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A B S T R A C T

Climate change and drought have profound effects on hydro-meteorological series. In addition to spatial, these
effects could be on annual, seasonal, monthly, or daily temporal scales. In the literature, seasonal Mann-Kendall
and Kendall Tau, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index
(SPEI), and Standardized Runoff Index are mostly used to detect seasonal effects (autumn, winter, spring, and
summer), despite some restrictive assumption. Innovative Polygon Trend Analysis (IPTA) method developed
from Innovative Trend Analysis (ITA) analyzes monthly effects on hydro-meteorological variables without
restrictive assumptions. In this study, the IPTA method is revised and developed as Periodic Innovative Polygon
Trend analysis (P-IPTA) to analyze hydro-meteorological series in periods of 1, 3, 6, 9, and 12 months instead of
one-month duration. The method turns to the IPTA for one-month evaluations. Also, ITA method is improved by
adding the frequencies for each drought classification (F-ITA). For the precipitation and water availability
(Istanbul, Türkiye) and stream flow (Danube River, Romania) series, the P-IPTA method has been used in
addition to the SPI, SPEI, and SDI methods to detect the trends in meteorological and hydrological droughts, and
their associated parameters. There are generally decreasing trends, increasing drought frequencies, and
decreasing wet event frequencies in the study areas. As the period lengths of the hydro-meteorological series
increase, drought becomes more evident. Unlike these methods, the method results are consistent with the F-ITA
SPI, SPEI, and SDI graphs and can give drought and wet periods. Similarly, the new P-IPTA method will enable
researchers to investigate seasonal effects not only on hydro-meteorological series but also on any variable.

1. Introduction

Presently, scientists are increasingly focusing on the effects of
climate change due to the rise in the intensity and occurrence of extreme
events like droughts, heatwaves, sandstorms, wildfires, and floods
(Alashan 2020a; Benzater et al. 2019; Abu Arra and Şişman 2024).
Among these, drought stands out due to its prolonged onset, long
duration, and wide-ranging consequences, which are generated pri-
marily by natural climate pattern drivers (Danandeh Mehr and Vahed-
doost 2020; Mishra and Singh 2010). This cyclical phenomenon ranks
among the most complex natural disasters globally due to its slow

development, lasting effects, and frequent occurrence (Lai et al. 2019;
Salim et al. 2023). Droughts impact both water supply and demand due
to reduced precipitation, influencing various sectors, including the
economy, industry, and agriculture (Abu Arra and Şişman 2023; Du
et al. 2021). As per data from the International Disaster Database (EM-
DAT), worldwide financial losses due to drought amounted to approxi-
mately 221 billion dollars between 1960 and 2016 (Tong et al. 2018).
According to Wu et al. (2021), it has been shown that the annual eco-
nomic losses due to drought disasters on a global scale have reached an
estimated 6–8 billion dollars.

Drought monitoring typically encompasses four distinct categories:
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meteorological, agricultural, hydrological, and socioeconomic droughts
(Wilhite 2000). Each category has specific associated parameters and
indices. Various drought indices, as a first step, have been developed to
facilitate drought calculations, including Standardized Precipitation
Index (SPI) (McKee et al. 1993), Reconnaissance Drought Index (RDI)
(Tsakiris et al. 2007), Streamflow Drought Index (SDI) (Nalbantis and
Tsakiris 2009), and Standardized Precipitation Evapotranspiration
Index (SPEI) (Vicente-Serrano et al. 2010). Understanding the mecha-
nism and parameters of each drought index is crucial in drought and
climate change studies (Wu et al. 2024; Birpınar et al. 2023). Different
drought indices rely on specific inputs to assess drought conditions
accurately. For instance, the SPI utilizes precipitation records as its
primary driving factor. On the other hand, SPEI incorporates the dif-
ference between precipitation and evapotranspiration to evaluate the
drought index. SDI also relies on runoff records as its key parameter.
Recognizing these distinctions enables researchers to effectively inter-
pret and compare drought assessments across various regions and time
periods, contributing to a more comprehensive understanding of
drought dynamics and their implications for climate change adaptation
and mitigation efforts.

Climate change significantly influences water resources, with cli-
matic factors like precipitation and temperature playing a pivotal role in
the global hydrological cycle (Tsakiris and Loucks 2023). Changes in
these elements can lead to shifts in water resources on both a global and
regional scale (Katipoğlu 2022; Şan et al. 2024). Precipitation plays a
vital role in replenishing surface water and is a key element of the hy-
drological cycle. Altered precipitation patterns, attributed to climate
change, can exacerbate severe drought events (Şişman and Kizilöz 2021;
Güçlü et al. 2020). In addition to identifying and analyzing various
drought types, assessing the drought trend is crucial for managing and
determining the timing and extent of necessary precautions.

Various trend analysis methods are available, encompassing both
traditional and innovative approaches. Among the traditional methods
are the Mann-Kendall (MK) method (Mann, 1945; Kendall, 1975) and
Sen’s slope method (Sen, 1968). However, these conventional trend
analysis methods have some limitations. These methods require a min-
imum duration of data, typically in terms of time, and assume inde-
pendence without considering any serial correlation, which limits the
ability to make sequential comparisons among different segments within
the same dataset (Güçlü 2018; Koycegiz 2024). Conversely, innovative
trend analysis methods offer the advantage of capturing periodic
changes, including variations at monthly and daily intervals (Alashan
2020b; Şen et al. 2019). Şen et al. (2019) introduced an enhanced
approach termed Innovative Polygon Trend Analysis (IPTA), designed to
refine the Innovative Trend Analysis (ITA) method. IPTA not only
identifies trends within a given dataset but also constructs a trend
polygon, facilitating improved linguistic and numerical interpretation
and assisting in identifying seasonal trend shifts, seasonal transition
slope, and seasonal transition lengths across successive segments
extracted from the original hydro-meteorological time series (Kesgin
et al. 2024). Various studies investigating drought trend analysis have
been conducted, including research by Gumus et al. (2021), Nouri and
Homaee (2020), Elouissi et al. (2021), Yeşilköy and Şaylan (2022),
Berhail and Katipoğlu (2023), Kartal and Emiroglu (2024), and Simsek
et al. (2024).

In drought studies, most research has predominantly focused on the
temporal and spatial evaluation of drought conditions. Recently, trend
analysis investigations have been extensively employed to examine
various hydro-meteorological variables, including precipitation and
temperature, and evaluate drought utilizing both classical and innova-
tive trend methods. However, a noticeable gap exists in the literature,
where comprehensive research covering drought indices, drought fre-
quencies, and their associated parameters in trend analysis remains
scarce. In order to address this gap and provide a comprehensive view of
drought and associated parameters, new concept and framework with

innovative approaches are being suggested. These include investigating
the relationship between drought and its associated parameters, aiming
to offer a more holistic understanding of drought dynamics. The objec-
tives of this research are: 1) introducing the the proposed novel Periodic
Innovative Polygon Trend Analysis method (P-IPTA) to evaluate tem-
poral trends in hydro-meteorological parameters across a range of
timescales; 2) identifying trends in different meteorological and hy-
drological drought indices (SPI, SPEI, SDI) across different time scales
using the newly improved Frequency Innovative Trend Analysis (F-ITA),
incorporating drought classification frequencies to better understand
the drought trends; and finally 3) exploring the relationships between
trends in meteorological and hydrological drought indices and their
associated parameters. These innovative trend methods and new
concept will provide a holistic understanding of droughts and associated
parameters’ trends at varying time scales. This work not only addresses a
critical gap in current drought and trend research methodologies but
also sets the stage for enhanced strategies in managing droughts under
changing climate conditions.

2. Methodology

The methodology section includes data collection of hydrometeo-
rological variables such as precipitation, temperature, and streamflow
for various applications. Meteorological and hydrological drought
indices, including the SPI, SPEI, and SDI, are then calculated at different
timescales. The trends of these drought indices are analyzed using the
improved F-ITA method, which incorporates the frequencies of each
drought classification. Simultaneously, periodic and seasonal trends of
the parameters associated with these drought indices are calculated
using the proposed P-IPTA method. Employing both F-ITA and P-IPTA
methods enables a comprehensive comparison and investigation of the
relationships between the trends of drought indices and their associated
parameters. Finally, this research utilizes the innovative monthly trend
chart to determine trends within all months in a single graph, clearly
visualizing temporal and spatial changes.

