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1 | INTRODUCTION

Direction-of-arrival (DOA) estimation of multiple narrowband signals has been extensively studied in the field of radar
and sonar communications for civilian and military purposes. In recent years, the attention has been extended into cel-
lular systems such as current fourth generation (4G)/ long-term evolution (LTE) communications and millimeter wave
(mmWave) communications for future fifth generation (5G) and beyond technologies. In these systems, advanced beam-
forming techniques are employed at the base stations (BSs) in order to provide services to many users simultaneously.'”
With the knowledge of direction of the incoming signals, BSs perform adaptive beamforming by steering transmitted
beams toward desired users while minimizing the undesired users' interference. Overall, systems with much higher
capacity than the existing systems are anticipated.

For 5G and beyond systems, multiple antennas in the order of hundreds are proposed in order to compensate for the
path loss of high frequency carriers. This technique is termed as massive multiple-input-multiple-output (MIMO).*> The
use of many closely packed antennas, however, introduces mutual coupling (MC) between the antenna elements.%” With
multiple directional beams targeting different user groups in massive MIMO 5G systems, accurate estimation of DOA
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of the incoming signals becomes an important task especially in the presence of MC, as a small DOA estimation error
decreases, the signal-to-interference-plus-noise ratio and thereby reduces the system capacity.®

1.1 | Related work

Many high-resolution techniques have been proposed in the literature over the past decades. Among them, the most pop-
ular techniques are the Capon algorithm® and the subspace-based approaches such as Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT)'!'* and MUItiple Signal Classification (MUSIC).!*!* While Capon algorithm
suffers from computationally heavy matrix inversion, ESPRIT and MUSIC algorithms suffer from high complexity due to
singular value decomposition or eigenvalue decomposition (EVD). As a way of reducing the computational complexity,
reduced-rank approaches have been developed.'*'

Most of the high-resolution methods consider the signals to be noncoherent and the array manifold to be perfectly
known. However, wireless channels include multipath propagation, resulting in highly correlated or coherent signals,
which then cause the high resolution of DOA estimation techniques to degrade.'**® This is a major problem for the upcom-
ing 5G systems, where massive MIMO systems are to be deployed for spatial multiplexing. Moreover, the array manifold
is usually affected by MC of the array elements, which adversely affects the estimation accuracy.”

The algorithms that have been proposed to improve the DOA estimation performance in the presence of unknown MC
typically exploit autocalibration technique.?*** This approach has the ability to estimate DOA and MC jointly without any
calibration sources. For 2-dimensional (2D) DOA estimation with MC in a uniform circular array, Jiang et al** proposed
an algorithm that iteratively modifies the beamspace data. In the work of Wu et al,” a subspace-based rank-reduction
method is proposed for a uniform rectangular array. However, these methods assume that the signals are uncorrelated.
Besides, the iterative calibration process in some of these methods*~* results in a higher computational complexity for
massive MIMO systems.

To tackle the issue of coherent signals, various approaches have been considered. However, the spatial smoothing (SS)
approach particularly has received more attention.'**® Moreover, without considering MC in the system, orthogonal pro-
jection methods that are based on array steering matrix*® and signal subspace?” have also been proposed to estimate the
DOA of the coherent signals in low-altitude environments. Especially, in the work of Zhou et al,*” SS method is incorpo-
rated to decorrelate the received signals with lower computational complexity. However, as the number of array elements
and the sample size increase, the complexity gets higher. With unknown MC, DOA of coherent signals is estimated by
using a conventional subspace-based method in conjunction with the SS scheme.”®* In the works of Dai and Ye?® and
Liao and Chan,® algorithms with the SS technique for the estimation of DOAs of the coherent signals without finding
the MC estimates are proposed. However, these approaches suffer from the loss of array aperture since they only utilize
the middle subarrays. Thus, these methods are not practical for antenna arrays with large number of elements.

