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Abstract—Wireless communication systems depend on accu-
rate channel estimation to ensure efficient and reliable data
transmission. The channel estimation process consists of two
essential steps: channel tap and coefficient estimation. Physical
layer features such as time arrival, and signal strengths are
well used for the tap estimation. However, prior knowledge is
required to use these methods. Recently, machine learning-based
methods have been proposed. In particular, deep learning (DL)-
based methods are promising because they can learn from raw
data without much preprocessing, scale well with extensive and
diverse datasets, and capture complex relationships. However,
these methods overlook the relationship between the channel taps
and coefficients. In this paper, we propose a DL-based multi-
task learning method to estimate channel taps and coefficients
simultaneously. Simulation results reveal that the performance of
the proposed tap estimation method is superior to the traditional
DL-based tap estimation. Furthermore, the proposed method
removes the need to train two models to estimate channel taps
and coefficients.

Index Terms—Channel coefficients, channel tap estimation,
deep learning, multi-task learning, wireless channel.

I. INTRODUCTION

Wireless communication systems rely on appropriate chan-

nel estimation that accurately captures real-world conditions.

Extraction of patterns and other characteristics from the chan-

nel estimation, enabling insights into how wireless signals

are transmitted in complex environments. This is essential

for wireless communication systems’ reliable and efficient

data transmission. Also, precise channel estimation supports

network design, signal processing scheduling, and error cor-

rection methods and validates them, enabling collaboration and

communication.

Channel estimation can be considered as two parts. These

are the number of channel taps and coefficient estimations,

respectively. Determining the optimal number of channel taps

is particularly significant in wireless channel estimation since

it is the first step when estimating the wireless channel

[1]. Estimating channel taps from transmitted and received

signals, without relying on pre-assumed scenarios, offers a

promising approach. This helps infer channel characteristics

and adapt communication strategies in unknown and dynamic

environments.

There are several channel tap estimation methods in the

literature. In [2], various channel characteristics are extracted

based on signal strength and arrival time, such as delay spread,

time delay, number of multipath, etc. [3] extracted the number

of multipath, delay spread, and time delay from arrival time

and signal strength information. However, these methods rely

on prior assumptions. [4] proposes a channel coding type blind

recognition method based on a cyclic neural network. In this

work, the characteristics of the received related sequences are

extracted by adequately utilizing the cyclic neural network.

Then, a long string of sequences for segmented recognition

is divided, and the final decision on the sequences is made

using the principle of the minority obeying the majority. How-

ever, this method requires overheads, such as dividing long

strings of sequences for segmented recognition and making

the final decision on the sequences by using the principle of

the minority obeying the majority. Also, identifying channel

tap numbers cannot be achieved without recognizing coded

sequences, and it cannot be considered an efficient maximally

sparse representation.

To make blind estimation and eliminate the drawbacks of

[4], a machine learning (ML)-based method is proposed [5].

In this paper, specifically, a deep neural network is used with

the inputs as transmitted and received signals’ samples and

the outputs as the number of wireless channel taps. However,

this paper overlooks the existing relationship between channel

coefficients and taps. On the other hand, the relationship lies

in coefficients defining how signal strength and phase change

across taps, aiding tap estimation. Conversely, tap information

helps extract coefficients by separating paths. Together, they

enable accurate channel modeling, enhancing wireless system

design through effective equalization, interference mitigation,

and modulation strategies. Therefore, simultaneous estimation

of the number of channel taps and its coefficient estimation

is a promising approach. However, simultaneous estimation

is a complex problem, so it is difficult to have an accurate

estimation performance.

It is intuitively sound to think of using a deep learning

(DL) method to solve complex problems [6]. Particularly,

DL-based multi-task learning methods [7], [8] can address

complex simultaneous estimation problems thanks to their

ability to employ relationships between related tasks through

their hidden layers. Different from the existing works, this

paper proposes to estimate the number of taps, and channel
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coefficients simultaneously. A DL-based multi-task learning

method is designed for this purpose. Simulation results reveal

a performance improvement achieved by the proposed method

compared to traditional DL-based channel tap estimation re-

garding classification accuracy. Moreover, instead of training a

DL model for the number of channel tap estimation and a DL

model for channel coefficients estimation, a single DL model

is used in the proposed method.

This paper is organized as follows. Section II revises the

preliminaries and presents the system model. The proposed

method for the number of channel taps and channel coeffi-

cients estimation is detailed in Section III. Section IV presents

experiments conducted to evaluate the performance of the

proposed method. Finally, the paper is concluded in Section

V.