2.1. Standardized precipitation index (SPI)

SPI, developed by McKee et al. (1993), assesses meteorological
drought across various timescales, like 3-month, 6-month, 12-month,
and 24-month durations, solely relying on precipitation data. Initially,
the original monthly precipitation data undergoes fitting to an appro-
priate probability density function (PDF). The selection of the PDF in-
volves scrutinizing the goodness-of-fit tests, such as Chi-Square and
Kolmogorov-Smirnov tests, applied to the original precipitation re-
cords for any timescale. Subsequently, probabilities are computed from
the monthly precipitation data and probabilistically standardized to a
standard normal PDF with a mean of zero and a standard deviation of
one. In this research, the Kolmogorov-Smirnov test is used for all data-
sets and time scales.

2.2. Standardized precipitation evapotranspiration index (SPEI)

Vicente-Serrano et al. (2010) introduced the SPEI, which is similar to
the SPI method but incorporates potential evapotranspiration (PET)
data. PET estimation can employ various methods like the Thornthwaite
method (Thornthwaite, 1948). In this research, the PET estimation
employs the Thornthwaite method. The Thornthwaite method derives
PET from average monthly temperature records. SPEI primarily depends
on the difference between precipitation and PET data (Water Avail-
ability (Water Balance) − WA), which are fitted to the appropriate
probability density function (PDF). Following assessment with Chi-
Square and Kolmogorov-Smirnov tests, probabilities from the chosen
PDF are computed for water availability records for any time scale.
These probabilities are then probabilistically standardized into a
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standard normal PDF. Additional insights into the SPEI method can be
found in the original study by Vicente-Serrano et al. (2010).

2.3. Streamflow drought index (SDI)

This drought index proposed by Nalbantis and Tsakiris (2009) shares
similarities with the SPI and SPEI indices, with a key distinction being
the inclusion of monthly streamflow data in its computation instead of
precipitation and water availability to determine drought index. The SDI
is utilized to monitor and identify drought events at a specific gauge. It is
widely accessible and user-friendly. Additionally, the accuracy of the
results improves with longer streamflow records. Similar to the SPI, it
allows for examination across various timescales.

2.4. Drought Classification

McKee et al. (1993) introduced the classification outlined in Table 1
to categorize drought conditions based on index values. This classifi-
cation scheme assigns specific labels to different ranges of index values,
such as “moderate drought,” “severe drought,” and “extreme drought,”
each reflecting varying degrees of water deficit and its impact on the
environment. The simplicity and practicality of this classification have
led to its widespread adoption in the literature, making it one of the most
frequently utilized classifications for assessing and monitoring drought.
Adopting a universally accepted drought classification facilitates the
comparison processes, effective water resources management, and
climate change mitigation and adaptation strategies. Furthermore,
employing standardized metrics allows for a symmetric approach,
enabling assessment and monitoring of both wet and dry climates using
consistent drought indices.

2.5. Frequency − innovative trend analysis (F − ITA)

The ITA methodology, which has been generally used to determine
holistic and partial trends in hydro-meteorological data in the last
decade and has been frequently used to define trends in drought indices
time series in recent years, was proposed by Şen (2012). Compared to
classical trend methods, the most important advantages of the ITA
method are its simplification and its ability to be directly used as it does
not rely on assumptions of serial independence, normality, or large
sample sizes. It utilizes a comparison of scatter points on a Cartesian
coordinate system based on the 1:1 (45◦) line, which allows for a more
flexible and robust analysis of trends in hydro-meteorological time se-
ries. The ITA method has been enhanced by incorporating the frequency
of drought classification for each half, providing a simplified and
comprehensive overview of changing drought frequencies. For example,
it reveals that extreme drought events may rise from 5 % in the first half
to 10 % in the second half, indicating a twofold increase in extreme
drought events. The geometric definitions of trends can be made and
visually interpreted easily with the help of graphs. Monotonic increasing
and decreasing trends and non-monotonic increasing and decreasing
trends with the frequency of each drought classification can be defined
based on F-ITA graphs, and non-monotonic and partial trends can not be
entirely used in classical methods.

2.6. Periodic − innovative polygon trend analysis (P − IPTA)

Climate change has periodic or seasonal effects on hydro-
meteorological events, including precipitation, temperature, evapora-
tion, evapotranspiration, groundwater flow, and runflow. Mann-Kendall
(MK) method is frequently used in the literature to detect holistic
monotonic trends in non-periodic monthly and annual time series (Mann
(1945) and Kendall (1948)). Helsel and Frans (2006) modified the MK
method and named the Seasonal Kendall Test (SKT) to detect monotonic
trends in seasonal time series. Although researchers very intensely use
these methods, they have notable restrictions on the requirement for
serial independence and long data length (Von Storch 1995; Yue et al.
2002). Şen (2012) proposed a new trend detection method called
Innovative Trend Analyses (Şen_ITA), which does not rely on any
restrictive assumption. The method is applied to monthly and annual
time series to detect both monotonic and non-monotonic holistic and
partial trends visually and statistically (Şen 2014; Alashan 2020b; Ser-
inaldi et al. 2020). The same author, along with colleagues, have revised
Şen_ITA method with the aim of calculating seasonal transition slopes
and lengths and obtaining a polygon that illustrates transitions among
months (Şen et al. 2019). As a result of the introduction of this polygon,
the method is named Innovative Polygon Trend Analysis (IPTA), and
there has been extensive research related to the method (Şan et al. 2021;
Yenice and Yaqub 2022; Gupta and Chavan 2023; Eren and Yaqub
2024). The IPTA method generally uses a 1-month timescale to calculate
transition slopes and lengths and detect trends among months (Fig. 1). In
this figure, the 1:1 line represents a trendless line, scatter points repre-
sent average monthly precipitation values, and the green lines depict 5
% trend lines. If scatter points lie above (below) the 1:1 trendless line, it
indicates an increasing (decreasing) tendency. For brevity, in this study,
months with scatter points lying within the 5 % trendlines are consid-
ered as trendless.

In this study, the IPTA method is enhanced to analyze seasonal time
series with different cumulative or average timescales such as 1-month,
3-months, 6-months, 9-months, 12-months, 24-months, etc. The new
improved method is named periodic innovative polygon trend analysis
(P-IPTA). Cumulative series are typically more compatible with pre-
cipitation, evaporation, and evapotranspiration data, whereas average
series are often preferred for streamflow, flow, and temperature data in
hydro-meteorology. Average seasonal series are calculated using Equa-
tion1, where ts represents the timescale (e.g., 1, 3, 6, 9, 12, etc.),
Z
(

⌊

1+ j+ts− 2
12

⌋

, j)
denotes the monthly time series according to the speci-

Table 1
Drought classification according to McKee et al. (1993).

(Drought Index value_DI) Drought classification Probability (%)

2.00 ≤ DI Extreme wet (EW) 2.3 %
1.50 ≤ DI < 2.00 Severe wet (SW) 4.4 %
1.00 ≤ DI < 1.50 Moderate wet (MW) 9.2 %
− 1.00 < DI < 1.00 Normal (N) 68.2 %
− 1.50 ≤ DI ≤-1.00 Moderate drought (MD) 9.2 %
− 2.00 < DI ≤ − 1.50 Severe drought (SD) 4.4 %
− 2.00 ≥ DI Extreme drought (ED) 2.3 % Fig. 1. The application of the IPTA method for Kadıköy precipitation series.
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fied timescale, ts, and data length, n. The parameter j varies from 1 to 12,

representing the total number of months in a year, while ’i’ ranges from

1 to ’n’; representing the length of the data. The floor function (
⌊

1 +

j+ts− 2
12

⌋

) rounds a given real number down to the nearest integer that is

less than or equal to itself. For example, Z
(

⌊

1+ j+ts− 2
12

⌋

, 12)
= Z(1,12) cor-

responds to a series value belonging to the first year and twelfth month

when ts = 1 and j = 12.

