prediction of 
the most likely bound conformation of protein-protein 
complexes can be a major bottleneck, particularly due to the 
inclusion of errors associated with “double modeling” (the 
modeling of the separated proteins and the modeling of the 
protein-protein complex) [109]. Homology modeling 
techniques can be employed for the construction of atomic 
resolution model of the target proteins by using its query 
amino acid sequence and an experimentally available 3D 
structure of a related homologous protein, which can be used 

as a template. Modeller software, which is one of the widely 
used homology modelling tools [111], provides a simplified 
approach for modelling by using a single template. There are 
also more complex endeavors which consider multiple 
templates, and include various parameters such as secondary 
structure, salt-bridges, and many other characteristics. In the 
context of antibody-antigen complexes, a plethora of 
computational tools has been used for the prediction of the 
structure of antibodies and for the mapping of epitopic 
regions. A special focus to the prediction of antibody 
structure and antigenic epitopes is given below. Having 
chosen or generated the starting structures of antibody and 
the antigen, both proteins are then brought together by a 
specific docking algorithm. The identification of the most 
likely conformations of both proteins to form a stable 
complex must involve the exploration of a large 
conformational space representing various potential binding 
poses of the binding partners and the prediction of the 
interaction energy associated to each of the predicted binding 
poses [107-109]. In order to find the correct orientation, the 
relative position of the binding partners is constantly 
changed through a cyclic and iterative process, in which the 
different binding conformations are evaluated by scoring 
functions, until converging to a minimum energy 
conformation. The speed and effectiveness are two critical 
parameters in a conformational search procedure, in order to 
cover the relevant conformational space [107-109]. 
Subsequently, the most likely conformations of the docking 
partners of a protein-protein complex can be discriminated 
from the inaccurate ones by using other scoring functions. 
The correct binding conformation is assumed to be the most 
energetically favored, and thus the conformation with the 
lowest energy. In sum, scoring functions are estimated 
mathematical functions that should include and appropriately 
weigh all the physicochemical parameters, including 
intermolecular interactions, desolvation, and entropic effects. 
In principle, the greater the number of evaluated 
physicochemical parameters or the better they are evaluated, 
the greater the accuracy of the scoring function [107-109]. 
Nevertheless, as the computational cost also increases 
proportionally with the number of included parameters, an 
effective scoring function should provide a perfect 
combination between the accuracy and the speed of the 
calculation. Several software packages have been used for 
antibody-antigen docking, including Profacgen [112], 
SnugDock [113], surFIT [114], PIPER [115] with the 
antibody-Decoy As the Reference State (antibody-DARS) 
potential [116], Zhiping DOCKing (ZDOCK) [117] with the 
antibody i-Patch potential [118]. 
 
1.3.3. Prediction of antibody structure 

 
 Antibodies or immunoglobulins are large glycoproteins 
that consist of a tetramer of two identical pairs of 
polypeptide chains, namely the heavy and the light chains, 
which are linked by disulphide bonds to form the arms of a 
Y-shaped structure (Figure 3). 
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Figure 3. A) The 3D structure of an antibody molecule 
(PDBid: 1IGT) [119]. B) A schematic representation of the 
antibody scaffold. 

 Each arm is composed of two variable domains (VH in 
the heavy chain and VL in the light chain) and two constant 
domains (CH1 in the heavy chain and CL in the light chain) 
[120]. The interaction of CH1 and VH domains of heavy 
chains with the CL and VL domains of light chains composes 
the Fragment, antigen binding (Fab) or the “arms” of the Y. 
Within the Fab, the VH and VL domains dimerize to make up 
the FV fragment which is located at the NH2-terminal domain 
of each arm and it is responsible for antigen binding [120]. 
The FV fragment is a central region for the occurrence of 
complex processes of V(D)J recombination and somatic 
hypermutation [121-122]. These events are responsible for 
the production of a highly diverse repertoire of antibodies, 
which are able to recognize a variety of antigenic 
determinants, the so-called epitopes. The VH and VL domains 
of FV fragment are subdivided into the HyperVariable (HV) 
and the Framework Regions (FRs). While HV regions 
display a high amino acid sequence variability among 
different antibodies, the FR regions are highly conserved 
both in sequence and in conformation. Within the VH and VL 