II. PRELIMINARIES

A. System Model

Digital symbols at the transmitter are transmitted as [9]

x(t) =
∑
k

pkf(t− kT ), (1)

where T stands for the symbol period, f(τ) is the impulse

response of the transmitter filter expressed as a delay function

(τ ), and pk represents the symbol period. Discrete filter taps

is used to represent the radio channel through which the

broadcast signal travels. Thus, the received signal is expressed

as follows when there is noise.

y(t) =

L−1∑
l=0

c(l)x(t− τ(l)) + n(t), (2)

where L stands for the number of channel taps, c(l) stands

for the lth complex channel coefficient, and τ(l) stands for the

delay. The delays should be uniformly spaced according to the

formula τ(l) = lT/W , where W is an integer. For symbol-

spaced channel modelling and fractionally-spaced channel

modelling, W is often set to 1 and 2, respectively. The white

complex Gaussian noise used to simulate the noise term, n(t),
is described.

At the receiver, the received signal is filtered by a filter

that is matched to the pulse shape. Then, it sampled with the

sampling period Ts, as follows [9].

rk =

∫
f∗(τ)y(τ + kTs)dτ, (3)

where superscript ‘∗’ denotes complex conjugate. Afterward,

by replacing (2) into (3), the received signal samples can be

denoted as

rk =

J−1∑
j=0

h(j)bk−j + zk, (4)

where h(j) signifies jth composite channel coefficient, that

follows a Rayleigh distribution.

B. Deep Learning

ML algorithms are successfully used in various applications,

such as image processing and pattern recognition. This is

inspired to apply them to wireless communication [10]. Then,

these techniques became fundamental components of wireless

communication systems for 5G and beyond [11]. Particularly,

DL-based methods have become popular since using mul-

tiple hidden layers of DL methods allows for magnifying

the intrinsic data features while suppressing the irrelevant

information at each layer [12]. This is particularly true for

complex problems, such as multiple problems that are tried

to estimate simultaneously. In addition, raw data can be used

without specific feature engineering in these methods, thanks

to the hidden layers of the DL methods.

III. THE PROPOSED METHOD

DL-based methods are widely used to solve complex prob-

lems [13]. However, in these methods, optimization is based

on a specific metric, such as a score on a particular benchmark

and a business key performance indicator. While focusing

intensely on a single task obtains acceptable results, it may not

be the optimum. On the other hand, simultaneously attempting

to optimize multiple problems may result in an improvement

since multiple problems can have correlations between them.

Therefore, sharing representations between related tasks may

improve the estimation performance of the original problem.

The number of channel taps and coefficients are strongly

related to each other. The coefficients define how signal

strength and phase change across taps, and a number of taps

extract coefficients by separating paths. Therefore, they can be

simultaneously estimated with the help of multi-task learning.

Multi-task learning methods can gather helpful data from

numerous related tasks to enhance individual estimates [14].

This is particularly true when using the DL-based multi-task

learning method with multiple hidden layers. Along with this

line, a DL-based multi-task learning method is proposed in this

paper to estimate the number of channel taps and coefficients

simultaneously.

The proposed method based on DL-based multi-task learn-

ing consists of two phases. First, the proposed method is

performed in the training phase, where the dataset is generated,

and a DL method is configured and trained. Then, it is

performed in the testing phase, where the number of channel

taps and coefficients are estimated simultaneously.

In training, transmitted signals (Tx) are transmitted via

a wireless communication channel. Afterward, the receiver

captures the received signals (Rx). The Tx and Rx signals

are used to estimate channel taps and coefficients with the

classical estimation models [9], [15] (a model for number

of tap estimation and a model for coefficients estimation).

Then, these estimated values are stored as output, and the

input is stored as the received signals from which these values

were obtained. Until a sufficient dataset is generated, these

operations are repeated. The dataset size is chosen according

to system requirements for the best performance, complexity,
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Fig. 1: The proposed method for the number of channel taps

and coefficients estimation; (a) training phase and (b) testing

phase.

and memory usage. Afterward, the DL method1 is trained

with the created dataset. These processes are demonstrated

in Fig. 1 (a). In addition, an example of the DL-based multi-

task learning method is illustrated in Fig. 22. Once the training

and validation3 loss convergence is done in the training phase,

and the testing phase starts, which characterizes the run-time

operation of the method.

In the testing phase, a signal passed over from the wireless

channel is captured in the receiver. Afterward, this received

signal is fed to the trained DL method. Then, the trained DL

method simultaneously estimates the number of channel taps

and coefficients. These processes are demonstrated in Fig. 1

(b). Also, Algorithm 1 provides the general operations of the

proposed method.

A. Discussions on Computational Complexity

The suggested method’s computing complexity is deter-

mined by the training and testing phases. The cost of the

training phase depends on both model-based estimations and

the DL approach, whereas the complexity of the testing phase

depends on the DL technique.

A DL-based multi-task learning method is used in this

work with an input layer, four hidden layers, and an output

layer. This method has a units in the input layer, where a
denotes the size of the input vector. Besides, it has b hidden

units for simultaneous learning. Also, it has c, d, and e
hidden units and f output units for the number of channel

taps and f output units for channel coefficients. Thus, the

1All of the DL methods hyperparameters are empirically adjusted while
considering the proposed methods’ performance and generalizability.

