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Abstract: Renewable sources of energy production are some of the main targets today to protect the
environment through reduced fossil fuel consumption and CO2 emissions. Alongside wind, solar,
marine, biomass and nuclear sources, hydropower is among the oldest but still not fully explored
renewable energy sources. Compared with other sources like wind and solar, hydropower is more
stable and consistent, offering increased predictability. Even so, it should be analyzed considering
water flow, dams capacity, climate change, irrigation, navigation, and so on. The aim of this study
is to propose a forecast model of hydropower production capacity and identify long-term trends.
The curve fit forecast parabolic model was applied to 33 European countries for time series data
from 1990 to 2021. Space-time cube ArcGIS representation in 2D and 3D offers visualization of the
prediction and model confidence rate. The quadratic trajectory fit the raw data for 14 countries,
validated by visual check, and in 20 countries, validated by FMRSE 10% threshold from the maximal
value. The quadratic model choice is good for forecasting future values of hydropower electric
capacity in 22 countries, with accuracy confirmed by the VMRSE 10% threshold from the maximal
value. Seven local outliers were identified, with only one validated as a global outlier based on the
Generalized Extreme Studentized Deviate (GESD) test at a 5% maximal number of outliers and a
90% confidence level. This result achieves our objective of estimating a level with a high degree
of occurrence and offering a reliable forecast of hydropower production capacity. All European
countries show a growing trend in the short term, but the trends show a stagnation or decrease if
policies do not consider intensive growth through new technology integration and digital adoption.
Unfortunately, Europe does not have extensive growth potential compared with Asia–Pacific. Public
policies must boost hybrid hydro–wind or hydro–solar systems and intensive technical solutions.

Keywords: space-time cube; curve fit forecast; parabolic curve trend; hydropower production;
renewable energy; ArcGIS

1. Introduction

Today, society faces multiple radical transformations in all social and economic aspects,
acting individually but also interconnected, determining complex synergies [1]. The shift
towards renewable energy sources represents one of the most significant transformations in
the 21st-century global energy landscape. This transition is not merely a change in energy
types used; it is a profound evolution touching upon economic policies, technological
advancements, environmental considerations, and societal well-being. At its core, the
shift to renewable energy sources is driven by the urgent need to reduce fossil fuel usage,
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considered the highest polluter, and minimize CO2 emissions. Renewable energy sources,
including solar, wind, hydroelectric, and geothermal power, offer a cleaner alternative,
producing little to no greenhouse gas emissions during operation. By harnessing the
power of nature, renewable energy can provide electricity, heating, and transportation
without depleting our planet’s resources or harming its ecosystems. This transition not only
addresses the immediate challenges of climate change but also underscores a commitment
to environmental stewardship and preserving of the planet for future generations.

Economic considerations and technological innovations also drive the shift to renew-
able energy. The cost of renewable energy technologies has decreased in recent years,
making them increasingly competitive with traditional fossil fuels. Solar and wind power
have seen dramatic reductions in cost due to advancements in technology and increased
production scale. This cost competitiveness, coupled with government policies and incen-
tives to support renewable energy, has accelerated the deployment of renewable energy
projects worldwide. Furthermore, the transition to renewable energy sources presents sig-
nificant economic opportunities, including job creation in new industries, reduced energy
costs for consumers, and the potential for technological leadership on the global stage.
Countries and companies that invest in renewable energy technologies stand to benefit
from the growing global demand for clean energy solutions, positioning themselves as
leaders in a rapidly evolving energy market. Compared with solar and wind energy, which
are highly dependent on weather, hydropower production capacity is less sensitive to the
climate and more constant.

Renewable energy sources are abundant and widely distributed geographically, re-
ducing risks associated with geopolitical tensions and supply disruptions. Countries can
enhance their energy independence by investing in renewable energy and ensuring a more
stable and secure energy supply. The potential of natural resources and power production
capacity should be explored to design the energy mix and secure a constant power supply
for individuals and companies.

The European Commission recently underscored that over 75% of EU greenhouse
gas emissions are attributed to energy production and consumption [2]. Consequently,
decarbonizing the EU’s energy system is crucial to meeting our 2030 climate goals and
attaining the Union’s goal of carbon neutrality by 2050. This acknowledgment has set in
motion an irreversible transformation of the economies within EU member states. In line
with the [3] and the Framework Strategy for a Resilient Energy Union with a Forward-
Looking Climate Change Policy [4], the EU27 has outlined its action plan along five key
dimensions: energy security, decarbonization, energy efficiency, the internal energy market,
and research, innovation, and competitiveness. The renewable energy sector plays a pivotal
role in this economic transformation. This commitment is mirrored in the Green Deal’s [2]
target of achieving a 32% share of renewable energy consumption by 2030.

Hydropower energy production for the year 2022 [5] was 4334.19 Tera Watts/hour,
compared with 3430.13 TWh in 2010, 2646.73 TWh in 2000, and 1731.65 TWh in 1980. The
regional shares are presented in Figure 1.

While global hydropower production growth has been 150% over the last 42 years, it
has been only 22% for Europe and 599% for Asia–Pacific. Based on these statistics, knowing
the hydropower production potential and trends is essential for decision makers and the
reliability of renewable sources.

The need for renewable energy is growing, and hydropower plays an important role
because of its advantages compared with other renewable sources. The proposed model
used a big data package to identify the hydropower production capacity’s parabolic curve
evolution with a high accuracy rate. The forecast for 2022–2025 provides valuable insight
into how much EU countries can count on hydropower individually and regionally. The
most important contribution of the present study is to provide at least a partial answer to
the question: Is hydropower the solution for the renewable energy shift in Europe? The global
picture offered by our findings is a pillar of energy strategies for the European Union and
each European country and could be replicated for other regions.
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Figure 1. Regional shares of hydropower production, 2022 [5]; Source: authors’ representation.

Forecasting hydropower production capacity is crucial for several reasons, all con-
tributing to the efficient and sustainable management of energy resources. As the world
transitions towards renewable energy to combat climate change, understanding hydropower’s
future potential and limitations is essential. Here is a detailed explanation of the need for
such forecasts:

1. Energy Planning and Policy Making: Accurate forecasts of hydropower production
capacity enable governments and energy planners to make informed decisions about
future energy policies and infrastructure investments. Hydropower, a significant
component of renewable energy portfolios, requires strategic planning to ensure it
complements other energy sources. Forecasts help determine the optimal mix of
energy sources, thereby enhancing energy security and reliability;

2. Grid Stability and Management: Hydropower plants often play a crucial role in main-
taining grid stability due to their ability to quickly ramp up and down production in
response to fluctuating demand. By forecasting hydropower capacity, grid operators
can better manage the balance between supply and demand, preventing blackouts and
ensuring a stable electricity supply. This is particularly important as grids increasingly
incorporate variable renewable energy sources like wind and solar power;

3. Water Resource Management: Hydropower production is closely linked to water
availability, which is subject to seasonal and annual variations. Forecasting helps in
the effective management of water resources, ensuring that water storage and release
schedules from reservoirs are optimized for power generation and other uses, such as
irrigation, flood control, and potable water supply. This is especially critical in regions
experiencing water scarcity or competing water demands;

4. Climate Change Adaptation: Climate change significantly impacts precipitation pat-
terns, snowmelt, and river flows, affecting hydropower production. Forecasting
allows for the anticipation of these changes and the development of adaptive strate-
gies to mitigate adverse effects. These strategies might include modifying operational
protocols, enhancing reservoir capacity, or investing in climate-resilient infrastructure;

5. Economic Efficiency: Hydropower is a capital-intensive investment, and its economic
viability depends on consistent and predictable power generation. Accurate forecasts
allow for better financial planning and risk management, giving investors and stake-



Processes 2024, 12, 1098 4 of 29

holders confidence to support long-term hydropower projects. They also aid in setting
competitive electricity tariffs, benefiting producers and consumers;

6. Environmental Protection: Forecasting hydropower capacity helps minimize the
environmental impact of power generation. By optimizing the timing and quan-
tity of water releases, downstream ecosystems and biodiversity can be protected.
Additionally, forecasts can aid in planning for fish migration and other ecological
considerations often affected by hydropower operations;

7. Integration with Other Renewables: As the share of renewable energy increases in
the energy mix, hydropower can serve as a reliable backup to intermittent sources
like wind and solar. Forecasting hydropower capacity enables better integration and
coordination with these sources, ensuring a stable and continuous power supply.
This hybrid approach leverages the strengths of different renewable technologies,
maximizing overall system efficiency and resilience.