domains, three HV regions of each chain (L1-L3 for the light 
chain and H1-H3 in the heavy chain), often referred as 
Complementarity Determining Regions (CDR), form the 
region of the antibody, the so-called paratope, which is in 
direct contact with the surface of the antigen. The four FR 
regions of variable domains form β-sheets that provide the 
structural scaffolding to hold the HV loops in contact with 
the antigen. For each heavy chain, two additional constant 
domains, CH2 and CH3, build up the crystallizable (Fc) region 
which is able to bind to various cell receptors and determines 
the mechanism of the immune system depending on the 
antibody isoform (IgG, IgM, IgA, IgE, and IgD).  
 The primary differences among distinct antibody 
molecules reside on the conformation, structural context, and 
the amino acid sequence of the β-sheet part of the variable 
domains of the FV fragment that governs the specific binding 
of the antibody. The prediction methods which are 
developed for prediction of structures of antibodies have 
been focused on modeling the FV region. This prediction is 
critical for elucidation of the principles that govern antibody-
antigen recognition and also for development of novel 
antibodies with an enhanced affinity and specificity. From an 
experimental point of view, the task of predicting the 
structure of an antibody involves mainly two fundamental 
steps: i) the prediction of the structurally conserved FRs and 
ii) that of the HV loops. The structural conservation of FRs 
is remarkably high among the FV fragments that belonging to 
distinct antibodies which makes construction of reliable 
models of FRs possible [123-125]. However, the FRs of light 

and heavy chains might need to be modelled using different 
antibody templates, which can be problematic for assembling 
the heavy and the light chains of the variable domains. A 
correct packing of the heavy and the light chains is crucial 
for an accurate orientation of the antigen-binding site of the 
FV domain [126].  
 On the other hand, the structure prediction of CDR loops 
either by homology modeling techniques or ab initio 
calculations still remains as a challenging task [127-128]. 
Despite the high amino acid sequence variability, the 
investigation of crystal structures of antibodies has shown 
that the conformational diversity in five of the six CDR 
loops (L1, L2, L3, H1, and H2) is limited. In fact, these five 
loops can adopt a few number of different conformations, 
forming a set of discrete conformational classes, which is 
known as canonical structures [129-130]. Interestingly, the 
canonical conformations adopted by a specific CDR loop 
depend exclusively on its length and the identity of specific 
amino acid residues which are located in key positions both 
within and outside of the loops. The identification of a 
specific pattern of amino acid residues at certain positions, 
which are thought to dictate the structure, can be used to 
predict the canonical class of a CDR loop with unknown 
structure with high accuracy solely from its amino acid 
sequence [131-132]. In contrast to the other five CDR loops, 
no such canonical structures have ever been established for 
the H3 loops due to the large variability on the loop length, 
amino acid sequence, and the structure. Additionally, the H3 
loop is located at the interface of VH and VL domains and 
interacts with residues located at both chains. The 
preservation of VL–VH domain orientation is of utmost 
importance in the process of antibody engineering in order to 
maintain the original topology of the antigen-binding site. 
Therefore, the VL–VH domain orientation needs to be 
optimized during the modelling of H3. The accurate 
modeling of H3 loops and the preservation of VL–VH domain 
orientation remain as the most challenging tasks in the field 
of antibody structure prediction [133-134]. Several 
algorithms developed for predicting the protein loop 
structures can be mainly divided into two categories, 
depending on how they generate the pool of conformations: 
i) knowledge-based, where databases of fragments are 
searched to find possible conformations and ii) ab initio, 
where conformations are generated computationally from 
scratch. These algorithms include the AntiBody structure 
GENeration algorithm (ABGEN) [135], Accelrys Tools 
[136], BioLuminate and Prime [137], CODA [138], FREAD 
[139], H3Loopred [140], Kotal Antibody Builder [141], 
Molecular Operating Environment (MOE) [142], Prediction 
of ImmunoGlobulin Structure (PIGS) [143], 
RosettaAntibody [144], SmrtAntibody [145], Sphinx [146], 
Web Antibody Modeling (WAM) [147] (Figure 4). 
 