Using the similar process to obtain cumulative seasonal series, Equation
(2) is applied, resulting the total seasonal time series for certain time-
scales. Equations (1) and (2) are presented in matrix form to help readers
understand the mathematical process better.

To enhance understanding of the new method, the application steps are
outlined as follows, with detailed explanations provided for each step.

Step-1: Select the timescale.
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• The IPTA method utilizes 1-month timescale.
• Seasons corresponding to 1-month timescales are defined as Jan,

Feb, Mar, ………, Dec.
• Other available timescales include 1-month, 3-months, 6-months, 9-

months, 12-months, 24-months, etc.

Step-2: Determine seasons according to selected timescales.

• Based on the chosen timescale, determine the seasons accordingly.
• For a 3-months timescale, seasons result in periods such as Jan-Mar

(from January to March), Feb-Apr, Mar-May, …, Dec-Feb;
• For a 6-months timescale, seasons correspond to periods like Jan-

Jun, Feb-Jul, Mar-Aug, …, Dec-May, and so on.

Step-3: Calculate the cumulative or average of seasonal series.

• For the cumulative series, sum the values for each season.
• For the average series, calculate the mean of each season.

Step-4: Apply the innovative trend analysis techniques to sea-
sonal cumulative and average series.

• The resulting seasonal cumulative or average series is divided into
equal half series.

• The averages of these two halves series are calculated.
• The average of the first half (second half) for the seasonal series is

drawn on the horizontal(vertical) axis.
• A 1:1 trendless line is plotted on the same graph.

Step-5: Draw the periodic innovative trend polygon.

• The resulting scatter points are connected by lines, forming a poly-
gon referred to as the periodic innovative trend polygon (P-IPTA).

• A polygon with a single loop is classified as a regular polygon,
whereas a polygon with multiple loops is classified as an irregular
polygon.

Step-6: Calculate seasonal transition trend lengths and slopes
based on successive scatter points.

• The lengths of the line connecting successive scatter points yield
seasonal transitional lengths (Equation (3), while the slopes of the
line represent seasonal transitional slopes (Equation (4).

Seasonaltransitionlength =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(yj+1 − yj)2 + (xj+1 − xj)2
√

(3)

Seasonaltransitionslope =
(yj+1 − yj)
(xj+1 − xj)

1 ≤ j ≤ 12 (4)

2.7. Mann-Kendall test and Sen’s slope estimator

The Mann-Kendall test is a non-parametric statistical method pro-
posed to identify trends in time series data. It is particularly effective for
detecting monotonic trends, whether they are increasing or decreasing.
Initially introduced by Mann in 1945 (Mann 1945) and subsequently
refined by Kendall in 1975 (Kendall 1975). The Mann-Kendall test sta-
tistic S is determined based on based on the ranks of the data points. A
high positive value of S indicates an increasing trend, whereas a high
negative value suggests a decreasing trend. It is calculated as:

S =
∑n− 1

k=1

∑n

j=k+1
sgn(xj − xk) (5)

where:
xi and xj are data values (j > i). The sgn gives a value of + 1 when (xj

− xi) > 0, 0 when (xj − xi) = 0, and − 1 when (xj − xi) < 0.

S is obtained by multiplying the sgn results for all (xi, xj) data.
The variance of S is calculated to evaluate the statistical significance

as:

Var(S) =
n(n − 1)(2n+ 5) −

∑m
i̇=1ti(ti − 1)(2ti + 5)

18
(6)

where n is the data numbers, m is the data numbers with the same value
(tied groups), and ti is the number of groups of the size ti.

The Mann-Kendall Z statistic evaluates the statistical significance of a
trend observed in a time series dataset. This statistic is computed as
follows:

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ ; S > 0

0; S = 0
S+ 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ ; S < 0

(7)

On the other hand, Sen’s slope is a non-parametric method for esti-
mating slopes of a linear trend. was introduced independently by Theil
(1950) and Sen (1968) (Theil 1950; Sen 1968). For a sample of n pairs,
the slope is calculated as:

SSi =
xj − xk
j − k

(8)

where xj and xk are the data values, the slope is calculated for each data
pair (i = 1,2,…,n) when j > i.

The SSi values are sorted from small to large values, and the median
of the values is accepted as the Sen’s Slope. The median is calculated as:

SSmed =
{

SS[(n+1)/2],
(SS[n/2] + SS[(n+2)/2])/2

(9)

If n is odd, the first part of the equation is used. If there is an even
number of n pairs, the mean of the two midmost slopes is calculated as
described in the second equation.

2.8. Innovative monthly trend Chart

One of the most significant strengths of both IPTA and the proposed
P-IPTA method lies in their ability to accurately identify trends, transi-
tional trend slopes, and transitional trend lengths at various single and
cumulative timescales. IPTA focuses on analyzing trends at a 1-month
timescale, enabling the detection of trends among months based on a
monthly scale. This approach allows for determining whether a trend
exists, its transitional trend slope, and its length for each month. Simi-
larly, P-IPTA extends this capability to any period or cumulative time-
scale, providing a more comprehensive analysis of trend patterns over
longer durations. Furthermore, this study introduces the innovative
monthly trend chart to enhance the presentation of these innovative
polygon trend analyses. This chart clearly shows trend changes across all
months or cumulative periods and for all stations within the study area
or region, indicating whether there is a decreasing trend, increasing
trend, or no trend for each month or cumulative timescale. Its simplicity
not only improves the clarity of the presentation but also facilitates the
mapping of innovative polygon trend analysis methods, enhancing their
utility for spatial analysis and interpretation. Each number in the chart is
the month, and the red color indicates an increasing trend, the green
color indicates a decreasing trend, and black indicates no trend. Fig. 2
below shows the Innovative Monthly Trend Chart. Fig. 3 summarizes the
main procedure used in this research.

3. Study area and application

To address the primary objectives of this study, the P-IPTA with F-
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ITA method was employed to analyze trends in meteorological and
hydrological drought indices at five different timescales (1–3-6–9- and
12 months) and their associated parameters, including precipitation (P),
water availability (WA), and streamflow data. Two distinct meteoro-
logical stations were selected as an application. The first station,

Kadıköy Meteorological Station in Istanbul, Türkiye, was chosen for its
availability of precipitation and temperature data, which were collected
from the Turkish State Meteorological Service (MGM). Istanbul has a
Mediterranean climate characterized by hot, dry summers and mild, wet
winters. This station is applied for SPI and SPEI for the period between

Fig. 3. Methodological approach.

Table 2
Statistical information about the temperature and cumulative precipitation series of the Kadıköy station and cumulative streamflow data for Nagymaros station at the
Danube River.

Timescales Cumulative Precipitation (mm) Average Temperature (⁰⁰C) Cumulative Streamflow (m3/s)

Mean Std
Dev

Skewness Mean Std Dev Skewness Mean Std
Dev

Skewness

1-months 55.74 27.43 0.369 14.64 6.67 0.074 2326.68 865.94 0.91
3-months 167.24 74.01 0.208 14.63 6.16 0.098 6980.74 2140.35 0.62
6-months 334.90 104.23 0.007 14.63 4.36 0.002 13960.50 3347.64 0.48
9-months 502.74 74.92 − 0.208 14.62 2.06 − 0.096 20942.52 3923.18 0.48
12-months 670.72 1.30 − 1.39 14.62 0.01 1.172 27929.86 4470.15 0.44

Fig. 2. Innovative Monthly Trend Chart (red color indicates an increasing trend, green color indicates a decreasing trend, and black indicates no trend). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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1951 and 2021. The second station selected was Nagymaros, situated
along the Danube River in Hungary. This station was utilized to gather
streamflow data and compute the SDI. Data spanning from 1893 to 2022
were utilized for this station to ensure a comprehensive representation
of various climatic conditions, given Hungary’s continental climate with
cold winters and warm summers. The monthly average streamflow
within the study period is 2326.7 m3/s. These selected stations provide
diverse climate conditions and continuous, long-term datasets necessary
for a robust analysis of drought trends and their associated parameters.
Table 2 summarizes the statistical information for both precipitation and
temperature data for Kadıköy station and streamflow data for Nagy-
maros station at the Danube River.