In summary, forecasting hydropower production capacity is essential for efficient
energy planning, grid stability, water resource management, climate change adaptation,
economic efficiency, environmental protection, and the integration of renewables. It equips
policymakers, grid operators, and investors with the insights needed to navigate the
complexities of energy production and resource management in a rapidly changing world.
As such, it is a critical tool in pursuing sustainable and resilient energy systems.

The overall contribution of the present study is the integrated X-ray picture of the
hydropower production capacity in the European Union and the trends and forecasts for
the upcoming years. This basic pillar is the evidence base for the restructuring strategies
of the energy mix and the shift from fossil fuel to renewable energy source policies. The
change from fossil fuel, a stored type of energy, to renewable energy sources, a runoff
energy type, is challenging for decision makers due to the uncertainty and unpredictability
of production. Moreover, the forecast and trends of hydropower production capacity, the
most stable source compared with wind and solar, establish the main lines of the strategies
for innovation and technological development of the hydropower sector, digital adoption,
skilling, and reskilling of human resources. This subject carries significant implications for
multiple facets of society, including the economy, environmental protection, labor market,
education, and overall standard of living. It underscores the ongoing structural transfor-
mation of economies towards sustainability, leading to the emergence of new economic
sectors while phasing out others. This transition necessitates substantially reallocating the
labor force, not just within sectors but notably between them. The shift towards green
foundations amplifies the complexity of this process, accentuating the need for compre-
hensive strategies to navigate these changes effectively and ensure sustainable growth
and prosperity. Based on this study and the findings, an integrated, interdisciplinary,
and complex scientific construction can be developed, offering real-life operators the best
support for their long-term strategic vision.

The novelty of the proposed model is, firstly, the novelty of the tools used. The SMART
data use is represented by the NetCDF data formats for both the input and output of the
model. Our data are structured in a Space-Time Cube data cube by generating space-time
bins with defined features and associated spatiotemporal attributes. This fact is highly
important for the high level of data interoperability with machines (i.e., interfaces for C,
C++, Java, Python, IDL, MATLAB, R, Ruby, and Perl, etc.). Secondly, there is a high potential
to apply a large spectrum of forecasting tools, which are more complex and differentiated
by the assumption of seasonality modeling, from the simplest hypothesis to the more
complex one. This study explores the natural trend of hydropower production capacity
and generates a forecast based on the assumption of non-seasonal variation modeling with
the simplest forecast tool (Curve Fit Forecast) as a first step in the new digital era of SMART
data. Forecasting entails using historical data and statistical techniques to predict future
events or trends. Scrutinizing patterns and trends in previous data enables making educated
predictions about what may occur in the future. From this perspective, the study proceeds,
for the first time, with data from 32 years and 33 locations. Thirdly, the combination of
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the Curve Fit Forecast with the New Space-Time Pattern Mining Tools and the Visualized
Space-Time Cube in 2D and 3D, using NetCDF data, gives better insight and accessible
information to decision makers. A tendency to specialize in hydropower production
capacity can be identified in our case, as well as the less extensive capacity development.

2. Background Literature

Next year, the European Union aims to replace fossil fuels with renewable energy.
Hydropower is one of the oldest energy sources, especially watermills, and the well-known
Dutch windmills for wind. The motivation to focus on renewable energy is less pollution
and spoiling of resources, despite the lower technology costs and regional dependencies [6].
The cohesion between energy and the environment must be mitigated to reach the optimal
balance between power generation and environmental protection [7].

Small producers are equally important as large ones and consistently contribute to
power generation for regions with large river structures [8]. The shift from fossil fuels to
renewable energy is a challenge if economic development is to be sustained [9].

Hydropower production is more stable than wind and solar, and the need for storage
is less in the short term. Once the other regenerative sources become more productive,
hydropower will maintain the balance [10].

To establish the efficiency of hydropower production, interdisciplinary studies should
be conducted; hydrologic flow and climate change influence hydropower production [11,12]
The small-scale production of hydropower generates consistent extensive growth and gains
a large share of the total; its fluctuation must be evaluated using hydrologic flow and other
influencing factors such as irrigation and water supply [13,14]. Other studies, besides
hydrology and hydrogeology are considered to estimate the efficiency and opportunity of
hydropower development [15].

Manzano-Agugliaro et al. [16] explored small-scale hydropower installation and poten-
tial in European countries, highlighting Italy, Austria, Greece, Spain, and France with over
4000 GWh potential. The estimated worldwide potential of small-scale hydropower [17,18]
shows the highest for Asia–Pacific (3.73 PWh) and lowest for Europe (0.34 PWh), but still a
considerable quantity to be developed. The production must be correlated with storage
and water supply for sustainable exploitation and conservation of the resources [19]. Dam
construction could contribute to river flow optimizations and regional development, but
it could also imbalance the environment [20]; sustainable solutions must be considered
according to local conditions [21,22]. The last decade has been characterized by explo-
sive dam construction [23], with Southern Europe representing a hotspot [24]. Moreover,
forecasting hydropower in a dam network optimizes the production capacity [25].

Integrated power generation systems using different sources are a better solution than
relying on a single option; wind and hydropower have synergy and flexibility [26,27]. Small
hydropower production can be combined with solar energy. Kougias et al. [28] studied
complementarity, revealing a need for stimulating multi-source compromise. These new
systems integrate technical solutions that are more flexible and sensitive to water flow
changes and storage solutions [29].

Energy public policies consider all local resources and the complementarity of renew-
able energy sources with projects like water supply, irrigation, navigation, and recreation
facilities to create the best combination [30,31]. The opportunity for small-scale hydropower
in Malaysia [32] identifies considerable potential with only 17.5% capacity installed. Energy
production has to be balanced with the environmental conditions for each location to avoid
damaging the ecosystem [33].

A model of an integrated energy system is proposed for South and Central America by
Barbosa et al. [34], covering the local potential and storage facilities. The local resources are
influenced by the season, and the complementarity of the sources should cover them [35].
The analysis of the Swiss Cantons’ uses of small-scale hydropower [36] argues for consid-
ering regional and local factors and mixed energy policies. Creating a renewable energy
mix requires a multicriterial model that considers the sensitivity analysis and the sources’
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complementarity [37,38]. Small-scale hydropower sources are highly appreciated as a mass
local sustainable solution. Drakaki et al. [39] propose a day-ahead forecast for a small hydro
plant to reveal its potential or hydropower scheduling [40]. Jurasz et al. [41] developed a
day-ahead model for a hydro–wind hybrid system.

The efficiency of hydropower production depends not only on the water flow but
also on the technology used. Hatata et al. [42] compared three types of turbines for
small hydropower in Egypt and found that Crossflow and Kaplan are suitable solutions. A
comprehensive study [43] on digital adoption in hydropower production and storage makes
it a more versatile and efficient replacement for fossil fuel; unfortunately, the potential is
extensively limited, so the orientation is to make it intensively unlimited.