Shi et al* proposed another 2D DOA estimation algorithm for coherent signals, where the algorithm utilizes the
received signal obtained from the whole two parallel uniform linear array (ULA) elements in order to reconstruct two
new Toeplitz matrices based on fourth-order cumulants. By using the new Toeplitz matrices,* the algorithm decorrelates
the signals effectively while avoiding the loss of array aperture. In another study, to decorrelate the coherent signals for
correct DOA estimation, Shi et al*! proposed an improved spatial differencing (ISD), where difference-operation is per-
formed only on autocorrelations of the subarray outputs instead of the whole correlations, along with forward only ISD
and backward only ISD. The study can be seen as an extended work of Qi et al.** With the improved ISD, the estimation
performance is comparatively better than the conventional SS approaches as the effect of additive white or colored noise
in the problem is suppressed more effectively. However, this algorithm does not consider the MC effect of the array and
it is also difficult to adapt the algorithm for coupling autocalibration techniques.

1.2 | Motivation

Reviewing the works of Tosa' and Qi et al,*? we observe that there is still a need to develop an algorithm that can jointly
estimate the DOA and MC of coherent signals while providing a lower computational cost. In our previous works,***
we proposed a reduced-rank-based algorithm for joint estimation of DOAs and MC, where a new reduced-rank covari-
ance matrix of the array output obtained from reduced-rank joint iterative subspace optimization (JIO) algorithm' was
employed to jointly estimate DOAs and MC by using the iterative autocalibration approach.” However, in those works, the
signals were assumed to be uncorrelated. Therefore, a low complexity joint estimation of DOAs and MC in the presence of
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coherent signals needs to be further investigated. Hence, this paper focuses on an improved low complexity algorithm for
estimating DOAs of the coherent signals with MC by utilizing the forward/backward SS (FBSS) preprocessing scheme.'*’
The main difference between the current work and the previous work is that JIO algorithm is modified and integrated
with the FBSS process in the presence of MC, which is named as FBSS-JIO, and after estimating the MC coefficients from
autocalibration algorithm, an additional FBSS-JIO is performed with the newly estimated MC coefficients in order to
obtain more accurate DOA estimates.

1.3 | Contributions and paper organization

As discussed in Section 1.1, there is an ongoing research about the analysis of the reduced-rank-based DOA estimation
with MC or without MC and the DOA estimation of coherent signal with MC or without MC. However, joint estimation
of DOA and MC for coherent signals that provides low computational cost still needs further investigation. Therefore,
in this paper, we propose a low computational complexity DOA estimation of coherent signals in the presence of MC.
For the proposed method, the reduced-rank-based DOA estimation with unknown MC that was studied in our previous
works*-** is modified and extended for the case of coherent signals.

Firstly, in Section 2, we describe the system model for ULA and briefly introduce the FBSS method. Then, the proposed
algorithm for joint estimation of DOAs and MC for the coherent signal is explained in Section 3. In order to decorrelate
the coherent signals in the presence of MC, in Section 3.1, we made a modification to the conventional FBSS preprocess-
ing scheme by including the MC matrix (MCM), which has the same size as the subarray size in FBSS process. Then, in
Section 3.2, the rest of the proposed algorithm is presented as follows. First, JIO-FBSS-based reduced-rank DOA estima-
tion problem with MC is reformulated by applying the newly modified FBSS in the reduced-rank JIO algorithm, which is
further revised to adapt the FBSS. Then, the modified coupling autocalibration®-** is performed to iteratively update the
coupling.

After the MC coefficients are estimated, unlike the previous work,** DOA estimates are obtained from FBSS-based JIO
method using the estimated MC coefficients. In contrast to our previous approach,* where the existing subspace-based
autocalibration method®-* is employed, in the current work, the autocalibration is based on the minimum variance (MV)
criterion. To the best of our knowledge, only our current work considers the reduced-rank JIO algorithm in the matter of
joint estimation of DOAs and MC of the coherent signals.