4. Results

The P-IPTA application is carried out at five different timescales
(1–3-6–9 and 12 months) for precipitation (P), water availability (WA),
and streamflow data, using Kadıköy meteorology and Danube River
hydrology stations as reference, and the results are obtained. All graphs
and tables are presented below. This study also investigates possible
drought trends for the examined stations. Firstly, P, WA, and streamflow
data are fitted to the appropriate probability distribution functions, and
standardized drought indices SPI, SPEI, and SDI are calculated. Monthly
PET calculations are calculated using the Thornthwaite method

(Thornthwaite, 1948) to determine WA values. The Kolmogorov-
Smirnov test was used to determine the probability distribution func-
tions (PDFs). The selected PDF for each dataset and time scale were
summarized as follows: For precipitation, a Gamma distribution was
consistently used across all time scales, including P-1, P-3, P-6, P-9, and
P-12. For the water availability, the GEV distribution was applied uni-
formly across the time scales. For streamflow, a Gamma distribution was
used for S-1, S-3, S-6, and S-9, while a Weibull distribution was selected
for S-12.

4.1. IPTA for precipitation and water availability and F-ITA for SPI and
SPEI at 1-month timescale

When the IPTA graph of precipitation data for rainy months in
Kadıköy 1-month timescale is examined, there is a transition from an
increasing trend in October to a decreasing trend in November (Fig. 4.a).
While there is a significant difference in precipitation from October to
November in the first period, this difference decreased in the second half
period. It is seen that the increase in October precipitation and the
decrease in November precipitation are effective in this way. According
to Fig. 4.a, another transition trend is in Apr-May-Jun, when precipita-
tion partially decreases. Also, while there is a slight decrease in April
precipitation, there is a significant increase in June precipitation based
on IPTA graph (Fig. 4.a). July-August-September and September-

Fig. 4. IPTA and F-ITA graphs for Kadıköy station at a 1-month timescale. a) IPTA for precipitation, b) F-ITA for SPI, c) IPTA for water availability, d) F-ITA for SPEI.
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October are other months where trend transitions are observed. There is
a decreasing trend in precipitation in September, and the trend increases
in October. For the Jul-Sep transition, the trend increases in July; there
is no trend in August, and the trend decreases in September
precipitation.

Considering the transition lengths (Table 3), which are a measure of
changes in precipitation amounts and precipitation trends, it is seen that
the important changes in precipitation amounts for a 1-month time
scale, starting from September to April, are significant partly for the first
half period and partly for the second half period, except for the Feb-Mar
transition. Contrary to the precipitation change in the first half period
between September and October, the precipitation change in the second
period increases significantly after the decrease in September precipi-
tation and the increasing trend in October. According to a 1-month
timescale, the most significant decreasing trend in precipitation is
experienced in January (Table 3 and Fig. 4.a). Despite the decreasing
trend in the average precipitation of December in the second period, this
month is still the month with the highest amount of precipitation. Whilst
there is a small difference between the average precipitation amounts of
December and January in the first half period (1953–––1986), this dif-
ference increases significantly in the second half period with a signifi-
cant decreasing trend in January precipitation. January, the month with
the highest precipitation for the region after December, falls to fifth
place after February, with a significantly decreasing trend. It can be
noticed that precipitation trends decrease considerably in the winter
season, that is, the November-February period, the rainiest period with

November. It is determined that February precipitation also has a
decreasing trend, but the decrease is much less compared to January and
December. The significant difference observed between January and
February precipitation in the first half period has disappeared for the
second half period. As for the summer, there is a small increase in pre-
cipitation, with an increasing trend in June and July. The seasonal
transitional lengths range from 8.15 to 44.73 (mm) for the precipitation,
and seasonal transitional slopes range from − 0.29 to 2.99 for the 1-
month timescale (Table 3).

Fig. 4.C shows the ipta graph presented for water availability (wa).
wa expresses the difference between measured precipitation and cal-
culatedpotential evapotranspiration (PET) in the study area, using a 1-
month timescale as a reference. First of all, WA trends are more stable
than P trends. It is determined that the trends are generally close to each
other and generally decreasing, except for June, and October. While
there is no trend in June, a negligible decrease (increase) is observed in
May (October). The most significant decreasing trend within months is
in January, as in total P. Therefore, it is seen that there is not much
change in the trends for WA except in these four months, and the
calculated seasonal transition lengths and slopes are more stable
compared to precipitation (Table 3).

As seen in Fig. 4.b and Fig. 4.d, there are cases where the dry and wet
periods at the same station do not match. Similarly, it is seen that the
frequency and classification of drought events vary depending on the
indices. As previously mentioned in the methodology section, the F-ITA
method is used to reveal trends in drought events defined according to

Table 3
The application of the new periodic innovative polygon trend analysis P − IPTA method.

Stations Jan.-
Feb.

Feb.-
Mar.

Mar.-
Apr.

Apr.-
May.

May.-
Jun.

Jun.-
Jul.

Jul.-
Aug.

Aug.-
Sep.

Sep.-
Oct.

Oct.-
Nov.

Nov.-
Dec.

Dec.-
Jan.

Precipitation
transitional trend
lengths (mm)

1-
months

28.06 8.80 28.03 19.46 11.35 8.15 9.52 18.75 44.73 24.09 34.06 34.98

3-
months

60.79 56.05 54.75 33.10 4.85 23.06 67.96 80.28 94.43 47.01 19.35 62.11

6-
months

93.71 60.79 33.69 38.72 75.67 114.80 95.06 61.85 32.84 38.82 75.03 115.82

9-
months

43.44 20.71 60.74 62.36 57.13 53.74 33.07 5.25 23.10 67.82 81.14 94.30

12-
months

4.07 1.49 1.16 0.13 1.46 0.10 0.70 2.76 0.48 4.51 4.79 6.83

Precipitation
transitional trend
slopes

1-
months

0.02 1.33 0.78 0.87 − 0.29 2.99 0.25 0.61 2.53 0.28 0.49 2.78

3-
months

0.45 0.88 0.56 0.62 0.54 0.19 1.29 1.04 0.90 − 0.32 1.85 0.81

6-
months

0.51 0.85 0.90 2.68 1.08 0.73 0.46 0.88 0.94 2.70 1.04 0.72

9-
months

− 0.27 1.98 0.90 0.38 0.91 0.58 0.61 0.98 0.20 1.26 0.97 0.94

12-
months

− 1.00 12.60 0.00 − 3.42 − 2.65 4.86 − 1.17 − 0.50 − 0.65 − 1.73 − 1.81 − 2.43

Water availability
transitional trend
lengths (mm)

1-
months

32.80 22.81 58.12 72.91 62.35 42.04 21.63 79.69 89.53 57.99 53.33 28.44

3-
months

11.78 64.69 105.16 153.68 193.29 176.60 82.56 60.61 189.36 225.16 198.32 95.32

6-
months

233.41 131.42 19.22 142.60 257.91 280.40 236.09 133.73 17.88 142.68 257.97 285.29

9-
months

152.94 191.23 173.24 80.07 63.06 189.55 225.10 198.41 96.91 11.30 64.69 116.96

12-
months

3.07 0.10 0.57 2.16 2.81 4.17 4.05 2.48 1.75 1.36 3.16 11.07

Water availability
transitional trend
slopes

1-
months

− 0.06 1.14 0.99 0.88 0.86 1.32 0.72 0.93 1.43 0.74 0.76 243.95

3-
months

0.46 1.00 0.63 0.96 0.91 0.96 1.11 0.66 1.10 1.04 1.00 0.48

6-
months

1.04 1.06 − 15.19 1.01 0.93 0.82 1.01 1.04 − 185.13 0.99 0.91 0.84

9-
months

0.99 0.92 0.99 1.21 0.65 1.12 1.05 1.03 0.43 0.60 0.91 0.61

12-
months

− 0.67 − 97.03 0.26 − 0.48 − 0.01 0.14 − 0.05 0.47 − 1.12 − 0.88 − 1.05 0.76
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drought indices. In addition, by adding F-ITA graphs (Fig. 4.b and Fig. 4.
d), which contain the frequency values of each drought classification,
trends and possible frequencies and changes according to two different
periods, could be defined for each drought classification in this research.