1.3.4. Prediction of antigen epitopes  
 

 Antigen epitopes, often referred to as B-cell epitopes, are 
molecular structures contained in the antigen that make 

specific interactions with the antibody paratopes. On the 
antigen side of the interaction, an accurate identification and 
characterization of epitopes on target antigens is of utmost 
importance for immunological research and other medical 
applications. Experimental methodologies used for the 
identification of antigenic epitopes, namely X-ray 

crystallography, phage display, mass spectrometry, and 
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mutagenesis analysis have shown to be expensive, labour-

intensive, time-consuming, and ineffective for the 
identification of many epitopes. Therefore, there is an urgent 
need for development of manageable and reliable 
computational tools for the prediction of the presence and 
the location of antigenic epitopes. The problem of predicting 

potential epitopes for antibody-antigen complexes has been 
widely explored by several research groups using various in 
silico tools [149-150]. In general, the epitopes are described 
as linear or continuous, when the antibody interacts with a 
continuous stretch of amino acid residues located on the 
surface of an antigen, and as conformational or 

discontinuous, when the antibody interacts with segments of 
amino acid residues that are distantly separated in the protein 
sequence, but are brought into physical proximity within the 
folded protein 3D structure (Figure 5) [151]. The specificity 
of Linear Epitopes (LEs) is driven by the sequence and 
conformation of amino acid residues that make up the 

protein antigen. On the other hand, the specificity of 
Conformational Epitopes (CEs) is dependent on the 3D 
folding and conformation of LEs [152]. In the past, 
researchers had been focusing on the development of 
algorithms for the prediction of LEs that rely on properties 
that can be extracted from the linear sequence of the antigen. 

Currently, several algorithms are available for the prediction 
of LEs, including ABCpred [153], BCEPred [154], BCPreds 
[155], BepiPred [156], BEPITOPE [157], B-cell Epitope 
prediction using Support vector machine Tool (BEST) [158], 
COBEpro [159], Linear B-cell epitope (LBtope) [160], 
Linear Epitope Prediction System (LEPS) [161-162], 

Predictive Estimation Of Protein Linear Epitopes (PEOPLE) 
[163]. In general, most of these algorithms evaluate a 
number of physicochemical properties, namely 
hydrophilicity, secondary structure, segmental mobility, 
flexibility, antigenicity, and surface accessibility to predict 
antigenicity, the amino acid residues of antigen sequence, 

and then employ several ML algorithms, such as Support 
Vector Machine (SVM) or Artificial Neural Network (ANN) 
algorithms, to predict LEs. However, it has been estimated 
that approximately 90% of all antigenic epitopes are CEs 
[164], and therefore the focus on the identification of CEs is 
a more practical and profitable approach. The prediction of 

CEs has demonstrated to be a tremendous challenge in 
bioinformatics. The existing in silico methodologies for the 
prediction of CEs require the 3D structures of the antigen 
and/or antigen-antibody complexes. The use of CEs derived 
from available X-ray structures can be extremely complex. 
The reduced available data on CEs in different antigens 

compared to the data of LEs and the relatively small number 
of solved structures of antigen-antibody complexes can 
restrain the development of reliable and accurate methods for 
the prediction of CEs [165]. For CE prediction, several 
algorithms have been developed including B-cell Epitope 
prediction by Evolutionary information and Propensity 

(BEEPro) [166], BepiPred-2.0 [167], B-Pred [168], 
Bpredictor [169], Conformational B-cell epitope (CBtope) 
[170], Conformational Epitope prediction based on 
Knowledge-based Energy and Geometrical neighbouring 
residue contents (CE-KEG) [171], Conformational Epitope 
Prediction (CEP) [172], DiscoTope [165], DiscoTope-2.0 

[173], ElliPro [174], Epitope Prediction by ConsEnsus 
Scoring (EPCES) [175], EPITOPIA [176], Epitope 

Prediction by Support Vector Regression (EPSVR) [177], 

PEPITO [178], PEPOP [179], Spatial Epitope Prediction of 
Protein Antigens (SEPPA) [180], SEPPA-2.0 [181]. 

Figure 4. Representation of the variable region of the 
antibody (PDBid 4G6F) [148]. Algorithms which are used 
for the structure prediction of CDR loops of antibodies are 

shown in blue rectangles.  

 

Figure 5. Schematic representation of the antibody-linear 
epitope and antibody-conformational epitope interactions. 

The distinct in silico tools used for the prediction of linear 
and conformational epitopes of a protein antigen are 
described in green rectangles. 
 