In summary, our main contributions over the existing algorithms and our previous work are (a) to reformulate the
JIO-FBSS algorithm suitable for MC autocalibration and (b) to exploit a new reduced-rank spatially smoothed covariance
matrix in the MV-based joint estimation of DOAs and MC while maintaining low complexity. The performance analysis
in terms of root-mean-square error (RMSE) and success probability is presented in Section 4. Finally, Section 5 concludes
this paper.

2 | SYSTEM MODEL

For the system model, we assume that M narrowband signals {s, }Ir‘y{:l arrive from different angles {6,, %:1 ata ULA with
N identical sensors, each equally spaced by d interelement distance, as depicted in Figure 1. Assuming that the steering
vectors of the sources are not perfectly known due to MC, the resulting complex vector of the array output x(k) € CN*1
at k' snapshot can be modeled as

x(k) = CAs(k)+n(k) k=1,2,...,K, (@8]
where s(k) = [s1(k), ..., sm(k)]T € C¥! and n(k) = [n1(k), ..., nn(k)]T € CM*! are narrowband baseband signal and zero
mean additive white Gaussian noise (AWGN), respectively. A = [a(8)), ..., a(8y)] € CVM represents the array manifold

. 27 . . 2n(N-1 B T
matrix, where a(4,,) = [1, e’ 2 sin@y) e o Sm(gm)] € CNX1 is the steering vector and 4 is the wavelength. C €

CNM*N is the MCM, which is regarded to be direction-independent.?

As reported in the work of Friedlander and Weiss,” the MC coefficient between any two equally spaced antenna ele-
ments is assumed to be the same. Moreover, it is also inversely related to the distance between the elements, and thus
the MC coefficient will become approximately zero when any two elements are separated by several wavelengths. There-
fore, in the case of a ULA C can be modeled as a banded symmetric Toeplitz matrix or a diagonal constant matrix, ie,
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FIGURE1 A uniform linear array system model

C = Toeplitz{[c", Oxn-1)1}. Here, ¢ = [co, 1,2, ... cr-1]7 € CP*! is a complex vector consisting of L nonzero unique
coupling coefficients. A symmetric Toeplitz matrix for any vector v = [vg, V1, ...,vr_1] with length L is defined as
Vo 1%1 e V-1
Toeplitz{vy =| "} "2 i Vi @
V-1 Vi— cee Vo

We assume that the signals arriving at the antenna array are coherent such that all the received signals {s,,l}l‘w’f:1 are
attenuated and phase-delayed copies of the first signal, sy, ie, s, (k) = by,s1(k), where by, is a complex attenuation coeffi-
cient for the m'™ signal. Assuming that the sources are uncorrelated with noise, the covariance matrix of x(k) is given by

R =E [x(k)x" (k)] = CARA"C" + 671y € CVV, (3)

where o2 is the noise variance, E[-] and ()" represent expectation and conjugate transpose operations, respectively. R; =
E [s(k)sH (k)] is the signal covariance matrix, and Iy is an N X N identity matrix. When the signals are coherent, Ry becomes
rank deficient. We can further express Ry as"’

R, = E [s(k)s" (k)] = bb"E [s;(k)si (k)] , ()]

where b = |by, by, ..., by T is an attenuation vector and E [s1(k)st (k)] is a constant corresponding to the variance of s;.
It can be seen from Equation (4) that the rank of R is one, or r = 1. This case, however, results in a matrix singularity,
which ultimately leads to inaccurate estimates of DOA if conventional methods were to be used.