For Kadıköy meteorological station, the trends of defined drought
classifications for time series and timescales, considering the SPI and
SPEI indices, are given in Fig. 4.b and Fig. 4.d, with the graphical
interpretation of F-ITA. Monotonic and non-monotonic increa-
se–decrease trends are determined according to drought and wet clas-
sifications. According to the SPI-1 and SPEI-1F-ITA graphs (Fig. 4.b and
Fig. 4.d), the wet classification has a monotonic decreasing trend
regarding the 0–0 coordinate system. The SPEI-1F-ITA graph shows that
the determined wet classifications tend to decrease monotonically.
When SPI-1 and SPEI-1F-ITA graphs are compared in terms of wet pe-
riods, it can be stated that the monotonic decreasing trend in SPEI
indices in the 1987–2020 period is more evident than SPI. Also, trends
are examined one by one for each drought classification in Table 1 for
both SPI and SPEI. While the SPI index values for the MW classification
decrease slightly in the second period, it is clear that in terms of the
frequency of the drought classifications, the number of events falling in
the first (12.5 %) and second period (11.03 %) is very similar and no
obvious trend can be observed (Fig. 4.b). There is a significant mono-
tonic decreasing trend for SW and EW classifications. The frequencies,

which are 5.88 % and 1.96 %, respectively, for the SW and EW in the
1951–1986 period (first period), are decreased to 3.92 % and 0.98 % in
the 1987–2020 period (second period).

For SPEI-1F-ITA graph (Fig. 4.d), the frequencies of MW, SW, and EW
classifications decrease significantly in the second period compared to
the first period, with a decrease in the trends in drought index values. In
the period 1953–1986, the frequencies for 1.0 ≤ SPI-1 (SPEI-1) <1.5
(MW), 1.5 ≤ SPEI-1 <2.0 (SW) and SPEI-1 ≥ 2.0 (EW) classifications are
12.5 %, 4.66 % and 1.72 %, respectively, and they decrease slightly in
the 1987–2020 period and is calculated as 8.82 %, 3.43 %, and 0.74 %.
When the comments given above for the IPTA graph for a one-month
timescale are examined, the reasons for the trends and changes gener-
ally seen in wet events from October to March are better understood.

The SPI-1 (SPEI-1) trends at MD, SD, and ED classifications are also
examined in detail with F-ITA graph. For SPI-1 calculated for the MD
classification, the frequencies of this classification in both periods are
very close. SPI values in the SD classification between 1953 and 1986
show a slight tendency to decrease towards the MD classification in the
second half period. When the frequencies calculated for the SD classi-
fication of the first (5.39 %) and second period (5.64 %) are examined, it
is seen that there is no significant change between the two periods. For
SPEI-1 calculations, the most important difference is seen in the ED
classification compared to SPI calculations. According to SPEI-1 (Fig. 4.

Fig. 5. P-IPTA and F-ITA graphs for Kadıköy station at a 3-month timescale. a) P-IPTA for precipitation, b) F-ITA for SPI, c) P-IPTA for water availability, d) F-ITA
for SPEI.
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d), while ED events do not occur in any month in the 1953–1986 period,
the frequency of ED events in 1987–2020 is limited to only 0.98 %. On
the other hand, according to Fig. 4.b, the frequencies of ED events for
SPI-1 in the first and second half periods are 6.62 % and 4.90 %,
respectively. Based on the SPEI-1F-ITA graph (Fig. 4.d), the trend di-
rection shows a monotonic increase for the MD and SD classifications.
Depending on this trend direction, the frequency changes in the relevant
drought classifications for SPI-1 (SPEI-1) decrease from 8.09 % (12.25
%) to 7.84 % (10.54 %) in 1953–1986 for MD classification, while the SD
classification for both SPI-1 and SPEI-1 increases from 5.39 % (6.86 %)
to 5.64 % (8.58 %).

4.2. P − IPTA for precipitation and water availability and F-ITA for SPI
and SPEI at a 3-month timescale

Fig. 4.a and c show cumulative precipitation (CP) and water avail-
ability (WA) data trends. For this purpose, the P-IPTA graphs are rec-
ommended within the scope of the study. For a 3-month period, when
the first and second halves are evaluated together according to the P-
IPTA graphs, it can be noticed that the rainiest periods are between
October − February period, and the period with the least precipitation is
between May − September period (Fig. 5.a). For P-IPTA trend graphs
presented for three-month WA, the water surplus is highest in the Nov-

Feb period in the first half, while the Jun-Aug period is the most critical
in terms of water deficit (Fig. 5.c). According to the first half period
covering the years 1951–1985, the rainiest three-month period is the
Nov-Jan period, followed by the Dec-Feb period. Looking at the years
1986–2020, it can be seen that the rainiest period changed to Oct-Dec.
The main reason for the change in the periods with the highest precip-
itation is the significant decrease in precipitation, especially in the Nov-
Feb period. While precipitation tends to decrease in precipitation in the
Oct-Dec period, this decrease is limited compared to the Nov-Jan and
Dec-Feb periods. The decreasing trends in autumn, spring, and espe-
cially winter precipitation for three-month periods are striking. On the
other hand, precipitation is increasing during the May-Jul and Jun-Aug
periods, which include the summer months. For the months of Jul-Sep,
Apr-Jun, Aug-Oct, and Sep-Nov, it is seen that the distributions of the
calculated trends are close to the 1:1 trendless line within 5 % trend-
lines, and it can be said that there is no trend.

The trends in P-IPTA WA graphs presented for the three-month time
scale decrease within the twelve periods considered (Fig. 5.c). The
largest decreasing trend for water availability occurs in the Nov-Jan,
Dec-Feb, and Jan-Mar periods. On the other hand, the most significant
decreasing trends for WA are in the Jul-Sep and Jun-Aug periods.
Compared to the P-IPTA CP graphs, the three-month P-IPTA WA graphs
indicate more stable trends in the twelve periods considered and in the

Fig. 6. P-IPTA and F-ITA graphs for Kadıköy station at a 6-month timescale. a) P-IPTA for precipitation, b) F-ITA for SPI, c) P-IPTA for water availability, d) F-ITA
for SPEI.
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transitions between periods (Table 3). As for SPI-3 and SPEI-3 results
calculated using the time series of CP and WA amounts (Fig. 5.a and c), a
non-monotonic decreasing trend can be noticed when the F-ITA graphic
results are evaluated as a whole only for the dry and wet periods without
considering the sub-classification intervals.

When the trends and frequency changes are evaluated according to
the drought classifications defined based on SPI theory by Mc Kee et al.
(1993), for EW and SW classifications, the trend decreases slightly ac-
cording to the calculated SPI-3 and SPEI-3 values. Also, it is understood
that the trend is slightly decreasing, and the probability of EW and SW
events has increased significantly in the second period compared to the
first period. Considering the F-ITA graphs (Fig. 5.b and d) and frequency
values for the MW classification for SPI-3 (SPEI-3), a significant
decreasing trend is observed, the total number of drought events
occurring in the second 8.82 % (9.80 %) and first periods 12.01 %
(12.50 %) in this classification. It is seen that the rate (frequency) within
it changes significantly.

According to the F-ITA SPI-3 and SPEI-3 (Fig. 5.b and d), when the
trends for drought classifications with negative index values and the
frequencies of each drought classification in the determined periods are
examined, there is no significant trend for the ED classification, and the
frequency of drought events no or very little change in the two periods.
SD classification for SPI-3 (SPEI-3) shows a decreasing (increasing)

trend. Also, the incidence of relevant drought events in the years
1953–1986 change from 6.13 % (3.43 %) to 2.94 % (7.35 %) compared
to the second period. Finally, for MD classification, the SPI-3 (SPEI-3)
trend decreases (increases) based on the drought index, and the fre-
quencies of MD events decrease from 9.31 % (17.65 %) to 7.11 % (14.71
%) over time. Briefly, when the F-ITA SPI-3 graph is examined, after the
non-monotonic decreasing trend in drought and wet events seen in the
Kadıköy region, the normal classification range of 1.0 ˃ SPI-3 ≥ -1.0 in
the 1987–2020 period increases from 61.52 % to 75.25 %. According to
the F-ITA SPEI-3 analysis results, the increasing trend in drought events
occurs significantly between SD and MD. In contrast, the decreasing
trend in wet events affects all classifications. Therefore, the event fre-
quencies in the normal classification increase from 56.86 % in the first
period to 64.22 % in the second period.