Zhou et al. [44] developed a forecast model (DeepHydro) for hydropower production
for a river with multiple stations, and Rahman et al. [45] developed a prediction methodol-
ogy using artificial neural networks. Similarly, cascade hydropower can be estimated [46]
or a hybrid hydro-photovoltaic system [47]. The study [45] presented power forecasting
methods for solar, wind, and hydro sources using artificial neural networks. The fore-
casting models [48–52] refer to the power forecast of a location with influence factors.
The multi-criteria factors forecast for a dam reservoir gives a hint about the sustainable
exploitation of the hydrologic resources [53]. Bernardes et al. [54] reviewed the studies that
present machine learning in hydropower production and clustered them. The findings
show a large area of applications (supervising, operation management, river flow, etc.) and
propose another area to be explored [55,56]. Machine learning is used by Sapitang et al. [57]
to forecast the changes in water in a hydropower supplier reservoir. Sweeney et al. [58]
also proposed a framework model for wind and solar energy forecasting. Another type of
forecasting is for renewable energy for one country (e.g., Poland) to estimate the energy
mix [59–62].

Pata and Aydin [63] tested the environmental Kuznets curve to evaluate the ecological
footprint of the six hydropower producers (Brazil, China, Canada, India, Norway, and the
USA). Unfortunately, the model does not confirm the beneficial effects, and other renewable
energies should be considered.

The forecast of the hybrid renewable sources combines hydropower production and
relative stability with solar and wind to obtain optimal storage and cost results [27,64–66].

Considering the strategic context and the target of the Green transition, which implies
the energy transition from fossil fuel to renewable sources without economic deceleration
and electric power consumption growth, all actors are paying attention to the potential
implementation direction. Knowing the most promising renewable sources in terms of
capacity development, yield, predictability, and availability for digital adoption and in-
novation, the best strategic frameworks can be set up. The X-ray analysis of the actual
stage, combined with trends and perspective, depicts the best pathways of this radical
transition nowadays. The forecast subject was of interest to scientists looking for solutions
to reach the optimum in renewable energy production, especially in hydropower. So far, the
worldwide potential of hydropower production capacities, dams or dam systems/cascades,
river systems, countries’ resources, and hybrid systems has been explored. No study was
dedicated to European countries, and no curve fit forecast was used before. Moreover, the
identified gap in the literature is the countries’ forecast on short-term and long-term trends.
To address it, the following hypotheses were set up:

Hypothesis 1: The curve fit parabolic forecast model gives a reliable approximation of the hy-
dropower production capacity (1990–2021).

Hypothesis 2: The hydropower production capacities are on an uptrend for the period 1990–2025
in all European countries.

Hypothesis 3: Countries’ capacity to produce electrical hydropower differs by speed and acceleration.

Hypothesis 4: The quadratic model validates for all 33 European countries the medium-term level
forecast of hydropower production capacities.
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Hypothesis 5: How many outliers does the data set contain?

3. Materials and Methods

MW’s net maximum electrical capacity is the main technical characteristic of plants
that produce electrical energy from hydro sources, which this study calls hydropower
production capacities.

Green energy production is a priority in implementing the Green Transition. Imple-
menting this objective requires an objective assessment, first of all, of the resources involved
in this process. Thus, the first essential stage is the analysis of the natural trend of the evolu-
tion of the hydropower production capacity in the well-known context of the dependence
on the geographical resources that allow the exploitation of the potential energy of water.
Hydropower production capacity depends on static characteristics such as water basins
and dynamic characteristics, respectively, on the amount and flows of water that feed
the water basins. For the first time, we propose a space-time analysis of the hydropower
production capacity in annual variation for the European countries over three decades, a
fact that requires an integrated analysis using the latest tools.

The novelty of the tools used in the construct of the study is the data engineering under
space-time format managed as Space-Time Cube in NetCDF data formats, an array-oriented
scientific data format in trend with the New Data Revolution. The “classical” panel data
from Eurostat were transformed into NetCDF data, which means that these new forms
of data use software libraries and machine-independent data formats that support the
creation, access, and sharing. The advantages of data in netCDF format are that these data
are self-describing, portable, scalable, appendable, sharable, and archivable. That is why
the first result of the study is the valuable input and output NetCDF data creation.

Moreover, the hydropower production capacity forecast as a non-seasonal process
was modelled with the Curve Fit Forecast tool launched since 2020 in ArcGIS PRO Spatial
Statistical Tool, which reconfirms the novelty and complexity of the methods.

Forecast methods need consistent time series for much shorter time predictions. Using
a time series for a period of 32 years, the authors applied the Curve Fit Forecast tool.
It approximates the curve to predict the future values for each location in a space-time
cube [67]. Various curves are considered for the forecast: parabolic, exponential, or S-shape
(Gompertz). For this study, the parabolic curve was selected to forecast the hydropower
production capacity in the EU countries as the best, in our opinion, to identify the uptrends
and downtrends of the hydropower production capacity. The Curve Fit Forecast tool uses
curve fitting to predict future values for each location within a space-time cube. Initially,
the tool fits a parametric curve to each location in the Input Space-Time Cube; subsequently,
it forecasts the time series by extending this curve to future time steps [68].

The general working assumptions of the model are:

(a) Hydropower production capacity is predictable;
(b) The annual data of the hydropower production capacity are not affected by seasonality,

a fact that indicates a simplified trend;
(c) Curve Fit Forecast is a proper modeling tool that lends itself to process data not

affected by seasonality;
(d) The simple trend of the data led us to use the Curve Fit Forecast tool as the most

suitable tool from the package available in the ArcGIS Time Series Forecasting toolset.
Exponential Smoothing Forecasts moderate trends and strong seasonal behavior [68]
(Buie, 2020), and Forest-based Forecast is used when the data exhibits intricate trends
or seasonal patterns or undergoes changes that do not conform to typical mathematical
functions like polynomials, exponential curves, or sine waves [69] (Esri, 2023).

On the other hand, a forecast involves projecting future developments but with a
certain level of uncertainty due to external factors that may impact the outcome according
to Seradayan et al. [70].
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The Curve Fit Forecast method stands out because it fits various parametric curves
to data, handles non-linear trends, and manages multivariate spatial-temporal datasets.
Its integration with GIS platforms and advanced computational techniques makes it a
powerful tool for modern data analysis and forecasting. As data grow in volume and
complexity, the Curve Fit Forecast method offers a novel and sophisticated approach
to making accurate and reliable predictions, essential for informed decision making in
numerous fields.

3.1. Quadratic Time Model

The parabolic equation of the variation of hydropower production capacity, according
to Galileo’s equation, under the assumption of rectilinear and uniform movement over
time. The general form of the equation is:

ySTC = f (xSTC) = ax2
STC + bxSTC + c (1)

where f (xSTC) is a Curve-Fit Parabolic Forecast, ax2
STC is the quadratic component, bxSTC

is the linear component, c is the constant, a is the quadratic coefficient, and b is the linear
coefficient. It is very important to emphasize that the Curve-Fit Forecast, the Exponential
Smoothing Forecast, and the Forest-based Forecast represent a set of advanced statistical
techniques introduced in the Spatial Statistics Package in December 2020 as part of the
ArcGIS Pro 2.7 release [71] (Bakshi, 2020).

The transposition of the Equation (1) for the hydropower production capacity is:

Hi = at2 + bt + c (2)

where Hi is the hydropower production capacity for a location (i = 1, 2, . . .33), a is the
quadratic coefficient, b is the linear coefficient, c is the constant, and t is the time. Consid-
ering the interpretation of the hydropower production capacity at constant acceleration,
respectively only its speed changes in time, according to parabolic kinematic, ignoring
the cause of this variation, then acceleration (acc) is 2a, and b is the linear coefficient
like the initial velocity. The kinematics equations for the hydropower production capac-
ity follow the uniformly accelerated rectilinear motion model, also known as constant
acceleration motion.

Velocity and acceleration are the concepts used to interpret the model results. Velocity
is a vector quantity that describes the rate at which an object covers distance. Velocity
indicates how fast an object is moving, regardless of its direction. Acceleration is a vector
quantity that describes the rate of velocity change with respect to time. It indicates how
quickly an object’s velocity is changing. Acceleration can occur in various directions, includ-
ing increasing and decreasing velocity. Positive acceleration indicates speeding up, while
negative acceleration (also known as deceleration or retardation) indicates slowing down.

