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Introduction

Frontotemporal dementia (FTD) is the second most common 
type of dementia following Alzheimer’s dementia, constituting 
about 10% of dementia patients.1,2 Although 3 various forms of 
FTD can be seen in clinical practice, behavioral variant FTD 
(bvFTD) appears to be the most common form and it is mainly 
associated with frontotemporal lobar degeneration.3

As is evident from its name, bvFTD presents with behav-
ioral symptoms including changes in emotional processing and 
interpersonal relationships such as inappropriate social behav-
iors, empathy loss or compulsive behaviors, as well as changes 
in executive functioning such as poor decision making.4,5 Many 
of these behavioral changes can be easily confused with psy-
chiatric symptoms typically seen in bipolar disorder.6,7 Indeed, 
converging evidence suggests that 30% of FTD patients may 
display euphoria and up to 40% may have depression/dyspho-
ria.8,9 In parallel to this, evidence shows more than 50% of 
bvFTD patients have been initially misdiagnosed as bipolar 
disorder (BD), and in turn, wrongly treated.10

On the other side, cognitive assessment is not helpful for a 
correct diagnosis, as patients with BD can persistently have sig-
nificant cognitive impairment. According to the literature, cogni-
tive dysfunctions in specific domains such as sustained attention, 
verbal memory, and executive control have been strongly associ-
ated with BD.11 Furthermore, the cognitive deficits continue to 
exist even in euthymic BD patients after remission.12

Neuroimaging studies have consistently reported patients with 
bvFTD have atrophy in anterior temporal cortices, orbitofrontal 
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Abstract
The behavioral variant frontotemporal dementia (bvFTD) usually emerges with behavioral changes similar to changes in late-
life bipolar disorder (BD) especially in the early stages. According to the literature, a substantial number of bvFTD cases have 
been misdiagnosed as BD. Since the literature lacks studies comparing differential diagnosis ability of electrophysiological and 
neuroimaging findings in BD and bvFTD, we aimed to show their classification power using an artificial neural network and 
genetic algorithm based approach. Eighteen patients with the diagnosis of bvFTD and 20 patients with the diagnosis of late-
life BD are included in the study. All patients’ clinical magnetic resonance imaging (MRI) scan and electroencephalography 
recordings were assessed by a double-blind method to make diagnosis from MRI data. Classification of bvFTD and BD from total 
38 participants was performed using feature selection and a neural network based on general algorithm. The artificial neural 
network method classified BD from bvFTD with 76% overall accuracy only by using on EEG power values. The radiological 
diagnosis classified BD from bvFTD with 79% overall accuracy. When the radiological diagnosis was added to the EEG analysis, 
the total classification performance raised to 87% overall accuracy. These results suggest that EEG and MRI combination has more 
powerful classification ability as compared with EEG and MRI alone. The findings may support the utility of neurophysiological 
and structural neuroimaging assessments for discriminating the 2 pathologies.
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cortices as well as subcortical structures as amygdala, striatum 
and hippocampus.13-15 Similarly, studies investigating neuroanat-
omy of BD focused on prefrontal-striatal-thalamic circuits and 
have identified neuroanatomic substrates of BD.16,17 Decreased 
prefrontal subregional volumes, amygdala and striatal enlarge-
ment in BD have been reported as the most prominent findings. 
Furthermore, functional imaging studies consistently indicated 
decreased PFC and increased anterior cingulate metabolism.18,19 
Therefore, dysfunction in prefrontal cortices and anterior limbic 
structures, including amygdala, striatum, and thalamus have been 
supposed to be responsible for mood dysregulation in bipolar dis-
order.16 Regarding overall brain volumes, on the other hand, a 
recent longitudinal study revealed that total gray matter and white 
matter volumes did not differ between BD patients and healthy 
controls.20

Numerous EEG studies have provided evidence for EEG 
alterations in BD. BD patients have decreased alpha and 
increased theta power in frontocentral regions.21,22 Furthermore, 
BD patients were found to have decreased interhemispheric 
synchronization.23 On the other hand, studies investigating 
neurophysiological alterations in bvFTD are rare in literature. 
Lindau et al24 examined neurophysiological features of FTD as 
compared with Alzheimer’s disease and reported absence of an 
increase in slow qEEG activities and a decrease in fast activi-
ties in FTD. Nishida et  al25 reported that FTD patients had 
globally decreased alpha as compared with controls. In addi-
tion, Caso et al26 reported increased global theta power in FTD 
and Yu et al27 reported increased connectivity in delta band in 
FTD patients as compared with controls.