In order to transform the covariance matrix into a nonsingular matrix, a preprocessing method named FBSS technique
is applied to the array outputs. For FBSS, we first group the array outputs into uniformly overlapping subarrays with the
size z. Then, a spatially smoothed covariance matrix is obtained by averaging the covariance matrices of the subarray
outputs.’®” Without MC effect, the pth forward subarray, x;,(k), and pth backward subarray, x; ,(k), can be constructed as

X7 p(k) = AspBP s(k) + ny (k) e c -
xb,p(k) = AbeP—lB(z—l)*s*(k) + nb,p(k) e sz17 ©)
where
App = [afb(el), ,afb(QM)] e CoM @
afb(gm) = [1, e_jz%i Sin(gm)’ o e—jm%l sin(Gm)] T e ®)
B = diag {e‘j# sin@y) - by Sin(ﬂm)} e CMXM, ©)

where ()" denotes a complex conjugate. n; ,(k) € C¥! and ny (k) € C*! are the AWGNS of the subarrays. The (p — 1t
power of the diagonal matrix B acts as a forward-moving window, which helps to select the forward subarrays starting from
the first antenna element. On the other hand, B~ !B @~ D* groups the backward subarrays starting from the last antenna
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element. In the next section, for coherent signals case, we discuss a detailed approach that performs DOA estimation under
unknown MC with low computational complexity and yet offering a similar performance as the conventional approaches
with known MC.

3 | THE PROPOSED ALGORITHM

The proposed algorithm initially obtains the reduced-rank FBSS covariance matrix, which is then employed in the
MV-based cost function of the autocalibration method to estimate the MC and DOAs iteratively. We firstly perform FBSS
process on the array outputs to decorrelate the received signal. Then, the covariance matrix of the smoothed array out-
put is reduced to a lower dimension by using JIO-based reduced-rank method. Finally, the reduced covariance matrix is
applied to the MC autocalibration process to jointly estimate DOAs and MC coefficients. The complete procedure of the
proposed algorithm is summarized in Algorithm 2 in Section 3.2.

3.1 | Spatial smoothing in the presence of mutual coupling

Here, we exploit the FBSS method,"” which initially divides the original array output into P = N — z + 1 numbers of
overlapping subarrays in both forward and backward directions at kD snapshot in time domain. Mathematically, in the
presence of MC, p forward subarray, x;,(k), and p™ backward subarray, x;,(k), can be written as

Xf’p(k) = CfbAbep_IS(k) + nf,p(k) e c¥! (10)
xp.p(k) = CpA;pBP I BE Y s* (k) + mpp(k) € CF, (11)

where
Cy» = Toeplitz { [¢", O1x-1)] } € C¥4. (12)

To determine the reduced-rank subarray output and its covariance matrix recursively, we first determine each subarray
output in the JIO-based rank reduction process. Then, by using all P subarray outputs, the FBSS covariance matrix at kD
snapshot is calculated as

P
Rpp(K) = 553 (Ry (k) + Ryp((0) € C<. (13)
p=1

3.2 | JIO-FBSS-based reduced-rank DOA estimation with mutual coupling calibration

As afirst step, the JIO-based reduced-rank method is modified in order to include the effect of MC. Using a rank reduction
matrix T, s, € C?" with reduced size r, the reduced-rank p™ forward and backward subarray outputs are obtained as

Xpp) =Ty x7 (k) € C™! (14)
Xpp(k) = T} xpp(k) € C™. 1s)

Then, the new reduced-rank FBSS covariance matrix is obtained from Equation (13) by using reduced-rank covariance
matrices, R rpk)and Rb,p(k). Due to the symmetric structure of the ULA array, the matrix Cp, affecting the original steering
vector can be transformed into a coupling vector ¢ as

Cpasn(0) =T |asm®)|c €C¥, (16)

where T [a fb(Q)] € C¥L is a ULA transformation matrix.?* Consequently, @;(0), the reduced-rank steering vector
perturbed by MC becomes
asp(0) = Tf{be lasp(®)] e =T [as(0)] c € C™, 17)

where T [a;(0)] = T T [as5(0)] is the reduced-rank T |a;(6)]. Given the new reduced rank variables, DOAs can be

estimated by solving a modified MV-based reduced-rank optimization problem in the presence of MC** as
0,, = arg min w‘;’Tfbebe,,fbwg
¢ (18)
subject to ngfbe l[asp(@®)]c=1.
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Since the objective function, w‘; Tf be T Wy, in Equation (18) is in quadratic form with linear constraint and the fact

that Ry, is a symmetric positive semidefinite matrix, the function is convex.** Hence, the unknown variables wy(k) and
T, (k) at each kD snapshot are derived via the constrained least squares approach with Lagrange multiplier method as
in the work of Wang et al,* resulting in Equations (22) and (23) of Algorithm 1 given as follows.