The model performance is measured using the Root Mean Square Error (RMSE). RMSE
is an accuracy metric useful for evaluating forecasting errors across various models on the
same dataset rather than across different datasets due to its scale sensitivity. It is always a
non-negative value, with 0 being the ideal but practically unattainable figure, signifying a
perfect match with the data. Generally, a smaller RMSE value is preferable, indicating a
closer fit to the observed data. Nonetheless, comparing different datasets is not appropriate,
as the scale of the data involved influences RMSE values [72]. RMSE is optimal for normal
(Gaussian) errors [73].

3.2. Forecasting Model or Evaluate the Curve to Fit with the Raw Data

A curve was generated using an econometric model of the parabolic type for the
forecast model. Forecasting the RMSE value allows us to see how well the estimated curve
fits the original data, or in other words, how much the curve differs from the raw data. For
this purpose, at each location of the space-time cube, the square root of the average squared
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difference between the curve (ct) and the raw values of the time series (rt) was measured
for all time series bins (see Equation (3)).

Forecast RMSE =

√
∑T

t=1(ct − rt)
2

T
(3)

where T is the number of time steps, ct is the value of the curve resulting from the quadratic
model, rt is the raw value of the time series at time t, and Root Mean Square Error (RMSE) is
the standard deviation of the residuals (prediction errors). Forecast RMSE will be referred
to as FRMSE. FRMSE allows us to see if the trajectory described by the curve is appropriate
for explaining the raw data series. In our specific case, it can be judged how well the
quadratic model describes the time evolution of the hydropower production capacities in
each country with data from Europe, comparing between countries how well the quadratic
model fits the raw data.

3.3. Validation Model or How Well the Curve Generates the Forecast

The next step is to check how well our quadratic curve can forecast. At each location
of the space-time cube, the Validation RMSE (VRMSE) value, also called the accuracy of the
forecast, was calculated as the square root of the average squared difference between the
forecast values generated by the quadratic curve (ct) and the raw values of the excluded
time series steps (rt), respectively for the last m time steps, namely from T-m+1 to T times.
These ‘m’ time steps were kept for forecast validation. The minimum validation criteria is
that m is not 0 and could be between 10% and 25% of the number of total time steps [74].

Validation RMSE =

√
∑T

t=T−m+1(ct − rt)
2

m
(4)

where T is the number of time steps, m is the number of time steps withheld for validation,
ct is the value forecasted from the first T-m time steps, and rt is the raw value of the T-m
to T time steps. For the ‘m’ time steps, the curve values were the forecasted values. The
quadratic model was checked to see if it is good for forecasting by calculating the VRMSE
value. VRMSE measures how large the error is between the simulated forecast values and
the raw values at the m retained time steps.

3.4. Outlier Analysis

RMSE represents the square root of the mean of the squared differences between
predicted and observed values. Due to this calculation method, the impact of each error on
RMSE increases with the magnitude of the error squared, meaning larger errors significantly
inflate the RMSE value. As a result, RMSE is particularly responsive to outliers, as these
can disproportionately affect the overall measure.

The Generalized Extreme Studentized Deviate (GESD) test detects outliers at each
location of the space-time cube. The Grubbs’ test [75,76] detects a single outlier in a
univariate data set that follows an approximately normal distribution. Based on Grubbs, a
sequence of tests was applied iteratively to check for a specific number of outliers at the
specified confidence level.

3.5. Visualization Space-Time Cube (STC) in 3D and 2D

This tool displays the variables contained within a netCDF space-time cube, along with
outcomes derived from Space-Time Pattern Mining tools, by producing a two-dimensional
and three-dimensional depiction tailored according to the specified variable and theme.
The Mann-Kendall statistic is employed to assess the trend of bin values over time for each
location [77].
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3.6. Methodological Steps

Step 1: Selecting the input data
The data set of Electricity production capacities for renewables and wastes was ex-

tracted from EUROSTAT [78] in June 2023 [NRG_INF_EPCRW__custom_6447077]. The
input data code is Hydro RA_100 for Net maximum electrical capacity in MW as the main
technical characteristic of plants. The period considered is 1990–2021, 32 years, meaning
32 steps with a yearly frequency. The number of steps excluded for validation of the time
series is 8, obtained as a quarter of the total. It was set to a 5% maximal number of outliers
and a confidence level of 90%. The forecast to be done is for four years.

Step 2: Building the space-time cube (STC) for Defined Locations (in our case the
NUTS0) locations

To create the STC, the unique identifier for each location was calculated and converted
into a short numeric unique location identifier. Then, the fields were converted into yearly
data associated with each yearly value of the hydropower production capacity measure.
Finally, the STC was created and visualized in 2D and 3D maps and global scenes.

Step 3: Generating the Parabolic model of Curve Fit Forecast in GIS
In parabolic modeling, the Curve Fit Forecast statistics give us the synthetic character-

istics of STC for hydropower production capacity. The details of time management and the
accuracy of the locations’ linear modeling or the outliers’ statistics can be explored in the
results section.

The spatial pattern of the distribution of the values forecasted by the parabolic model
over four years, respectively, will be generated for 2025 for the hydropower production
capacity in 2D and 3D. Detailed parabolic forecast Pop-up representations for each location
were extracted to analyze the past and future of the hydropower production capacity in
line with the energy shift policies to renewable sources.

3.7. Descriptive Statistics and Normality Testing

The descriptive statistics for hydropower production capacity were calculated for a
32-year time series, 1990–2021, except for the UK, which had a 30-year time series. The
statistical results are presented in Table 1.
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Table 1. Descriptive statistics for hydropower production capacity (MW).

N Mean Std. Deviation Minimum Maximum

Austria 32 12,436.82 1255.029 10,947 14,748
Belgium 32 1413.92 8.790 1401 1428
Bulgaria 32 2672.46 577.495 1705 3379
Czechia 32 2037.13 317.804 1393 2285

Germany 32 10,097.69 1078.917 8182 11,436
Denmark 32 9.31 1.319 7 11
Estonia 32 4.02 2.650 0 8
Greece 32 3043.25 332.617 2408 3421
Spain 32 18,074.51 1508.427 15,657 20,132

Finland 32 2971.13 167.984 2621 3171
France 32 25,310.25 372.280 24,673 26,291
Croatia 32 2104.61 60.184 2046 2201

Hungary 32 51.88 4.256 48 60
Ireland 32 507.59 71.182 237 532

Italy 32 20,999.39 1144.572 18,770 22,750
Lithuania 32 773.41 211.196 95 877

Luxembourg 32 1182.83 86.584 1133 1331
Latvia 32 1540.93 33.281 1487 1588

Netherlands 32 37.00 .018 37 37
Norway 32 29,380.09 2111.476 26,868 34,075
Poland 32 2246.23 148.431 1888 2400

Portugal 32 5208.98 1154.402 3341 7262
Romania 32 6295.41 324.128 5687 6734

Serbia 32 2482.35 1087.467 0 3085
Sweden 32 16,399.63 158.805 15,996 16,732
Slovenia 32 1033.21 236.330 734 1352
Slovakia 32 2100.09 920.077 0 2548
Türkiye 32 16,194.03 7628.186 6764 31,493

United Kingdom 30 4369.36 203.235 3897 4773

Source: authors’ research results.

Norway, France, and Italy have the highest average annual hydropower production
capacity, while Denmark, Estonia, the Netherlands, and Hungary have lower capacities.
In our opinion, large-scale hydropower production capacity reflects a specialization in
renewable sources.

Table 2 presents the analysis of the normality of the time series distributions for the
hydropower production capacity of 28 countries (except the Netherlands, which has a
constant production) from 1990 to 2021. Two non-parametric tests, Kolmogorov–Smirnov
and Shapiro–Wilk, were applied.
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Table 2. Tests of Normality a.