4.3. P − IPTA for precipitation and water availability and F-ITA for SPI
and SPEI at a 6-month timescale

For P-IPTA graphs for both CP and CWA at 6-month timescales, the
polygon geometries in which trends and trend transitions are defined
differ significantly compared to the geometries of 1 and 3-month time
scales, and the trends between successive periods approach each other
(Fig. 6.a and c). When the meaning and main reason for this difference

Fig. 7. P-IPTA and F-ITA graphs for Kadıköy station at a 9-month timescale. a) P-IPTA for precipitation, b) F-ITA for SPI, c) P-IPTA for water availability, d) F-ITA
for SPEI.
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are investigated, it is seen that the trend direction becomes more evident
as timescales increase. For the P-IPTA graph for CP-6, it is seen that
especially the rainy periods tend to decrease and, for CP-6 ˃ 350 mm, the
precipitation amounts in the Aug-Jan, Sep-Feb, Oct-Mar, Nov-Apr, and
Dec-May periods increase as period transitions and trend magnitudes
approach each other (Table 3). For example, P-IPTA graphs presented
for the 1 and 3-month time scale in Fig. 4.a and Fig. 5.a are compared, it
is seen that for the 1-month time scale, the transition lengths between
Dec, Jan, and Feb, when the greatest precipitation is seen, are Oct-Dec,
Nov-Jan, for the most important precipitations in the 3-month period. It
is seen that the transition lengths between the Nov-Jan and Dec-Feb
periods are decreasing, and the trend points are relatively approach-
ing each other (Table 3). The relative decrease in the distances between
trend points and the shortening of transition lengths make the trend
direction clear. Similarly, when the 3- and 6-month graphs are
compared for the rainiest periods, the total precipitation amounts and
trends of the 6-month Sep-Feb, Oct-Mar, and Nov-Apr periods are closer
to each other compared to the 3-month Oct-Dec, Nov-Jan, and Dec-Feb
periods (Fig. 5.a and Fig. 6.a).

Fig. 6.C shows the water surplus and water deficit p-ipta graphs at
six-month timescales. according to the wa evaluation, there are seven
wet periods for precipitation starting from the jul-dec period and lasting
until the jan-jun period, and twelve, where the pet effect is considered.

the trends are decreasing throughout the period, as seen in Fig. 6.c and
Table 3. Also, the trend sizes are close to each other, especially for WA.
For CP-6, there is no trend in the Feb-Jul, March-Aug, and Apr-Sep pe-
riods within 5% trendlines, and the trends increase in May-Oct and Jun-
Nov. Additionally, F-ITA – SPI-6/SPEI-6 graphs (Fig. 6.b and d) pre-
sented for CP and CWA show that both graphic trends are decreasing for
the wet classifications and increasing trend for the drought classifica-
tions. For EW and SW classifications and according to the first half (1953
– 1986), SPI-6 decreases from 1.72% and 6.62% to 0% and 2.21%,
respectively. SPEI-6 decreases from 2.45% and 7.35% to 0.25% and
3.43%, respectively. Considering the F-ITA − SPI-6 (SPEI-6) graphs for
the MW classification, a decreasing trend is seen, and the frequencies
accordingly decrease slightly from 11.52% (14.95%) to 9.80%
(12.99%), respectively.

On the other hand, the frequency of ED classification for SPI-6 de-
creases from 3.19 % to 1.96 %. For SPEI-6, while there are no ED events
in this classification in the 1953–1986 half, a small amount of ED events
are detected in the 1987–2020 half, and its frequency is determined as
0.25 %. According to F-ITA graphs for both SPI-6 and SPEI-6, a non-
monotonic decreasing trend in SD classification is seen for SPI-6,
while there is a significant increase in this classification compared to
SPEI-6. For F-ITA SPI-6 and SD classification, the frequency increases
from 4.41 % in the 1953–1986 half to 5.88 % in the 1987–2020 half, and

Fig. 8. P-IPTA and F-ITA graphs for Kadıköy station at a 12-month timescale. a) P-IPTA for precipitation, b) F-ITA for SPI, c) P-IPTA for water availability, d) F-ITA
for SPEI.
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for F-ITA SPEI-6 and SD classification, the frequency increases from
3.19 % to 7.60 %. Finally, according to the SPI-6 and SPEI-6 results, SPI-
6 (SPEI-6) F-ITA graphs for the MD classification, there is an increasing
trend in their frequencies from 9.56 % (15.20 %) to 11.76 % (16.67 %),
respectively.

4.4. P − IPTA for precipitation and water availability and F-ITA for SPI
and SPEI at a 9-month timescale

For CP-9/CWA-9P-IPTA graphs (Fig. 7. a and c), the CP generally
tends to decrease significantly, and total precipitation differences be-
tween periods decrease. According to Fig. 7. a, three of the twelve
different periods, Feb-Oct, Mar-Nov, and Apr-Dec, have no trend.
Accordingly, when the SPI-9F-ITA graph is interpreted (Fig. 7.b), it can
be stated that the SPI-9 values in the first quadrant area in the Cartesian

coordinate system, where SPI-9 values are positive, tend to decrease
significantly monotonically. On the contrary, SPI-9 values in the third
quarter area show a significant increasing trend. As a result of the sig-
nificant decrease in the trends in all periods determined by the WA P-
IPTA graph (Fig. 7.c), as can be seen from the SPEI-9F-ITA graph (Fig. 7.
d), water surplus events decrease significantly, while significant
increasing trends exist in water deficit events.

Based on the drought and wet classifications and for the normal
classification values ranging between 1.0 and − 1.0, wet classification
generally decreases, while drought indices at drought classification tend
to increase slightly for both SPI-9 and SPEI-9 (Fig. 7.b and d). Accord-
ingly, the frequencies of events in the normal classification for SPI-9
(SPEI-9) indices decrease from 70.34 % (69.61 %) in 1953–1986 to
69.61 % (62.75 %) in 1987–2020. Based on a detailed evaluation of the
trends and frequencies of drought events regarding each drought

Fig. 9. The applications of the P-IPTA methods for Danube Streamflow and SDI series. a) P-PTA for streamflow data at 1-month, b) F-ITA for SDI-1, c) P-PTA for
streamflow at 3-month d) F-ITA for SDI-3, e) P-PTA for streamflow at 6-month, f) F-ITA for SDI-6, g) P-PTA for streamflow at 9-month, h) F-ITA for SDI-9, i) F-ITA for
SDI-12.
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classification for F-ITA SPI-9 (SPEI-9), there is a significant trend to-
wards an increase for the ED category, and in the second period, the
frequency of drought events increases from 1.47 % (0 %) to 4.66 %
(3.68 %). Similarly, there is a significant increasing trend according to
the SPI-9 (SPEI-9) index values calculated for the SD classification, and
the frequency of drought events increases significantly in the last period
compared to the first period, from 3.68 % (2.45 %) to 7.60 % (6.62 %).

Finally, MD for SPI-9 (SPEI-9) is insignificant (significant) in terms of
drought event frequencies between two periods, from 6.13 % (5.39 %) in
1953–1986 to 7.60 % (13.48 %) in the 1987–2020 period. Also, the
trend is towards a significant decrease according to the calculated SPI
(SPEI) index values for EW and SW. In the first half, the EW and SW
frequencies for SPI-9 (SPEI-9) decrease from 2.45 % − 5.64 % (3.92 % −

6.13 %) to 0.25 % − 1.72 % (0.74 % − 2.45 %) in the second period,
respectively (Fig. 7.b and d).