1.3.5. Computational methods used to calculate energy 

of ADCs 

 

 In this section, we reviewed computational tools which 
are used to estimate binding free energy of an ADC to its 
target antigen which is exclusively expressed on the surface 
of the tumour cell. In particular, we focus on methods such 
as umbrella sampling and steered MD simulations, to which 

Jarzynski’s equality is applied, for estimation of the free 
energy. Moreover, we also focus on computational 
techniques used to investigate changes in membrane 
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dynamics upon ADC-antigen complex formation. This kind 

of knowledge will not only allow getting an insight on the 
global properties of the system but also help dissect details 
of the interaction between the ADC and the antigen at the 
atomic level, thus guiding experimental studies to improve 
binding affinities and physicochemical properties of this 

emerging class of therapeutic molecules. 
 

1.3.5.1. In silico estimation of binding free energy of 

ADC-Antigen Complex 

 
 In silico estimation of free energy of binding of an ADC 
to its antigen requires Cartesian coordinates of the complex, 
which as already mentioned can be provided by either X-
crystallography or NMR data. In the absence of any 
experimental structure, homology modeling can be done as 
long as an appropriate template is available as discussed in 
detail in Section 1.3.1.  If only the coordinates of individual 
components of the system are available, but not the complex 
as a whole, then molecular docking can be used to get 
possible optimum conformation of the ADC. Before any 
calculation is made the system should be first minimized to 
eliminate bad atomic contacts. Subsequently, it should also 
be relaxed in the presence of both water and membrane to let 
atoms reorganize themselves in a physiologically similar 
environment.   
 

1.3.5.2. Umbrella Sampling 
 

 Upon obtaining the equilibrated ADC/antigen 

complex, the free energy of binding can be estimated via 

umbrella sampling [182-183]. In this technique, the reaction 

coordinate, , which best describes the process studied, can 

be restrained, but not constrained, via biased potentials to 

drive ADC/antigen complex from one thermodynamic state 

to another (bound and unbound). It should be chosen 

properly otherwise artificially lower/higher energy values 

may be obtained [184]. In general, , is defined as distance, 

torsion, or the Root-Mean-Square Deviation (RMSD) 

between given two reference points. The probability 

distribution of the system along   can be calculated by 

integrating out all degrees of freedom but ξ:  
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1= , and k and T correspond, respectively, to 

Boltzmann constant and temperature.  dQ )( can be given 

as the probability of finding the system around within a cut-

off of d .  From this, the free energy along the reaction 

coordinate can be expressed as follows:  

                              )(ln/1)(  QA −=                           (2) 

The phase-space integrals, which are given in Equation 1, are 

impossible to calculate in computer simulations. On the 

other hand, if the system is ergodic, that is to say, if 

ensemble average is equal to the time-average, then the 

ensemble average, )(Q , becomes equal to the time-

average, (P ) , which is given as the following:  

                                '

0

' )(
1

lim)( dtt
t

P

t

t  →
=                      (3) 

The intermediate states in the given process, in particular 

unbinding of ADC from its antigen, can be covered by 

certain numbers of windows, each of which is subjected to a 

separate MD run. This is done to ensure efficient sampling in 

all regions of  . In each window, the system is kept close to 

the reference point ref

i of the respective window i  by means 

of, usually, a simple harmonic biased potential with strength 

of K:   

                                2)(2/)( ref

ii Kw  −=                (4) 

The strength of the bias potential, K, has to be determined a 

priori. In general, it should be large enough to drive the 

system from its starting state towards the target state. On the 

other hand, too large K may cause very narrow distributions 

leading to generation of non-overlapping windows. This, in 

turn, necessitates addition of extra windows to fill the gap 

present in distributions of the neighbouring windows, which 

is costly in terms of Central Processing Unit (CPU) time.  In 

general, it is suggested to have many windows rather than 

having fewer windows which are subjected to longer 

simulation times. This leads to better overlap between 

windows and thus having smaller statistical errors [185]. If 

available, experimental data can also be used to determine 

the most appropriate bias parameters [186]. After 

simulations are done, as long as overlapping distributions are 

achieved, the free energy curves obtained in each window 

can be combined together by using either Weighted 

Histogram Analysis Method (WHAM) or umbrella 

integration.  The main difference between WHAM and 

umbrella integration is that the unbiased distributions of the 

conformations obtained in each window are averaged out in 

the former, whereas the mean force is averaged out in the 

latter. This, in turn, allows estimation of the statistical error 

associated with the free energy in umbrella integration [187]. 