Algorithm 1 JIO-FBSS Algorithm with MC

1: forf;=-90: A :90do; > A is a searching step size
T
22 Initialize: T, ;,(0) = [I Z;(roz;((z_r)] ;
3 Rpp(0) = 6T Ryp(0) = 61153 6 > 0
4: fork=1:1:Kdo > Recursive with snapshotk =1,2,...,K
5; forp=1:1:Pdo > FBSS with subarray p = 1,2, ..., P
6: Calculate x ,(k) and x; ,(k) using Equation (10) and Equation (11);
7: Calculate X ,(k) and X} ,(k) using Equation (14) and Equation (15);
8 Calculate Ry ,(k) = x/, p(k)x? ,(k) and Ry, (k) = x5, p(k)xfp(k);
9: end forA
10: Update R (k) and T s,(k) as follows:
T |a;(6)] =T/ (k= DT [a©6)]; 19)
Rpp(k) = yRyp(k = 1)+ 55 X0 (Ry (k) + Ry p(K)); (20)
Rpp(k) = yRpp(k = 1) + 5 Ty (Ryp(K) + Ry p(K)); @1)
_ R L0T[as0)]e
k — fb L ; 22
wy(k) cHTH[afb(ei)]R;i(k)T[a‘/b(Hi)]c (22)
_ R (0)T[a,,0)]c wil(k)
Tr.rp () T a(0)]R (0 T[ayy 0] W, RI2 (23)
11: end for
12: Calculate: P,(6;) using Equation (24);
13: end for
return P,(0) = [P,(0,), P,(6,), ..., P(05)] > S is length of 0

By recursively updating T,(k) and wy(k) and substituting them into Equation (18), the reduced-rank Capon's power
spectrum P,(0) is obtained as

~e _ -1
P.(9) = (cHTH [as5(0)] Rf,l)(K)T [as5(0)] c> : (24)

Using a forgetting constant y, the estimate of R is recursively updated in each snapshot, and the estimated covariance
matrix R rb(K) is obtained after K snapshots.”” The DOAs are then estimated by finding the peaks of the reduced-rank
Capon's power spectrum P,(0). The overall algorithm is summarized in Algorithm 1.

In order to calibrate the coupling for the precise DOA estimation, the JIO-FBSS is combined with the autocalibration
method. Compared to the autocalibration method,? which is based on MUSIC algorithm, the cost function to be mini-
mized in the proposed method is based on MV criterion. This is because the algorithm of Wang et al* is valid only when

-1
2

the number of sources is less than the number of array sensors, or when M < l J . However, in this study, N is reduced

to r, where r < < N, and therefore, the condition for the use of existing subspace-based calibration method is not fulfilled.

In JIO-FBSS, DOAs are estimated by maximizing the output power spectrum given in Equation (24). In this algorithm,
DOAs and MC are iteratively updated by minimizing the sum of the inverse power spectrum, which corresponds to the
true DOAs. Thus, the quadratic minimization problem based on Capon's power spectrum can be expressed as

M _11-1
¢ = arg min Z [((:H ™ [as(0m)] ﬁ;;(K)T [ays(0m)] c) 1] = c'G(6)c

m=1

(25)

subject to llell =1,
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Step 2: JIO-FBSS Algorithm 1

1
1
: Initialization :
1T (k=) ¢ Reduced @ | Rankreduction Reduced !
b e 0 weighting vector [— matrix Capon power :
! R (k= w,(k) we(k) T, (k) spectrum i
I
I
) | I
. = Ay M
: Rt k=1, .., K () :
e e ! O s 1
_T A 4
Step 1: Initialization Step 3: MC i Step 4:
(=0 Autocalibration JIO-FBSS
(Stop if ¢V —¢iD > ¢) Algorithm 1