Kolmogorov–Smirnov b Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Austria 0.223 30 0.001 0.874 30 0.002
Belgium 0.161 30 0.045 0.916 30 0.021
Bulgaria 0.208 30 0.002 0.875 30 0.002
Czechia 0.316 30 0.000 0.663 30 0.000

Germany 0.218 30 0.001 0.860 30 0.001
Denmark 0.155 30 0.062 0.893 30 0.006
Estonia 0.194 30 0.006 0.900 30 0.009
Greece 0.232 30 0.000 0.864 30 0.001
Spain 0.173 30 0.023 0.910 30 0.015

Finland 0.133 30 0.187 0.915 30 0.020
France 0.167 30 0.033 0.939 30 0.083
Croatia 0.318 30 0.000 0.758 30 0.000

Hungary 0.295 30 0.000 0.759 30 0.000
Ireland 0.470 30 0.000 0.335 30 0.000

Italy 0.087 30 0.200 * 0.962 30 0.340
Lithuania 0.397 30 0.000 0.576 30 0.000

Luxembourg 0.485 30 0.000 0.498 30 0.000
Latvia 0.178 30 0.017 0.928 30 0.043

Norway 0.193 30 0.006 0.906 30 0.012
Poland 0.217 30 0.001 0.873 30 0.002

Portugal 0.188 30 0.009 0.912 30 0.016
Romania 0.088 30 0.200 * 0.948 30 0.147

Serbia 0.489 30 0.000 0.498 30 0.000
Sweden 0.110 30 0.200 * 0.986 30 0.957
Slovenia 0.188 30 0.009 0.866 30 0.001
Slovakia 0.432 30 0.000 0.497 30 0.000
Türkiye 0.213 30 0.001 0.856 30 0.001

United Kingdom 0.187 30 0.009 0.876 30 0.002
a The Netherlands is constant and it has been omitted. b Lilliefors Significance Correction. * This is a lower bound
of the true significance. Source: authors’ research results.

In accordance with the Kolmogorov–Smirnov test, the null hypothesis H0: the series
has a normal distribution; H0 is rejected if p < 0.05. The Shapiro-Wilk test uses the null
hypothesis H0: the variable has a normal distribution in a population; H0 is also rejected if
p < 0.05. In Table 2, the time series with a normal distribution was highlighted in yellow.

The results of the analysis based on the significance level of the normality tests indicate:

(a) Identification of a normal variable distribution for the hydropower production capac-
ity in 1990–2021 for Italy, Romania, Sweden, and partially for Denmark and Finland.
The normality decision is taken as follows: H0 is accepted after both the Kolmogorov–
Smirnov and Shapiro–Wilk tests: in the case of Italy, Romania, and Sweden, p > 0.05
means that the hydropower production capacity has a normal distribution. Denmark
and Finland have a normal distribution confirmed by the Kolmogorov–Smirnov test
of normality, and France only after the Shapiro–Wilk;

(b) The hypothesis of a normal variable distribution for the hydropower production
capacity from 1990 to 2021 for the other 23 countries is rejected.

4. Results
4.1. The Space-Time Cube (STC) Creation for Hydropower Production Capacity

The first result of our study is the STC for hydropower production capacity, and the
characteristics are presented below:

Synthesis of STC using format netCDF calculates data for hydropower production capacity.
STC method: Create Space-Time Cube From Defined Locations
Cod date input: Hydro RA_100
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Time period: 1990–2021
Time frequency: 1
Measure unit: MW

• Time management:

Number of Time Steps to Forecast → 4
Number of Time Steps to Exclude for Validation → maximum T/4 = 32/4 = 8, 8
Outlier Option → IDENTIFY
Outlier Maximal Number—5% (round less) = 1,6 = 1
Level of Confidence → 90%
Number of time steps → 32
Number of locations analyzed → 33
Number of space-time bins analyzed → 1088

• Forecast management uses the input data from the STC for Hydroproduction
netCDF data

Forecast Method: Curve Fitting
Curve Type → PARABOLIC

• Summary of accuracy across locations

Category Min Max Mean Median Std. Dev.
Forecast
RMSE

0.00 1222.18 180.74 81.05 263.10

Validation
RMSE

0.00 3877.37 566.28 235.89 836.49

• Summary of time series outliers

Number of locations containing outliers → 7
Percent of locations containing outliers → 20.59
Number of outliers by location (Min; Mean; Max) → 0; 0.21; 1
Number of outliers by time step (Min; Mean; Max) → 0; 0.22; 1
Time step containing the largest number of outliers

after 1990-01-01 00:00:01
to on or before 1991-01-01 00:00:00

4.2. The Countries’ Hierarchy Based on the Parabolic Forecast Model

For each location (country), a forecast equation for the Curve Fit Forecast parabolic
model was developed. A parabolic regression is generated simultaneously for all studied
locations using Equation (2) and the geolocated package data from 1990 to 2021. Each loca-
tion benefits from its own equation and the a, b, and c values occurrence. Table 3 presents
the equations and the obtained values of a, b, c, acc, and vinit for the 33 studied countries.
The countries are listed and grouped after the value of acc. As mentioned, the results
are interpreted using the initial speed and the acceleration. Positive acceleration means
a perspective of hydropower production capacity growth, while negative acceleration,
a deceleration, represents a perspective of stagnation or constriction of the hydropower
production capacity.
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Table 3. Parabolic model equations hierarchy based on the quadratic coefficient.