Subsequently, this can be used for determination of 

appropriate strength of the bias, K, as well as the optimum 

number of windows.  As a side note, due to the modular 

nature of ADCs and the assumption that binding of ADC to 

the target antigen is not affected by the linker and the 

payload the abovementioned calculations can be done by 

considering only the antibody part of the ADC.  

1.3.5.3. Steered MD simulations with application of 
Jarzynski’s equality 

 In contrast to umbrella sampling, steered MD 

simulations rely on non-equilibrium dynamics of the system, 

in which the motion is driven continuously along the 

reaction coordinate, , by an external potential function, u. 

This is done to drive the system from state A to B (in the 

case of ADC-antigen complex, bound-unbound). The 

original system is called the intrinsic system and described 

by the Hamiltonian, ),(0 pqH . On the other hand, the 

perturbed system is called as the extended system and 

described as the following: 

 

                ))(,(),())(,,( 000 truprHtprH  +=            (5) 
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where )(0 t  is used to restrain the system in state A at time 

0, and in state B at time  . If the reaction coordinate )(r is 

a function of atom positions, )),(( tru  is known as a steering 

function, which is, in general, centered on a given reference 

reaction coordinate, )(0 t  and chosen harmonic: 

 

                           2

0 ))()((
2

),( trktru  −=                     (6) 

where k is the harmonic constant. In this technique, pulling 

of molecules is usually done by applying a force on one 

single atom [188-190] in an effort to mimic an Atomic Force 

Microscopy (AFM) experiment, where is given as the 

distance between the pulled and a fixed atom. Alternatively, 

 can also be given as the distance between the center of 

Mass (CM) of protein (e.g. target antigen) and the CM of the 

ligand (e.g. antibody part of the ADC).  In the latter, this 

corresponds to uniformly applying a force to each atom in 

the given molecule, which is proportional to its mass. On the 

other hand, these approaches are not appropriate for big 

protein complexes bound by a strong interaction like 

ADC/antigen complex since these two methods can induce 

either distortions of the tertiary structure or partial unfolding 

before unbinding. In addition, if the interaction between the 

ADC and the antigen is spread over a large surface 

perpendicular to the pulling direction this leads to rotation of 

the proteins, instead of separating them from each other. To 

avoid possible distortions and rolling artefacts an alternative 

scheme can be used [191]. According to it, the reference 

position of an atom is determined with respect to CM of the 

respective unit to which it belongs (e.g., ADC if one 

considers the antibody part). A harmonic potential energy, 

which is centered on the reference point, is applied only to 

the z coordinate of the atom, while the movements on the 

other directions remain free. The positions of the restrained 

atoms in the two proteins (the ADC and the antigen) are 

shifted uniformly along the z coordinate in opposite 

directions.  By doing so, in each unit, the reference regions 

do not change while the CM distance is increased. The free 

energy differences from steered MD simulations can be 

recovered using the Jarzynski’s identity [192]. In a non-

equilibrium process, the external work done on the system 

from time 0 to  can be given as follows: 

                          ))(,,()( 0

0

tpr
t

H
dtW 



 


=                        (7) 

where )(w  corresponds to the work done by the extended 

system. The work, )(w , in a non-equilibrium process 

depends on the path taken between the initial and the target 

state, and hence on the starting condition at time 0. 

According to the second law of thermodynamics the average 

work cannot be smaller than the free energy difference 

between the initial and the final state, WG  . Equality 

holds only if the process is reversible that is to say, if the 

work is independent of the path. On the other hand, 

Jarzynski demonstrated that this equality holds regardless of 

the speed of the process:  

                                     
0

WG ee  −− =                              (8) 

where T
kB

1= . Here, the average is taken over different 

trajectories each of which starts with different initial 

velocity, thus having independent canonical distributions. In 

order to have an accurate estimation of the exponential 

average it is required to have a large number of trajectories 

[193-196]. The initial conformations which will be used in 

individual Steered Molecular Dynamics (SMD) runs can be 

obtained in two ways. Either independent configurations can 

be selected from a long reference simulation at equilibrium 

or, alternatively, different replicas can be run in parallel each 

of which is started with a different initial random velocity. 