C(i+|!' [g(f+I)}M

m m=1

{ Bm } M

m=1

FIGURE 2 Summary of the proposed algorithm. FBSS, forward/backward spatial smoothing; JIO, joint iterative subspace optimization;
MC, mutual coupling

where G(0) = YM_, T lass(0m)] R f;l,T [@75(8m)]. The solution to Equation (25) has already been discussed in the work
of Wang et al*® and is given as ¢ = eyin{G(0)}, where ey, {-} denotes the eigenvector that corresponds to the smallest
eigenvalue. After iteratively estimating ¢ and {éf,? }Ir‘r{zl by the approach in Algorithm 2, the estimated c is determined
when the convergence is reached. The final DOAs are estimated by using the updated ¢ in Algorithm 1, which improves
the DOA estimation accuracy. The summary of the proposed algorithm (Algorithm 2) is shown in Figure 2.

Algorithm 2 The proposed JIO-FBSS with MC autocalibration algorithm
1: Initialization:
2 i=0,c® =[1,zeros(1,L — 1)]7;
3. Calculate 122;2, T |asy(0)] and (oY M_ using Algorithm 1 with ¢© ;
4 Calculate cost function ¢® = ¢ GD(6)c® with {95 1M_;
s: while true do
6 Update iV = ey { G?(#)} with the previous {§®}M

7: Normalize the ¢V with the first element of the c(”ﬁ; '
s:  Estimate new {6,"”}M_ with ¢ in Equation (24);
9: Calculate ¢+D and compare with ¢®;
10: if ¢ — ¢+D > ¢ then > e denotes the convergence threshold
11: break while loop
12: end if
13: i=i+1
14: end while > number of iterations, «, is completed.

15: Estimate: new DOAs by using the final updated ¢!® in the algorithm from Algorithm 1;

4 | SIMULATIONS

In this section, the performance of the proposed method is investigated and compared with those of FBSS-based
algorithms with known coupling such as JIO-FBSS and Capon-FBSS, and MV-based autocalibration without rank
reduction, or FBSS-calibration.'** We consider a scenario where a ULA is composed of a relatively large number of
N = 50 elements with d = 0.54. Moreover, we assume that only a small number of K = 20 snapshots are avail-
able. For an assumed M = 4 coherent signals impinging on the from 6 = [-55°,40°,45°, 60°], randomly chosen
complex attenuation vector, b, is set to b = [1,-0.3 — j0.7,0.2 + j0.3,—0.1 + j0.6]. Here, we consider a MC vector of
¢ =[1,0.6325 + j0.3946,0.3514 + j0.2192] as given in the work of Qi et al,”» A = 0.5° for a thorough scan, and y = 0.998
as given in the study of Wang et al.’* Following the work of Shan et al,'® the subarray size for FBSS is chosen as z = 41,
which results in P = 10 subarrays. The reduced rank is set to r = 5 since the rank that affects the resolution is between
Fmin = 3 and ryp.x = 7, which has been empirically proved.'
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Spatial Power Spectrum (dB)

proposed method-FBSS
.......... JIO-FBSS (unknown MC) H
= = =JIO-FBSS (known MC)

=

-80 -60 -40 -20 0 20 40 60 80
DOA (degrees)

FIGURE 3 Comparison of spatial power spectra at SNR = 20 dB. DOA, direction of arrival; FBSS, forward/backward spatial smoothing;
JIO, joint iterative subspace optimization; MC, mutual coupling; SNR, signal-to-noise ratio

20 T T
3 —%— proposed method -FBSS
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—P— FBSS-calibration-MV[23]
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CRLB
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FIGURE 4 The root-mean-square errors (RMSEs) of direction of arrival (DOA) versus signal-to-noise ratio (SNR) at snapshot number = 20.
CRLB, Cramer-Rao lower bound; FBSS, forward/backward spatial smoothing; JIO, joint iterative subspace optimization; MC, mutual
coupling; MV, minimum variance