Overlapping symptoms of FTD and BD can be problematic 
in clinical setting, as the 2 disorders should be treated differ-
ently. Currently, frontotemporal atrophy is used as a supporting 
finding for FTD diagnosis. However, as the BD patients can 
also have frontal atrophy, combining MRI with EEG may 
increase diagnostic accuracy. To our knowledge, no study 
simultaneously compared neuroanatomical and electrophysio-
logical correlates of FTD and BD. Therefore, the aim of the 
present study is to establish a reliable differential diagnostic 
method by means of an artificial intelligence approach that 
uses EEG and MRI findings.

Method

Participants

18 patients with the diagnosis of bvFTD and 20 patients with 
the diagnosis of late-life BD were identified retrospectively 
from NPIstanbul Brain Hospital Databases. The patients were 
between 52 and 77 years old. The groups did not differ for age 
(mean = 64 years for both). The diagnosis of bvFTD was con-
firmed using international consensus criteria and all patients 
had predominant executive function abnormalities confirmed 
using neuropsychological testing that included Stroop test, ver-
bal and nonverbal memory, and forward and backward digit 
span tests.28 BD was confirmed using DSM-5 (Diagnostic and 
Statistical Manual of Mental Disorders, 5th edition).29 BD 

patients had at least 2 years follow-up to rule out progressive 
cognitive decline.

Electrophysiological Data Collection

Participants were seated comfortably in a room with dim light. 
Resting EEG activity was recorded according to the 
International 10-20 system using 19 electrodes during 3 min-
utes in an eyes closed condition. Electrode impedances were 
kept below 10 kohm (monitored online by SCAN software). 
The linked mastoid electrodes (A1-A2) were used as reference. 
The data sampling rate was 250 Hz and the acquired signals 
were bandpass filtered at 0.15 to 70 Hz. The data analysis was 
completed using the Neuroguide Deluxe 2.5.1 software 
(Applied Neuroscience, St Petersburg, FL).

Each participant’s data were averaged across the recording 
epochs for each electrode, and the relative power (percentage 
of the total power) was computed for each of the following 
frequency bands: delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 
Hz), beta (12-30 Hz). Data from the following electrodes were 
used: F3, F4, T3, T5, T4, T6. These electrodes were chosen as 
they represent frontal and temporal areas and they are usually 
free from artefacts such as eye movements.

Magnetic Resonance Imaging Scan

Structural magnetic resonance imaging (MRI) was performed 
using 1.5 tesla Philips Achieva scanner (Philips, Best, the 
Netherlands). The sequences included 3D MPARGE T1, axial 
T2, and coronal FLAIR images.

Data Analysis

All patients’ clinical MRI scans were assessed by a double-
blind method to make diagnosis from MRI data. MRI data were 
classified as BD and FTD by a radiologist blind to the diagno-
sis and patient history.

Artificial Neural Network Modeling.  Artificial neural networks 
(ANNs) are mostly known as biologically inspired machine 
learning method that is capable of modeling complex nonlinear 
relations. ANN model employed in this study had one input 
layer, one hidden layer, and one output layer. Each layer had a 
set of nodes that simulates real neurons as given in Figure 1. 
ANNs are made up of large number of simple, highly intercon-
nected processing components called nodes that abstractly 
emulate the structure and operation of biological nervous sys-
tem. Learning process in ANNs is realized by using some train-
ing algorithms that are based on some mathematical operations 
that mimic the learning mechanisms of real biological systems. 
Since there are various types and architectures of neural net-
works considering the way they learn, the details of which per-
form better studied in the literature. In this study, ANN structure 
was set as multilayer perceptron (MLP), which is a powerful 
function approximator for prediction and classification with a 
supervised learning algorithm. The architecture of MLP neural 
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network is constructed with 2 or more layers. A basic 2-layer 
ANN contains an input layer connected to input variables and 
an output layer that generated the corresponding output. 
Despite the fact that MLP is a satisfactory approximator for 
linear problems, in order to handle nonlinear systems, hidden 
layers are inserted to handle the problem’s nonlinearity and 
complexity. Although the number of hidden layers depends on 
complexity of the function or the process being modeled, a net-
work with one hidden layer may also sufficient to map an arbi-
trary function. Therefore, a 3-layered ANN was employed in 
our study. The number of neurons used in the hidden layer was 
20. Since there were 6 inputs as relative power values of theta 
frequency band from the electrodes F3, F4, T3, T5, T4, T6, and 
the radiological diagnosis was set as input column vector. The 
learning rate was set as 0.2 and the stopping criterion was set at 
250 epochs. Training algorithms are an integral part of ANN 
model construction process. A good training algorithm shortens 
the training time, while achieving a better accuracy, thus train-
ing process is crucially significant step for the ANNs. Various 
training algorithms are used to train a multilayered neural net-
work. Backpropagation training algorithm that is based on 
searching an error surface using gradient descent for points 
with minimum error is the mostly used one. The term back-
propagation is sometimes used to refer specifically to the gradi-
ent descent algorithm, when applied to neural network training. 
Gradient descent algorithm updates the network weights and 
biases in the direction in which the performance function 
decreases most rapidly to enable faster convergency, therefore 
the selection process of the training algorithm some of which 
use gradient or Jacobian-based methods is crucial. In our study, 
training function was set as TrainLM (Levenberg-Marquardt) 
and transfer function was set as tangent sigmoid which returns 
each element of N squashed between −1 and 1.30