With the latter approach one can provide a better 

convergence because: 1) the structures obtained at the end of 

each short run do not deviate much from the reference one as 

opposed to those obtained from a long trajectory due to 

inherent MD inaccuracies, and 2) more diversity is obtained 

at the end of independent equilibrations than that can be 

obtained from consecutive frames of a long run. Finally, the 

bias and errors can be calculated using the scheme developed 

in [197] and used in [198] for systems having small number 

of pulling experiments as long as the collection of individual 

runs displays Gaussian-like distributions.  

 
1.3.5.4. In Silico investigation of changes in membrane 
dynamics upon formation of ADC/Antigen complex: 
Possible hint on the capability of the ADC to undergo 
receptor-mediated endocytosis 
 
 In order for ADCs to act properly on the target tissue 
they must be efficiently taken inside of the cell. Since the 
formation of the ADC/antigen complex initiates receptor-
mediated endocytosis, it is crucial to consider interactions 
between the complex and the membrane at the atomic level 
for efficient design of this class of emerging molecules. On 
the other hand, considering both the time- (on the minute 
time-scale) and length-scales at which endocytosis occur in 
mammalian cell lines it is apparent that the process is far 
beyond the reach of atomistic MD simulations. Therefore, 
instead of representing whole process, representative part of 
it, namely remarkable increase in the membrane curvature, 
can be used as a hint to get an insight on the intrinsic 
capability of the ADC for undergoing receptor-mediated 
endocytosis. For instance, the more the membrane curved it 
is more likely for ADC/receptor complex to undergo 
endocytosis.   

Related to this, a multiscale computational approach has 
been developed to quantify remodelling of membrane 
bilayers by multi-helical membrane proteins [199]. In 
particular, G-Protein-Coupled Receptors (GPCRs) have been 
shown to display ligand-dependent membrane deformations. 
Here, the details of the method will not be given and can be 
found in Shan et al. [200]. A similar approach can be applied 
for investigating changes in the membrane curvature by 
using a collection of ADCs bound to the target antigen. To 
this end, as a first step, the coarse-grained representation of 
the system is constructed, which can be done by using 
Martini force field [201], and the system is simulated until 
equilibrium is reached in terms of membrane curvature. 
Subsequently, the system can be back-transformed to 
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atomistic representation to get insight into the global 
properties at the atomistic level. Similar methodology 
regarding back transforming has been shown to capture 
successfully the membrane insertion preferences of GPCR 
transmembrane helices [202-203]. 

CONCLUSION 

 Cancer is one of the lethal diseases worldwide, for which the 
development of novel therapeutics with clinical efficacy is 
challenging. Currently, targeted immunotherapy acts as an 
emergent approach as the immune system plays a crucial role in 
cancer progression. In fact, the use of antibodies provides a 
selective recognition of specific structures in the body which 
makes them an attractive tool for selective drug delivery. This 
constitutes the general basis of ADCs as antibodies are used to 
transport a cytotoxic drug directly to the specific cancer cell 
releasing the drug inside of them. Due to its specificity, ADC 
development is a complex, time-consuming, and expensive 
process. On the other hand, computational methods can be used 
to optimize each of these steps effectively. The knowledge of 
the 3D structure of these complexes as well as their 
conformational dynamics are fundamental for developing 
selective antibodies with high affinity. They also allow for a 
deeper understanding of the interaction between antibodies and 
their antigens, and the ways to manipulate it. In particular, ML 
algorithms, molecular docking and MD simulations can be used 
to predict the best antigen target in silico. To elucidate the 
molecular mechanism in which antibody, cytotoxic drug and 
target antigen interact with each other, more robust quantum 
mechanics approaches should be considered. Furthermore, in 
order to estimate binding free energy of an ADC to its target 
antigen umbrella sampling and steered MD simulations can be 
used. Changes in membrane dynamics upon ADC-antigen 
complex formation can be predicted using these methodologies 
which may give a hint on the tendency of the complex to 
undergo endocytosis. To conclude, developing a functional 
ADC is remarkably challenging but it can still be achieved as 
long as the experimental methods are complemented with 
appropriate computational ones.  
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