Simulations were initially run for the power spectra of the proposed approach at input signal-to-noise ratio (SNR) of
20 dB, and the results are compared with JIO-FBSS with no calibration and JIO-FBSS with known MC. The comparison
for this case is given in Figure 3. It can be seen that the proposed method can estimate the true DOAs precisely with sharp
peaks, similar to the JIO-FBSS with known MC. On the other hand, the spectrum peaks of JIO-FBSS with unknown MC
are ambiguous even though FBSS helps to improve the DOA resolution. This shows that, at high SNR, the performance
of the proposed method is as good as that of the JIO-FBSS algorithm with known coupling.

To get a better insight into the performance of the proposed approach, we also performed the comparisons in terms of
RMSE of the DOA estimates. The RMSE is given as

) NoM o X
RMSE NSM;,;‘Q’"(S)_H’”(S) , (26)

where N; is the number of Monte Carlo simulations, and §,,,(s) and 6,,(s) are estimated and true DOAs of m'" source at
sth simulation, respectively. Figure 4 presents the RMSE performance for 1000 simulation runs (INy = 1000). At low SNR
levels, the RMSE values of the proposed method are larger than the other methods. As SNR increases, the RMSE curve
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»
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—#*— proposed method -FBSS
—6— JIO- FBSS (known MC) b
—P— FBSS-calibration-MV [23]
—¥— Capon-FBSS (known MC) | 4

Bttt th
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FIGURE 5 Probability of success versus signal-to-noise ratio (SNR) at snapshot number = 20. FBSS, forward/backward spatial smoothing;
JIO, joint iterative subspace optimization; MC, mutual coupling; MV, minimum variance

of the proposed method becomes the same as JIO-FBSS with known MC and approximately follows the trends of both
Capon-FBSS with known MC and FBSS-calibration method. In addition to the RMSE curves of the existing methods,
the Cramer-Rao lower bound (CRLB) for noncoherent signals with known MC is also shown as a comparison. From the
RMSE analysis, it can be stated that the proposed method works well for practical SNR levels. At very low SNR levels, the
performance is lower due to the sensitivity of coupling estimation using reduced-rank covariance matrix, which, on the
other hand, causes the complexity of the proposed method to be much lower than that of the others.

Next, we evaluate the probability of successful estimation versus SNR. Successful estimation is defined such that the
average of the absolute estimation errors is within an estimation error threshold. The estimation error threshold is selected
to be 2.5°, which is half a degree of the minimum DOA separation, so that when |ém —0m| < 10m — Omy1l /2, the adjacent
DOAs 0, and 6,, .+, are successfully separable.'*** As can be seen in Figure 5, Capon-FBSS algorithm with known MC
is superior to the other given approaches. However, it requires a higher computational cost when compared with the
proposed method and JIO-FBSS. Moreover, both Capon-FBSS and JIO-FBSS algorithms hold the same curve pattern when
SNR increases since MC is known in both of the methods. On the other hand, the curves of the proposed method and
FBSS with MC calibration follow the same trend due to their MC calibration. At low SNR regions, the proposed method
has about 3 dB lower performance than the FBSS-calibration on average. However, this can be taken as a tradeoff between
lower complexity and performance at lower SNR values. At high SNR values, the proposed method approaches a 100%
success probability at 5 dB, followed by JIO-FBSS, FBSS-calibration, and Capon-FBSS, with approximately 2 dB difference.
The proposed method achieves the 100% probability later than the other approaches because of its MC calibrating process.