Feature Selection Using Genetic Algorithm.  The collection of 
high-resolution EEG data from various brain regions leads to a 
very high-dimensional feature space. Since selection of those 
regions with more informative features that contribute to the 
classification accuracy more is a valuable step, many recent 
optimization algorithms are combined with classification 
methods. Being a well-known approach that makes no assump-
tions of relationships among features involves the use of 
genetic algorithms (GAs) to search the space of feature sub-
sets.31,32 The GA, was first introduced to the literature in the 
early 1970s, is an adaptive heuristic optimization algorithm 
inspired by the laws of natural selection and genetics. Gener-
ally, gradient-based search methods search for an optimal point 
in a multidimensional optimization space by repeatedly refin-
ing to a single solution while GA is operating on a collection of 
candidate solutions in parallel.33

The GA is initiated with an initial population of individuals 
and each represents a possible solution to a given optimization 
problem. Through the optimization process successive genera-
tions are created that evolves to new set possible solutions 
called individual or chromosome. Each new individual has a 
fixed length of continuous or discrete strings that are generally 
expressed as binary strings. The overall process called evolu-
tion procedure consists of three successive steps; reproduction, 
crossover, and mutation. The selection process simulates the 
survival of the fittest in nature. The fitness value of each indi-
vidual is calculated according to the classification performance 
of the individual. Since many individuals may perform similar, 
the GA selects certain best individuals from the current popula-
tion, called parents, in order to move them and their genes to 
the offsprings, which does not assure diversity. But with cross-
over, the parents exchange their genes to form new individuals 
for the next generation. Besides, the variety is increased with 
the use of mutation that randomly modifies parent genes within 
the population.34

In our study, GA was implemented with a population of 10, 
2-point crossover probability of 0.66, and mutation rate of 
0.01. Crossover and mutation were applied uniformly to each 
generation’s selected individuals. Since fitter individuals tend 
to have better probability of survival with the use of selection 
process they are supposed to go forward to form the mating 
pool to create the next generation. The selection scheme was 
set as tournament with 0.33 tournament size, which provides 
selective pressure by holding a tournament competition among 
n individuals. The evaluation of each individual in the popula-
tion consisted of training, testing. and validation sets using 
3-fold cross validation with stratified sampling and averaging 
classification accuracy as the individual’s fitness measure.

In order to state a collaborative structure for feature selec-
tion and classification methods a wrapper based approach is 
employed as depicted in Figure 2. Before starting the feature 
selection process, we first fed the ANN model with relative 
power values collected from F3, F4, T3, T5, T4, and T6 elec-
trodes of 4 frequency bands and radiological diagnosis for each 
subject. Following the model generation process, genetic algo-
rithm was introduced to select more informative features of the 

Figure 1.  Structure of designed multilayer perceptron artificial 
neural network.
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given dataset. Prior to the ANN model, feature selection step 
was added to form the hybrid structure. Instead of inputting the 
whole data set to the model, GA was employed to select a set of 
features where different combinations were prepared, evalu-
ated, and compared in terms of their classification perfor-
mances. Feature selection process using GA was executed 
repeatedly till one of the stopping criteria was satisfied and the 
performance estimation of the hybrid model was expressed 
through the cross-validation step.

Results

The radiologist completely blind to the diagnosis misclassified 
4 subjects in each group (79% accuracy). In EEG analysis, 
input data are collected from F3, F4, T3, T4, T5, and T6 elec-
trodes in 5 frequency bands first. Relative power values were 
calculated, and classification accuracies were computed using 
ANN approach and wrapper-based ANN-GA method, respec-
tively. The results indicated accuracy levels of 65.6%, 76.2%, 
60.68%, and 60.47% for delta, theta, alpha, and beta bands, 
respectively.

ANN approach underlines that the models using relative 
power for theta frequency band outperforms compared with 
other bands. Since the contribution of radiological diagnosis is 
not included in the model, in the next step we assumed the 
radiological diagnosis as a new input to observe if the predic-
tion capability of the model is considerable or not. Besides we 
have also added genetic algorithm in order to select more infor-
mative features contributing to the classification performance 
of the model.