Country/Location Forecast Equation a acc = 2*a vinit = b c

1 Türkiye Xt = a*tˆ2 + b*t + c; a = 28.935940, b = −130.995913,
c = 8805.818937 28.93594 57.87188 −130.9959 8806

2 Norway Xt = a*tˆ2 + b*t + c; a = 7.425667, b = −16.026150,
c = 27211.444352 7.425667 14.851334 −16.02615 27211

3 Austria Xt = a*tˆ2 + b*t + c; a = 4.082474, b = 1.495997,
c = 11084.785219 4.082474 8.164948 1.495997 11085

4 Portugal Xt = a*tˆ2 + b*t + c; a = 2.805522, b = 29.781189,
c = 3834.176860 2.805522 5.611044 29.78119 3834

5 Albania Xt = a*tˆ2 + b*t + c; a = 2.212243, b = −43.328446,
c = 1579.880682 2.212243 4.424486 −43.32845 1580

6 France Xt = a*tˆ2 + b*t + c; a = 0.804141, b = 12.049646,
c = 24861.734480 0.804141 1.608282 12.04965 24862

7 Luxembourg Xt = a*tˆ2 + b*t + c; a = 0.539666, b = −9.771398,
c = 1158.621298 0.539666 1.079332 −9.771398 1159

8 Croatia Xt = a*tˆ2 + b*t + c; a = 0.243154, b = −1.771637,
c = 2052.923011 0.243154 0.486308 −1.771637 2053

9 North Macedonia Xt = a*tˆ2 + b*t + c; a = 0.186550, b = 4.583460,
c = 398.602503 0.18655 0.3731 4.58346 399

10 Slovenia Xt = a*tˆ2 + b*t + c; a = 0.169198, b = 19.250367,
c = 679.754752 0.169198 0.338396 19.25037 680

11 Ireland Xt = a*tˆ2 + b*t + c; a = 0.153975, b = −5.428837,
c = 541.621825 0.153975 0.30795 −5.428837 542

12 Islanda Xt = a*tˆ2 + b*t + c; a = 0.128020, b = 48.298374,
c = 657.730548 0.12802 0.25604 48.29837 658

13 Hungary Xt = a*tˆ2 + b*t + c; a = 0.013843, b = −0.015288,
c = 47.605949 0.013843 0.027686 −0.015288 48

14 Netherlands Xt = a*tˆ2 + b*t + c; a = −0.000084, b = 0.002022,
c = 36.992731 −0.000084 −0.000168 0.002022 37

15 Estonia Xt = a*tˆ2 + b*t + c; a = −0.004693, b = 0.406558,
c = −0.755281 −0.004693 −0.009386 0.406558 −1

16 Denmark Xt = a*tˆ2 + b*t + c; a = −0.008492, b = 0.163557,
c = 9.540506 −0.008492 −0.016984 0.163557 10

17 Latvia Xt = a*tˆ2 + b*t + c; a = −0.021891, b = 4.029606,
c = 1485.598275 −0.021891 −0.043782 4.029606 1486

18 Bulgaria Xt = a*tˆ2 + b*t + c; a = −0.048620, b = 58.487002,
c = 1781.733294 −0.04862 −0.09724 58.487 1782

19 Belgium Xt = a*tˆ2 + b*t + c; a = −0.060061, b = 2.485544,
c = 1394.945705 −0.060061 −0.120122 2.485544 1395

20 Montenegro Xt = a*tˆ2 + b*t + c; a = −0.127530, b = 35.077630,
c = −156.422243 −0.12753 −0.25506 35.07763 −156

21 Sweden Xt = a*tˆ2 + b*t + c; a = −0.239704, b = 11.121065,
c = 16305.272059 −0.239704 −0.479408 11.12107 16305

22 Italy Xt = a*tˆ2 + b*t + c; a = −0.473789, b = 136.156730,
c = 19043.174334 −0.473789 −0.947578 136.1567 19043

23 Finland Xt = a*tˆ2 + b*t + c; a = −0.512895, b = 33.124439,
c = 2624.643382 −0.512895 −1.02579 33.12444 2625

24 Romania Xt = a*tˆ2 + b*t + c; a = −0.542359, b = 50.603248,
c = 5687.602515 −0.542359 −1.084718 50.60325 5688

25 Poland Xt = a*tˆ2 + b*t + c; a = −0.589113, b = 33.103568,
c = 1924.885053 −0.589113 −1.178226 33.10357 1925

26 Greece Xt = a*tˆ2 + b*t + c; a = −0.983569, b = 64.142035,
c = 2369.200201 −0.983569 −1.967138 64.14204 2369

27 Spain Xt = a*tˆ2 + b*t + c; a = −1.268294, b = 196.048588,
c = 15448.582875 −1.268294 −2.536588 196.0486 15449
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Table 3. Cont.

Country/Location Forecast Equation a acc = 2*a vinit = b c

28 Lithuania Xt = a*tˆ2 + b*t + c; a = −1.586580, b = 64.874423,
c = 284.284592 −1.58658 −3.17316 64.87442 284

29 Czechia Xt = a*tˆ2 + b*t + c; a = −1.833580, b = 84.229781,
c = 1328.400393 −1.83358 −3.66716 84.22978 1328

30 Germany Xt = a*tˆ2 + b*t + c; a = −3.999256, b = 226.911689,
c = 7882.314171 −3.999256 −7.998512 226.9117 7882

31 United Kingdom Xt = a*tˆ2 + b*t + c; a = −6.572286, b = 172.362642,
c = 3563.935688 −6.572286 −13.144572 172.3626 3564

32 Slovakia Xt = a*tˆ2 + b*t + c; a = −6.633771, b = 270.837324,
c = 61.407587 −6.633771 −13.267542 270.8373 61

33 Serbia Xt = a*tˆ2 + b*t + c; a = −7.243957, b = 302.310069,
c = 154.454210 −7.243957 −14.487914 302.3101 154

Source: authors’ research results.

It can be seen that there are four groups of countries: those with consistent accelerated
growth (acc > 1) led by Turkey and Norway; those with accelerated growth (1 > acc > 0) led
by Croatia and North Macedonia; those with accelerated decline (−1< acc < 0) including
Italy and Sweden; and those with consistent accelerated decline (acc < −1) led by the UK,
Slovakia, and Serbia. Unfortunately, the balance is in favor of decline, with 20 countries
compared to 13. This offers information about hydropower production capacity that should
be considered together with the use of other renewable sources of energy to shift away
from fossil fuels.

4.3. Analyses of the Forecast Parabolic Models

The proposed parabolic models were analyzed using the least squares method. The
mean square error and the root mean square error (RMSE) were calculated for the input
values (1990–2021) to obtain the FRMSE and for the predicted values (2022–2025) to obtain
the VRMSE.

Table 4 presents the results for all 33 European countries ranked by VRMSE and
FRMSE to be easily compared.

Table 4. Forecast values for 2022–2025 and evaluation of the parabolic forecast model using FRMSE
and VRMSE.

Location 2022 2023 2024 2025

FR
M

SE

V
R

M
SE

Location 2022 2023 2024 2025

FR
M

SE

V
R

M
SE

1 Netherlands 37 37 37 37 0 0 1 Netherlands 37 37 37 37 0 0
2 Denmark 6 6 5 5 1 1 2 Denmark 6 6 5 5 1 1
3 Estonia 7 8 8 8 1 4 3 Estonia 7 8 8 8 1 4
4 Hungary 61 62 63 64 1 5 4 Hungary 61 62 63 64 1 5
5 Belgium 1413 1412 1410 1408 5 15 5 Belgium 1413 1412 1410 1408 5 15
6 Latvia 1592 1595 1597 1600 11 31 6 Croatia 2245 2259 2274 2289 18 26
7 Croatia 2245 2259 2274 2289 18 26 7 Latvia 1592 1595 1597 1600 11 31
8 N. Maced 736 753 770 788 21 45 8 Poland 2381 2376 2369 2362 24 38
9 Finland 3159 3159 3158 3156 23 65 9 N. Maced 736 753 770 788 21 45
10 Poland 2381 2376 2369 2362 24 38 10 Italy 22,915 23,020 23,125 23,228 100 55
11 Luxembourg 1399 1424 1450 1478 38 196 11 Finland 3159 3159 3158 3156 23 65
12 Romania 6752 6767 6781 6794 52 72 12 Romania 6752 6767 6781 6794 52 72
13 Slovenia 1469 1499 1530 1561 53 267 13 France 26,071 26,135 26,201 26,269 118 160
14 Ireland 526 530 535 540 69 205 14 Greece 3415 3415 3413 3409 71 185
15 Greece 3415 3415 3413 3409 71 185 15 Luxembourg 1399 1424 1450 1478 38 196
16 Albania 2459 2559 2664 2773 75 357 16 Ireland 526 530 535 540 69 205
17 Lithuania 736 697 656 611 87 386 17 Slovenia 1469 1499 1530 1561 53 267
18 Italy 22,915 23,020 23,125 23,228 100 55 18 Austria 15,313 15,580 15,855 16,138 177 334
19 France 26,071 26,135 26,201 26,269 118 160 19 Albania 2459 2559 2664 2773 75 357
20 Czechia 2146 2111 2073 2030 120 359 20 Czechia 2146 2111 2073 2030 120 359
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Table 4. Cont.

Location 2022 2023 2024 2025

FR
M

SE

V
R

M
SE

Location 2022 2023 2024 2025

FR
M

SE

V
R

M
SE

21 Islanda 2334 2391 2448 2505 146 678 21 Sweden 16,416 16,411 16,406 16,401 151 370
22 Sweden 16,416 16,411 16,406 16,401 151 370 22 Lithuania 736 697 656 611 87 386
23 Montenegro 835 862 889 915 152 604 23 Norway 34,302 34,769 35,251 35,747 298 401
24 Austria 15,313 15,580 15,855 16,138 177 334 24 Montenegro 835 862 889 915 152 604
25 Bulgaria 3604 3659 3714 3769 215 667 25 Bulgaria 3604 3659 3714 3769 215 667
26 Portugal 7660 7872 8090 8313 289 1240 26 Islanda 2334 2391 2448 2505 146 678
27 Norway 34,302 34,769 35,251 35,747 298 401 27 Spain 20,423 20,537 20,648 20,757 317 943
28 Spain 20,423 20,537 20,648 20,757 317 943 28 Portugal 7660 7872 8090 8313 289 1240
29 Germany 11,048 11,015 10,974 10,925 363 1800 29 Slovakia 1935 1775 1601 1414 450 1602
30 Slovakia 1935 1775 1601 1414 450 1602 30 Germany 11,048 11,015 10,974 10,925 363 1800
31 Serbia 2411 2242 2059 1861 571 2042 31 Serbia 2411 2242 2059 1861 571 2042
32 UK 2350 2095 1827 1546 906 2224 32 UK 2350 2095 1827 1546 906 2224
33 Türkiye 34,244 35,994 37,802 39,667 1222 3877 33 Türkiye 34,244 35,994 37,802 39,667 1222 3877

Source: authors’ research results.