In addition, the computational complexity of the proposed method is also compared and analyzed. Since FBSS-based
algorithms are compared, we assume zero cost for FBSS step. While the method of Wang et al*® has the complexity of

0 <N3 + (%) N? + (xN3), the proposed approach has O (2 [N3 + (% > r3] + (%) r’+ar’ ) , where « denotes the num-
ber of iterations that achieves the convergence threshold described in Figure 2. The complexity of the algorithm of Wang
et al is due to the EVD of R and G(#) and the grid search. As for the proposed method, O (2 [N3 + <1%0> r3] ) is due to

the matrix inversion of the covariance matrix and the corresponding reduced-rank matrix in the rank-reduction process,
which is repeated twice. The terms O ( (% ) r2> and O (ar3) are because of the grid search and EVD of reduced-rank G(9),

respectively. For the simulation framework, since r = 5and N = 50 were chosen, we have r << N, and thus the com-
putational complexity of the proposed method is much lower than those of the conventional methods. For future 5G and
beyond technologies, where large size of antenna array is deployed at BS, it is essential to implement low complexity-based
signal processing algorithms since the computational complexity of the existing conventional algorithms becomes higher
with the large number of antenna elements. Therefore, the proposed method, which exhibits a satisfactory performance
for coherent signals at realistic SNR and with a lower complexity compared to the existing techniques, can be considered
as one of the promising signal processing techniques in the future wireless communication systems.
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FIGURE 6 Average central processing unit (CPU) time versus antenna array size at SNR = 20 dB and K = 20. FBSS, forward/backward
spatial smoothing; JIO, joint iterative subspace optimization; MC, mutual coupling; MV, minimum variance

Finally, the computational complexity is analyzed in terms of the average central processing unit (CPU) time in
second (s). The simulations are performed for all the methods discussed previously by varying the antenna array size
from N = 50 to N = 200 while fixing the number of snapshot at K = 20. This is because the effect of the antenna array
size on the computational complexity is more dominant compared to that of the number of snapshot in these methods.
SNR = 20 dB is assumed and the subarray size is fixed at P = 10 for FBSS process. Figure 6 shows the elapsed time of
the DOA estimation for all methods, where the simulations are performed for 100 simulation runs on a computer with
Linux Mint operating systems. The processor of the computer is Intel(R) Xeon(R) CPU E5-2650 v3 2.30 GHz x 10 and
the memory is 188.8 GiB. As shown in Figure 6, the proposed method initially has a similar CPU elapsed time as the
FBSS-calibration method without rank reduction at N = 50 because of the smaller size of the array resulting from FBSS
process. However, as N becomes higher, the CPU time of the FBSS-calibration method increases rapidly. On the other
hand, the CPU time of the proposed method does not change much, and it is less than FBSS-calibration method due to the
fact that the reduced rank of the proposed method remains the same as the array size increases. Compared to the other
methods with known MC, the proposed method has slightly larger CPU time because MC calibration process consumes
some amount of time. It can also be observed that the proposed method and JIO-FBSS method have nearly constant CPU
consumption time as N increases since both utilize a constant reduced rank.

5 | CONCLUSION

In this paper, we presented an extended version of reduced-rank DOA estimation for coherent signals impinging on an
antenna array with unknown MC. The FBSS algorithm is initially performed for the JIO rank-reduction process, which
gives the reduced covariance matrix. Then, the MC and the DOAs are iteratively updated by using the MV-based auto-
calibration method. Finally, DOAs are estimated by JIO-FBSS rank-reduction method with the newly estimated coupling
coefficients. Simulations show that the proposed algorithm can accurately perform DOA estimation of coherent signals
with unknown MC especially at practical SNR levels. On the other hand, the performance of the proposed method at lower
SNR levels is inferior to some existing studies due to less accurate MC estimation via reduced-rank covariance matrix. As
opposed to the existing approaches, the proposed approach has a much lower computational complexity, which makes it
more applicable to massive MIMO systems. In practice, MC changes with DOA of each incoming signal. Therefore, if one
of the MC is known, higher DOA estimation accuracy can be achieved by employing the known MC as an initial coupling
value in the calibration process. The proposed method can also be applied to the cases where there are groups of coherent
signals arriving on the array from different directions.
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