4.5. P − IPTA results for precipitation and water availability and F-ITA
results for SPI and SPEI at a 12-month timescale

For P-IPTA graphs CP-12 (WA-12) for a full twelve-month period
(Fig. 8.a and c), the CP and WA deficit are clustered around a certain
point and tend to decrease significantly without any specific polygon.
According to the F-ITA graphs in (Fig. 8.b and d) below, while SPI-12
(SPEI-12) patterns have a very obvious monotonic increasing trend for
drought, wet events have the opposite monotonic decreasing trend.
These results show that the region has become drier over time. When the
trends and frequencies for all drought classifications starting from EW to
ED are evaluated with reference to F-ITA SPI-12 and F-ITA SPEI-12
graphs, it is clearly seen that there is a significant decreasing
(increasing) trend for wet (drought). According to (SPEI-12) and EW,
SW, and MW drought classifications, the trends are decreasing. Also, the
frequencies are respectively 1.96 % (3.68 %), 6.13 % (5.64 %), 9.56 %
(9.07 %) in the first half, and 0.25 % (1.72 %), 2.21 % (1.23 %), and
6.37 % (2.94 %) in the second half. The trend results for SPI-12 and
SPEI-12 indices for drought events differ further. First of all, when
evaluating the ED classification, the trend for SPI-12 (SPEI-12) is
increasing, and its frequency varies from 1.47 % (0 %) to 6.62 % (6.86).
Also, according to the F-ITA SPI-12 (SPEI-12) graphs for SD classifica-
tion (Fig. 8.b and d), graphs show a monotonic increase, while the
relevant classification in both graphs increases from 1.23 % (0)% in the
first half to 8.33 % (10.78 %) in the second half.

4.6. P − IPTA results for streamflow (R) data and F-ITA results for SDI

Considering the monthly average streamflow data measured at the
Danube River station between 1895 and 2022, the trends of the river’s
streamflow data for 1–3-6–9 and 12-month timescales are determined
with the help of the P-IPTA method proposed in this research (Fig. 9).
The region is evaluated regarding hydrological drought, considering the
SDI index calculated with reference to different timescales mentioned
above. The trends of the SDI time series are defined using the F-ITA
method. As a result of the analyses, the increasing and decreasing trends

in the drought time series and the periods whether there is any trend
were determined (Fig. 9).

For the P-IPTA graph for R, the dominant negative trends prevail in
almost every period. For a one-month timescale (Fig. 9.a), the trend little
increases only in December within the 5 % treandlines, when stream-
flows in the river are low. In other months, there has been a decreasing
trend in streamflows of around 5 % or more. It is understood that the
decreasing tendencies are above 5 %, especially in periods when the
streamflows are above the annual averages.

This makes the region even more dry in terms of wetlands. When F-
ITA SDI-1 graph is examined (Fig. 9.b), the trend in terms of wetness is
clearly decreasing. Also, for wet periods, the frequencies of the
1895–1958 period for the EW, SW, and MW classifications are 2.73 %,
6.25 %, and 10.42 %, respectively. It is understood that the frequencies
decreased to 1.82 %, 4.17 %, and 7.68 %, respectively, in the 1959–2022
period. For drought classifications, there is a decreasing trend only in the
ED classification, and there is no trend in the SD and MD classifications.
As can be seen from the F-ITA SDI-1 graph, the frequencies of these
classifications have also changed slightly.

4.7. Classical and proposed trend analysis results

To compare the P-IPTA and F-ITA with conventional Mann-Kendall
(MK), Sen’s slope estimator (SSE), and innovative Şen’s trend analysis
(Şen’s ITA) methods, we have designed Table 4. As seen from the table,
all parameters of the employed trend analysis methods are negative, and
the absolute parameters values increase with the durations of the pe-
riods. This finding is consistent with the World Meteorological Organi-
zation’s definition of drought: “Drought is a prolonged dry period in the
natural climate cycle that can occur anywhere in the world”. Although
the MK does not indicate a decreasing trend on the 1-months cumulative
precipitation series at the 90 % significance level (zMK ≥ |1.65|), it does
show decreasing trends in the 3-months, 6-months, 9-months, and 12-
months cumulative precipitation series. Unlike Şen’s ITA, the Mann-
Kendall (MK) and Sen’s slope estimator (SSE) methods provide de-
cisions on monotonic trends and slopes. The innovative polygon trend
analysis (IPTA) method, developed by Şen’s ITA, enables the inspection
of seasonal trends in time series by dividing seasonal data ranges into
various groups, such as low, medium, and high values. Additionally, the
frequency innovative trend analysis (F-ITA) allows examinations of
changes in the frequencies of subgroups (low, medium, and high) within
time series. This approach addresses the distortion of hydrometeoro-
logical series probability density functions, referred to as non-stationary
conditions, resulting from climate changes (Milly et al. 2008; Alashan
2018, 2024).

4.8. Innovative monthly trend chart results

Fig. 10 below shows the innovative monthly trend chart for precip-
itation, water availability, and streamflow records at 1-month and 6-
month timescales. The trend at each month is calculated using P-IPTA
method. In general, there appears to be a decreasing trend across all

Table 4
Classical trend analysis parameters and slopes of the Mann-Kendall, Sen’s Slope estimator, and Şen’s innovative trend analysis methods.

Stations Variables Trend parameters Time scale

1-months 3-months 6-months 9-months 12-months

Kadıköy Cumulative Precipitation
(mm)

ZMK − 0.983 − 1.926 − 3.005 − 4.143 − 4.613
SSSE − 0.005 − 0.027 − 0.063 − 0.088 − 0.102
S ITA − 0.012 − 0.036 − 0.072 − 0.108 − 0.146

Water Availability
(mm)

ZMK − 2.250 − 2.900 − 3.901 − 6.678 − 12.107
SSSE − 0.028 − 0.091 − 0.172 − 0.252 − 0.298
S ITA − 0.028 − 0.081 − 0.161 − 0.247 − 0.333

Danube Streamflow
(m3/s)

ZMK − 3.124 − 3.850 − 5.071 − 6.312 − 6.939
SSSE − 0.149 − 0.478 − 0.097 − 1.420 − 1.794
S ITA − 0.174 − 0.522 − 1.036 − 1.519 − 1.965
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variables examined. For instance, when considering the monthly trends
for WA and R at a 6-month timescale, both exhibit a decreasing trend in
all months. However, it is noteworthy that while the WA trend at a 1-
month timescale demonstrates an overall decreasing trend, there are
increasing trends observed in March, April, May, and June. This figure
allows for a comparative analysis of trends across different variables and
timescales, facilitating a comprehensive understanding of the changing
trends.

5. Discussion

The analysis conducted using the newly proposed P-IPTA method
revealed generally a consistent decreasing trend in precipitation across
various timescales (Figs. 4-8). For instance, at a 1-month timescale, the
original IPTA method, the monthly average precipitation for January
decreased from approximately 105 mm in the first half to 63 mm in the
second half. This declining trend becomes more pronounced over longer
timescales, such as 9 months. These findings are consistent with previ-
ous research by Kömüşcü and Aksoy (2023), who reported similar trends
in precipitation. Specifically, they noted predominant decreases in
precipitation during the wet season, with increasing trends observed in
the dry season. Monotonic trends on a monthly basis indicated larger
downward trends, particularly during early winter and spring. Addi-
tionally, Nacar et al. (2024), in their investigation of historical and
future scenarios for precipitation trends in the western Black Sea region,
also observed a declining trend, underscoring the importance of
comprehensive studies on precipitation trends and drought assessment.
Körük et al. (2023) highlighted the effectiveness of ITA and IPTA
methods for trend identification compared to classical approaches. This
trend is evident in this research examining droughts and their associated
parameters.

In terms of water availability, as proposed by Vicente-Serrano et al.
(2010), the number of articles addressing the trend of water availability
is limited. For instance, in Türkiye, only Dadaser-Celik et al. (2016)
researched evapotranspiration trends, with the results indicating a

decreasing trend. Subsequently, analyzing the trend of one-month and
cumulative water availability is crucial for effective water resources
management and drought studies. This study revealed decreasing trends
across all months and timescales, with each exhibiting a consistent
magnitude of decrease. Notably, the polygon formed by these trends was
parallel to the 1:1 line, indicating the same trend magnitude. These
findings underscore the urgency for decision-makers to take appropriate
actions in response to the significant decreasing trend observed in water
availability.