The validation of the parabolic forecast model ranges from 0 to 1222 for VRMSE and
from 0 to 3977 for FRMSE, highlighting less prediction accuracy but an acceptable level for
past values. For 11 locations (33%), the rank is the same; for 9 locations (27%), the rank is
+/−1; and for 4 locations (13%), the rank is +/−2. This allows us to consider the model
suitable for predicting hydropower production capacity. The least validated models are for
Serbia, the UK, and Turkey. The pop-up representation provides a better perspective for
each location.

4.4. 3D and 2D Visualization of the Forecast

The proposed model allows us to generate a visual 3D representation of the STC using
ArcGIS Pro 3.1. Figure 2 presents a 3D representation of STC values for the maximum
hydropower production capacity from 1990 to 2025. It should be noted that the bins for
the earlier years are at the base, and as the present is approached, the forecasted values
are those at the upper end of the columns. The change in trend becomes evident through
the transition to the upper class of production capacity, with values over 23,288.268 MW
for Turkey and from class 2 to class 3 for Portugal. The average values for the period are
classified in the legend.

The overall data trend for MEGAWATTS_N_SUM_ZEROS resulting from the tem-
poral aggregation for all studied locations (European countries) is an annual growth of
8 MW/year, with a probability of p = 0.000.

Figure 3 presents the ESDA 2D visualization of the forecasted values for electricity
production capacities from renewable hydropower sources in 2025, estimated using the
parabolic forecast model and STC for hydropower capacity production. A polarizing
trend is identified. Norway and Turkey raised the bar for the highest performance class
to over 26,268 MW in 2025, compared to 23,228 MW in the from STC’s 3D representation
of hydropower production capacity. Conversely, the threshold for the lowest performer
class in hydropower production capacity is lowered from 1948 MW for the entire period to
915 MW for 2025. At the same time, France, Spain, and Italy show a clustering tendency,
covering approximately 1/3 of the surface of Europe, forming a contiguous area with
above-average performance classified in the 4th performance class.

The ArcGIS offers the possibility of extracting from Figure 3 the pop-up representation
of the parabolic forecast model for each country, as presented in Figure 4.

Only the graphic from the Curve fit parabolic forecast representation was retained to
comment on the model for all locations.
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The curve fit parabolic forecast representation from (a) to (g) has a > 1, and from (h) to
(j), 0 < a < 1 (Figure 5). The concave parabolic curve predicts high or less accelerated growth.
As the concavity fades, the acceleration of growth in hydropower production capacity also
decreases. The representation for Luxemburg shows that in 2013, a radical modification in
hydropower production capacity was made, and a new jump could instantly reach a higher
level. Disruptions and consistent increases in capacity could result from technological
improvements to old producers or the construction of new capacities.
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Figure 6 partially presents examples of the convex parabolic forecast results; others
will be discussed together with the outliers, since 5 of the 7 outliers are from the nega-
tive category.

Estonia, Latvia, and Romania have similar trajectories, showing a convex parabolic
curve with a slow growth forecast. The model validates the time series for Romania better
than for the other two countries. According to the parabolic model, Latvia, Germany, and
Greece have a clear convex trajectory with a forecast of decreased capacity. However, for
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Serbia, the model does not offer a valid result. The time series demonstrates a very high
increase from zero to 3000 and then a constant capacity from 1994 to 2021.
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4.5. Outliers’ Analysis

The outliers offer an interesting perspective. By applying the Generalized Extreme
Studentized Deviate (ESD) test, 7 locations with statistically significant outliers are identi-
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fied. Only one location is validated as a global outlier with values higher than the adjusted
values—Hungary—while the other 6 locations are local outliers with values lower than
the adjusted values—Bulgaria, Ireland, Sweden, the United Kingdom, Lithuania, and the
Netherlands. Figure 7 presents the hydropower production capacity STC with the outliers.
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The details of the outliers could be analyzed from the Curve fit parabolic forecast
representation of each location (see Figure 8).

Hungary and Ireland belong to the concave parabolic forecast category, although less
obviously Ireland. Hungary has a single outlier above the fitted value that cannot be ex-
plained, considering that the same value was reached nine years later. Ireland theoretically
belongs to the concave curve, but this appears to be due to the outlier values for 2010
and 2011 that corrupted the almost linear trend. That is why the obtained shape was a
concave parabola with relative validation. Even if placed on the convex curves, Bulgaria
is closer to a linear ascending trend. Similar to Ireland, the United Kingdom, Lithuania,
and the Netherlands, the values are mostly linear. However, the outliers placed at the
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beginning or end generate a convex forecast that is difficult to validate without additional
information. Sweden is a completely different case, with constant fluctuations and an
outlier for 2015. The existence of production capacity and the high fluctuation in water
volume could explain the sawtooth time series in Bulgaria.
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4.6. Confidence Level of the Trend

Considering the 2D spatial representation, the confidence trend in hydropower pro-
duction capacity is presented in Figure 9. The proposed model shows a general uptrend
for the period 1990–2025 and a confidence of level 99% for all European countries except
for the Netherlands and Denmark (countries with a downtrend and a high confidence
level of 99%) and Sweden (confirming the ‘No significant trend identified’ result from the
outlier analysis).

The output of the Space-Time Pattern Mining Tool is the hydropower production
capacity forecast space-time cube visualization in 2D (Figure 9). It allows us to render the
netCDF space-time cube in a unique manner in 2D, calculated with a 4-time bin forecast.
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The netCDF space-time cube is a scientific data format for 3D data. In our case, there
were data for each of the 32 time bins in a total of 33 locations for hydropower production
capacity for each X and Y coordinate, representing the European countries.

Processes 2024, 12, 1098 23 of 29 
 

 

4.6. Confidence Level of the Trend 
Considering the 2D spatial representation, the confidence trend in hydropower pro-

duction capacity is presented in Figure 9. The proposed model shows a general uptrend 
for the period 1990–2025 and a confidence of level 99% for all European countries except 
for the Netherlands and Denmark (countries with a downtrend and a high confidence 
level of 99%) and Sweden (confirming the ‘No significant trend identified� result from the 
outlier analysis). 

 
Figure 9. STC representation of trend direction and confidence level of the Curve fit Parabolic fore-
cast model for Hydropower production capacity in EU countries. Source: authors� research results 

The output of the Space-Time Pattern Mining Tool is the hydropower production ca-
pacity forecast space-time cube visualization in 2D (Figure 9). It allows us to render the 
netCDF space-time cube in a unique manner in 2D, calculated with a 4-time bin forecast. 
The netCDF space-time cube is a scientific data format for 3D data. In our case, there were 
data for each of the 32 time bins in a total of 33 locations for hydropower production ca-
pacity for each X and Y coordinate, representing the European countries. 

The representation highlighted the already mentioned results of a general uptrend 
for European countries, this time with a confidence of 95%. The downtrends of the Neth-
erlands and Denmark also have a confidence of 95%. 

This reconfirms the high quality of the curve fit parabolic forecast model proposed 
for predicting the hydropower production capacity in Europe. 

5. Discussion 
The proposed model is discussed at the European level, considering both the valida-

tion of past time series and the forecast, as well as the acceleration regime (double the 
quadratic coefficient). Considering that “less is better”, VRMSE values were used to vali-
date the parabolic curve fit for the past time series. For 15 of the 33 locations with a VRMSE 

Figure 9. STC representation of trend direction and confidence level of the Curve fit Parabolic forecast
model for Hydropower production capacity in EU countries. Source: authors’ research results.

The representation highlighted the already mentioned results of a general uptrend for
European countries, this time with a confidence of 95%. The downtrends of the Netherlands
and Denmark also have a confidence of 95%.

This reconfirms the high quality of the curve fit parabolic forecast model proposed for
predicting the hydropower production capacity in Europe.