As given in Table 1, radiological diagnosis is a valuable 
parameter increasing the classification accuracy. Combining 
the model with GA increased the performance as area under the 
receiver operating characteristic (ROC) curve (AUC) values 
and accuracy values underline. Besides, Gini coefficients that 
are recently being used in classification problems were also 
calculated. Gini coefficient can be straight away generated 
from the AUC value, which is the ratio of area between the 
ROC curve and the diagonal line and the area of the above tri-
angle in the ROC curve. Gini = (2 * AUC – 1) is the equation 
used in order to express the Gini coefficient in terms of AUC 
value. For the standalone ANN model, the Gini value is calcu-
lated as 0.56 while for the hybrid model the value is 0.72 that 
points out a quite satisfying score in terms of model perfor-
mance. Apart from the classification performance, a graphical 
representation of comparative performances of the models 
were also plotted as ROC curves as given in Figure 3.

Table 1.  Classification Performance of ANN Models When 
Radiological Diagnosis Is Included.

ANN ANN + GA

Accuracy 81.2% Weight Accuracy 87.18% Weight
AUC 0.78 AUC 0.86
Features Features
F3 theta 1 T3 theta 0
F4 theta 1 T4 theta 0
T3 theta 1 T5 theta 1
T4 theta 1 T6 theta 1
T5 theta 1 F3 theta 1
T6 theta 1 F4 theta 1
Radiological diagnosis 1 Radiological diagnosis 1

Abbreviations: ANN, artificial neural network; AUC, area under the receiver 
operating characteristic curve; GA, genetic algorithm.

Figure 3.  The figure reveals that radiological diagnosis has a 
valuable contribution to the model performance. Therefore, in 
addition to processing raw EEG data, attaching the experience of an 
expert to the input matrix improves the prediction capability of the 
model.

Figure 2.  Wrapper-based feature selection and modeling process.
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Discussion

In this study, we first aimed to compare the utility of EEG and 
structural MRI for differentiating BD and FTD. Second, we 
aimed to show if combining both modalities improved the 
diagnostic accuracy. The results showed that the accuracy of 
both EEG spectral power and the radiologist were less than 
80%. On the other hand, combining 2 classifiers (1 human and 
1 machine) improved the accuracy to 87%.

Behavioral variant of FTD is usually diagnosed on the basis 
of behavioral problems and MRI showing frontotemporal atro-
phy. Most studies have found that these criteria have moderate 
sensitivity (85%) but low specificity (82%).35 A major propor-
tion of patients being wrongly diagnosed as FTD actually have 
mood disorders. These findings especially prompt that addi-
tional neuroimaging techniques should be employed at the time 
of initial diagnosis. To date, very few studies have reported 
EEG findings in FTD as stated in the intro. However, in this 
study, we found that EEG findings especially in the theta band 
were discriminating FTD patients from BD patients almost as 
good as MRI. In addition, combined use of both techniques 
may be employed in clinical practice when diagnosis in doubt.

The findings also indicate that FTD is associated with 
increased slow waves at frontotemporal electrodes. This fron-
totemporal slowing possibly corresponds to hypometabolism 
in FTD commonly reported in metabolic imaging studies. 
Although positron emission tomography (PET) is the preferred 
method to assess metabolic activity in suspected FTD patients,36 
our results indicate that frontotemporal EEG slowing may also 
be helpful when PET is not available. The predictive value of 
EEG findings for neuropsychological deficit and prognosis 
should also be investigated in future studies.

Apart from the studies using statistical methods, a hybrid 
artificial intelligence approach combining genetic algorithm 
and artificial neural network was employed to differentiate 
FTD from late-onset BD using not only the relative power val-
ues but also the radiological diagnosis as the inputs. The litera-
ture on feature selection techniques is very vast regarding the 
applications of machine learning to disorder classification. The 
proposed approach prevented the contribution less informative 
features to the output. Using the selected features, a back-prop-
agation neural network was generated for classification. The 
outcomes of the combined model are promising and could pos-
sibly be useful for the diagnosis.

The main shortcoming of our study is low sample size. 
The exact accuracy of EEG in discriminating BD and FTD 
can be established in larger studies. In addition, the discrim-
inating ability of EEG was assessed using multivariate 
machine learning methods. The accuracy of human evalua-
tion should be assessed separately in future studies. Third, 
although FTD is the commonly associated with behavioral 
problems other dementia types such as vascular dementia 
and dementia with Lewy bodies are also common and may 
also present with behavioral problems.37,38 EEG differences 
between these disorders and BD should be explored in future 
studies.

All in all, the main conclusion of our study is that greater 
theta power in frontotemporal leads in an older patient with 
behavioral problems should alert the clinician for a possible 
diagnosis of FTD along with the supporting MRI findings. In 
addition, we may also conclude that clinicians should also take 
into account the EEG, while evaluating a patient with behav-
ioral problems starting after the age of 50 years.
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