Numerous studies have been conducted in the literature regarding
SPEI at different timescales. For instance, Danandeh Mehr and Vahed-
doost (2020) calculated the trend of SPEI at 3, 6, and 12-month time-
scales for Ankara province in Türkiye, revealing slight decreasing trends.
Similarly, Serkendiz et al. (2024) analyzed the trend of SPEI across
Türkiye from 1970 to 2019, identifying a gradual north-to-south in-
crease in drought intensity. Their study did not consider the trend in
water availability, leading to not comprehensively understanding the
relationship between SPEI trends and actual water availability. In our
research, the SPEI results indicated an increasing trend in drought index
(SPEI less than − 1), along with decreasing trends for normal and wet
events (SPEI more than − 1), aligning with previous study findings.

In the existing literature, articles focusing on hydrological drought
based on streamflow data are scarce compared to those addressing
meteorological drought using SPI and SPEI. Moreover, while some
studies have calculated hydrological drought indices and analyzed
trends in streamflow data, they often do not explore the relationship
between the trend of the hydrological drought index and the original
streamflow data (Katipoğlu and Acar 2022; Yuce et al. 2023). This
research aims to bridge this gap by investigating the relationship be-
tween hydrological drought trends and streamflow data trends. For
instance, the P-IPTA graphs for streamflow data in this study reveal a
decreasing trend across all timescales (Fig. 9). This unexpected finding
prompts further exploration into the underlying factors influencing
drought trends. In their study, Katipoğlu and Acar (2022) determined
decreasing trends in about 60 % of the stations. Additionally, the

Fig. 10. Innovative Monthly Trend Chart for different hydro-meteorological variables and timescales.
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analysis of SDI trends based on F-ITA for a 12-month timescale shows a
decreasing trend in drought (Fig. 9), which may be attributed to various
factors, including the assumption used for calculating streamflow trends
and the selected probability distribution function for fitting the original
data. However, for normal and wet events (SDI greater than − 1), the
trend results for both SDI and original streamflow data are more
consistent. In Yuce et al.’s (2023) study, the F-ITA method was also used
for 1, 3, 6, 9, and 12-month timescales. The results were inconsistent and
changed for each station. Some stations showed a decreasing trend, and
some showed an increasing trend. Subsequently, one of the main con-
tributions and key findings of this research is the recognition that both
hydrological drought trends and hydrological drought-associated pa-
rameters must be carefully considered in trend and climate change
studies.

Understanding water dynamics, including water availability, is
crucial in terms of the context of hydrology. Water availability explains
the equilibrium between water inputs and outputs, facilitating assess-
ments of water resource availability and distribution. By quantifying
components like precipitation, water availability, and streamflow and
their trends, hydrologists, researchers, and decision-makers gain in-
sights into water stress, surplus, and sustainability. Similarly, water
availability determines the accessible water for various sectors, incor-
porating factors like precipitation patterns, stream flows, and human
demands.

The suggestion of the P-IPTA method represents an enhancement of
IPTA by incorporating periodic variations into trend analysis. While
IPTA focuses only on evaluating temporal trends in hydrometeorological
parameters across one month, P-IPTA enhances IPTA method by
considering the periodic variations, offering a more comprehensive
understanding of trends. On the other hand, F-ITA method incorporates
the frequencies of drought classifications into trend analysis. This en-
ables a more comprehensive assessment and evaluation of trends in
meteorological and hydrological drought across different timescales.
Therefore, P-IPTA and F-ITA represent significant advancements in
meteo-hydrological and drought trend analysis, providing researchers
with powerful tools.

One of the main contributions of this research is also the innovative
monthly trend chart. Existing literature primarily focuses on trend maps
based on specific months, such as those generated by IPTA method,
typically produced for individual months. For instance, Katipoğlu and
Acar (2022) created a trend map for each month for the Euphrates Basin
in Türkiye. In contrast, this study’s innovative monthly trend chart of-
fers a distinct advantage by presenting the trend identification for all
months across all stations on a single map. This approach facilitates a
comprehensive assessment of trends across different timescales (Fig. 10)
and geographical locations, providing valuable insights into climate
change impacts’ temporal and spatial variability. This chart is a valuable
tool for climate change studies, enabling researchers to gain a deeper
understanding of temporal trends, thereby enhancing the management
of climate-related risks.

Several key differences exist between classical and innovative trend
analysis methods. Traditional methods, such as Mann-Kendall and Sen’s
slope, often rely on assumptions of normality and serial independence
alongside large sample sizes, which may limit their applicability and
robustness in practical uses. Conversely, the IPTA and Şen’s ITA
methods do not necessitate such assumptions, employing a non-
parametric approach without serial correlation and sample size re-
strictions. The ITA method offers enhanced flexibility in trend analysis
by utilizing a scatter plot comparison on a Cartesian coordinate system,
providing a more adaptable framework for analyzing hydro-
meteorological time series data. Furthermore, while classical methods
may be susceptible to biases from positive autocorrelation in the data or
the loss of trend information due to prewhitening techniques, the ITA
method aims to minimize these biases. The method’s effectiveness has
been demonstrated through validation using synthetic and original
datasets, confirming its applicability across a wide range of hydro-

meteorological variables (Şen 2017). This comparison underscores the
advantages of innovative trend analysis approaches over traditional
methods, emphasizing the importance of adopting more flexible and
robust methodologies in hydrological research and decision-making
processes.

Analyzing and assessing meteorological and hydrological droughts at
various timescales and identifying their associated parameters is para-
mount in climate change studies, adaptation and mitigation plans, and
water resources management. Understanding the relationship between
drought and its associated parameters with trends is crucial for pre-
dicting their impact on ecosystems, agriculture, and other sectors. By
studying droughts at different timescales, from short-term droughts to
long-term droughts, researchers and decision-makers can gain insights
into the complex interactions between climatic variables and water re-
sources. This knowledge is essential for developing effective strategies to
mitigate the adverse effects of drought, such as implementing water
conservation measures, improving irrigation practices, and enhancing
drought resilience in vulnerable regions.

6. Conclusion

Due to the effects of climate change, the importance of the trend of
meteorological and hydrological droughts and their associated param-
eters, and the existing gap regarding the relationship between their
trends, this research aimed to develop a new concept and suggest
innovative trend analysis methods. Firstly, the P-IPTA method was
proposed to cover the periodic variations in the hydrometeorological
variables within various time scales. Then, F-ITA was suggested and
applied to meteorological droughts, including SPI and SPEI, and hy-
drological droughts, including SDI. F-ITA has the power to incorporate
the frequencies of each drought classification in the trend analysis. Also,
the relationship between drought trends and associated parameter
trends has been revealed. Finally, a comprehensive comparison between
classical and innovative trend methods has been conducted. These
comprehensive approaches allow us to examine drought dynamics and
trends across various time scales, providing valuable insights into
droughts and their associated parameters. This research used two ap-
plications: the first is Kadıköy station (1951–––2021) for the trends of
SPI and SPEI with their associated parameters, and the second is Danube
River (1893–––2022) for the trend of SDI and its associated parameters.
The key findings and future advantages of this research can be sum-
marized as follows:

• Understanding the relationship between the trends of droughts and
their associated parameters is crucial for advancing drought and
climate change studies.

• The meteorological drought assessment using SPI and SPEI and the F-
ITA method reveals a decreasing trend in normal and wet classifi-
cations across all timescales, emphasizing the decreasing trends
observed in precipitation and water availability datasets at Kadıköy
station.

• The decreasing trends in precipitation and water availability for the
Kadıköy station resulted in increasing trends in drought events across
all drought classifications (MD, SD, and ED), except for SPI at 1-
month and 6-month timescales, which exhibit specific drought
patterns.

• SDI and streamflow trends for the Danube River showed a consistent
relationship between streamflow data and normal and wet events,
and the important results are partially inconsistent regarding
drought events.

• The innovative trend analysis methods, including IPTA, F-ITA, and
the newly proposed P-IPTA method, enable more accurate and
comprehensive trend analysis for drought at different time scales.

• Utilizing the F-ITA method allows for incorporating the frequencies
of drought classifications, leading to a more precise assessment. For
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instance, with SPEI at a 6-month timescale, the frequency of the SD
classification increased from 3.19 % to 7.6 %.

• The innovative monthly trend chart clearly shows trend changes
across all months or cumulative periods and for all stations within
the study area or region, indicating a decreasing trend, increasing
trend, or no trend for each month or cumulative timescale and
different timescales.
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