5. Discussion

The proposed model is discussed at the European level, considering both the val-
idation of past time series and the forecast, as well as the acceleration regime (double
the quadratic coefficient). Considering that “less is better”, VRMSE values were used to
validate the parabolic curve fit for the past time series. For 15 of the 33 locations with a
VRMSE < 5% of the VRMSEmax, the parabolic model provides a better approximation
(Netherlands, Denmark, Estonia, Hungary, Belgium, Croatia, Latvia, Poland, North Mace-
donia, Italy, Finland, Romania, France, Greece, and Luxembourg).

Moreover, based on the graphical results, the parabolic model offers a better forecast for
14 of the 33 locations (Netherlands, Denmark, Estonia, Hungary, Belgium, Latvia, Croatia,
North Macedonia, Finland, Poland, Luxembourg, Romania, Slovenia, and Ireland). The
quadratic trajectories fit the raw data for 14 countries, validated by visual inspection, and
for 20 countries, validated by an FMRSE threshold of 10% from the maximum value. The
quadratic model is suitable for forecasting future values of hydropower production capacity
in 22 countries, with accuracy confirmed by the VMRSE with a threshold of 10% from the
maximum value. This result confirms that most locations are well approximated and that
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the proposed forecast model is consistent. The locations that are less well approximated
and forecast should be subject to other curve fit models.

Starting from the curve fit forecast parabolic equations generated by the past records
of 32 years, the acceleration of the process was determined by analogy with constant
acceleration motion. The acceleration (acc) is double the quadratic coefficient. In accordance
with kinematic theory, positive acceleration reflects an increase or growth in the velocity
variation of electric hydropower production capacity. The higher the value, the more
rapid the process. Negative acceleration emphasizes a process of deceleration, reflecting a
decrease or reduction in the velocity variation of hydropower production capacity.

Upon the acceleration regime, four location categories were identified:

(a) High positive acceleration (acc > 1): These countries have prospects for intensive
expansion, large diversification, and technological modernization of hydro systems.
Turkey, Norway, Austria, Portugal, Albania, France, and Luxembourg are countries
that specialize in hydropower production and should be considered best practices
based on the statistics of the last three decades;

(b) Moderate positive acceleration (0 < acc < 1): This category includes Croatia, North
Macedonia, Slovenia, Ireland, Iceland, and Hungary, with prospects for large, exten-
sive expansion, diversification, and technological modernization of hydro systems.
Extensive development is also a pathway to consider for the energetic shift to renew-
able energy;

(c) Low negative acceleration, deceleration (−1 < acc < 0): These countries are charac-
terized by a decrease in hydropower production capacity. The Netherlands, Estonia,
Denmark, Latvia, Bulgaria, Belgium, Montenegro, Sweden, and Italy appear to have
hydropower infrastructure but have fewer new investments;

(d) High negative acceleration, rapid deceleration (acc < −1): Finland, Romania, Poland,
Greece, Spain, Lithuania, Germany, the United Kingdon, Slovakia, and Serbia show
constant negative accelerations, practically indicating an accelerated contraction of
the hydro sector with prospects of diminishing physical infrastructure and implicitly
without investments in new technologies.

Besides the extensive development of hydropower production capacities, which is
naturally limited by river availability, digital adoption should be considered to increase
and manage production, as well as innovative storage solutions for short- and long-term
energy storage from other renewable sources that are less stable than hydropower.

The findings give a perspective on the evolution of the hydropower production
capacity of all European countries from 2022 to 2025, and the rate of the model validation
confirms the model.

Hypothesis 1:The curve-fit parabolic forecast model provides a reliable approximation of hydropower
production capacities—this was confirmed. The curve fit parabolic forecast model fits 2/3 of
the European countries and is a good representation of hydropower production capacities
for 1990–2021 in European countries.

Hypothesis 2: Hydropower production capacities have a general uptrend for the period 1990–2025
in all European countries—yes, the overall data trend for 1990–2021 is an uptrend, with an
average annual increase of 8 MW.

Hypothesis 3: Countries’ capacity to produce electrical hydropower differs by speed and accel-
eration, and highly accelerated hydropower production capacities are a potential result of digital
adoption—yes, there are 13 countries with a positive quadratic tendency of capacity growth,
of which 7 present an acceleration over 1. These 7 countries are the countries that apply
digital technologies.

Hypothesis 4: The quadratic model validates the medium-term level forecast of hydropower pro-
duction capacities for all 33 European countries—no, the validation model indicates accurate
forecasts for about 2/3 of the countries, much like those with validated curves that fit the
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raw data. A long-term perspective regarding hydropower production capacities for these
countries is shaped.

Hypothesis 5: How many outliers does the dataset contain? After applying the Generalized
Extreme Studentized Deviate (GESD) test, there were 7 outliers, but after a deep analysis,
two outliers were excluded: the United Kingdom and the Netherlands, which have constant
hydropower production capacities.

6. Conclusions

The present study addressed the need to provide quantitative evaluations of medium-
and short-term predictive estimates, representing valuable input for the adaptive and
resilient efficiency of the energy sector, as recommended by the Global Framework for
Climate Services [79]. Enhancing adaptability and resilience in the energy sector, which is
also crucial for mitigation efforts, requires the development, ongoing improvement, and
widespread application of climate services. These services are essential for assessing the
potential of wind, solar, and hydroelectric power and making predictive estimates about
these energy sources across various forecasting intervals.

Space-time exploration over three decades for almost the entire European area al-
lows us to correlate our results with climate change maps [80]. In the context of climate
change, adaptation solutions require using forecasts with long time series that cover large
geographical areas and can capture these new patterns.

The green transition requires an integrated approach strongly anchored in strategic
frameworks and development construction plans, where the curve fit forecast model’s
trajectories provide a long-term perspective. This result is another valuable input for labor
force allocation and reallocation to other sectors toward the green sector, a process fueled
the appropriate training and formation.

6.1. Theoretical Implication

The proposed curve fit forecast parabolic model for hydropower production capacities
contributes to the theory and the literature on energy from renewable sources. It also
provides a model to forecast short-term values and medium- and long-term trends. Using
space-time representations, the model offers a geographic perspective and the capacity
to identify patterns. By enlarging the portfolio of geographic representations, our model
contributes to overlapping or multi-layer studies. It has a high potential for replication,
either for other regions or regenerative energy sources.

6.2. Managerial Implication

The forecast study aimed to offer scientists and practitioners insights into the trends
and perspectives, in our case, for the hydropower sector in Europe as a basis for further
developments and socioeconomic implications.

Our study findings about hydropower production capacities in European countries
provide decision makers with hints about the perspectives and trends of this regenerative
energy source. Each country can decide on the type of development (extensive or intensive)
and innovation (incremental or disruptive). The provided information should be correlated
with climate change predictions and energy needs.

The patterns and categories identified allow us to analyze best practices and leaders
to find already successfully implemented solutions. Moreover, the need for technology and
innovation is obvious if it targets disruptive progress. The importance of natural resources
and human capital for the integrated framework meant to address today’s challenges
should be consistently considered.

6.3. Limits and Further Developments

Among the limitations of our model is the short prediction time of only 4 years, com-
pared to the past time series used (32 years). Another limitation of the model is the validity
of the results for a limited number of locations. These generations highlight the need to
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explore other models that may be more suitable for unvalidated locations. Unfortunately,
the model does not offer information about the triggering factors of hydropower produc-
tion capacities. This limitation can be addressed by overlapping multi-layer models and
maps. In our opinion, acceleration seems to be based on technological improvements or
digital adoption. The deceleration of production could result from climate change or water
flow management.

The study offers multiple research developments, such as exploring other curve fit
forecast models for hydropower production capacities, comparing the findings of different
models for the studied locations, and applying the models to other types of energy produc-
tion. It suggests developing an integrated framework for the twin transition (digital and
energy) overlaid on climate change or natural resource maps. A topic to be considered for
further studies is the water-energy-land-food (WELF) nexus and finding ways to forecast
them together.
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