2The hyperparameters used in this figure (such as number of hidden layers
and units) are detailed in the next section.

3In the context of ML, the validation dataset often are used as a neutral
assessment of a model’s fit to the training dataset [16].

Algorithm 1 Estimating the number of channel taps and

coefficients.

Input: S number of received signals for training (Rxtrain), N
number of received signals for validation (Rxvalidation),

initial hyperparameters, traditional methods to estimate

number of channel taps and coefficients, and received

signals for testing (Rxtest).

Output: Estimated number of channel taps and coefficients

(Etest).

Training Phase:

1: for s = 1 to S do

2: Receive Rxtrain.

3: Traditional methods estimate number of channel taps

and coefficients (Etrain).

4: A new data point Rxtrain and Etrain is added to the

training dataset (D).

5: end for

6: Train the DL method using the generated dataset D.

7: while Convergence of the training and validation loss

graphs are achieved do

8: Adjust the DL method’s hyperparameters based on loss

graphs.

9: Train the DL method using the generated dataset D.

10: end while

Testing Phase:

11: Receive Rxtest.

12: Estimate number of channel taps and coefficients Etest

using Rxtest and trained DL method.

overall training computational complexity of this method is

O(ml× (ab+ 2(bc) + 2(cd) + 2(de) + 2(e+ ef))), where m
and l denotes the number of epochs and training examples,

respectively. In addition, the computational complexity of the

validation and the number of trials to select optimum hyperpa-

rameters of the DL method is added to the training complexity.

Here note that the amount of tests and validation data relies

on the application’s complexity and reliability requirements.

Since the testing phase does not require back-propagation, the

computational complexity per sample is around half that of

the training phase [17].

IV. SIMULATION RESULTS

Illustrative simulations are conducted to demonstrate the

performance of the number of channel taps estimation. Binary

phase-shift keying is used as a modulation technique. All the

simulation samples consider 1000 number of training pilot

symbols. As a channel model, Rayleigh is used in which the

number of channel taps is between L = 1 to L = 10 with a

step size of 1 and E[|h|2] = 1. The noises are modeled by

CN (0, σ2

N ), i.e., zero-mean complex Gaussian samples with

variance σ2

N .

Dataset4 is generated by MATLAB simulation environment.

The dataset includes three phases: training, validation, and

4Dataset will be publicly available online after the acceptance.
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Fig. 2: Illustration of the DL model.

testing. In all phases, SNR varies from 0 to 20 with a step

size of 5. In addition, 60000, 20000, and 20000 samples

are generated for each SNR value in the training, validation,

and testing phases. Therefore, in total, 300000, 100000, and

100000 samples are generated for the training, validation, and

testing phases.

The open-source ML library Keras [18], which operates

in Python, implements the proposed DL method. All of the

simulations are made on an MSI computer with a Windows

10 operating system, an Intel® Core™ i7-7700HQ central

processing unit (CPU), a GeForce GTX 1050 Ti graphics

processing unit (GPU), and 16 GB RAM.

An input layer, four hidden layers, and an output layer are

used in the proposed method. Specifically, 1000 units are used

in the input layer. Afterward, simultaneous learning of the

number of channel taps and coefficients is made in the first

hidden layer with 256 units to learn the relationship between

them. Then, three hidden layers are used to learn the number

of channel taps and coefficients. In these layers, 128, 64, and

32 units are used, respectively. Afterward, in the output layer,

10 units are used for the number of channel taps estimation,

and 10 units (unit per maximum number of taps) are used for

channel coefficients. Note that these hyperparameters’ usages

are illustrated in Fig. 2. In all of the layers, the rectified linear

unit is used as an activation function. However, since the

number of channel tap estimation is a classification problem,

the softmax activation function is used in the output layer to

estimate the number of taps. The DL method is trained with

a batch size of 16 and 10 epochs. ADAM [19] is used for

adaptive learning rate optimization and the optimum learning

rate in this method was found at 0.00001.

For the traditional method, an input layer, four hidden

layers, and an output layer are used. In the input layer, 1000

units are used, while 256, 128, 64, and 32 hidden units are used

in the hidden layers. Also, 10 units are used in the output layer.

Other hyperparameters are the same as the proposed method.

True positive values5 are given to show the effectiveness of

5A true positive value is an outcome where the model correctly predicts
the positive class and it is widely used to compare classification methods
performance [20].
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Fig. 4: The loss graph for the proposed method.

the proposed method. Figure 3 plots SNR versus true positive

for single and simultaneous estimation. This figure shows

that the proposed method is superior to the single estimation

method.

Since the proposed method is ML-based, ensuring that the

proposed method is well-generalized is essential, which means

that the inputs should not be memorized during the training

phase. The proposed method’s training and validation losses

versus epochs are shown in Fig. 4. The figure shows that the

training sets converge to the validation set. This demonstrates

no overfitting during training, demonstrating the suitability of

the proposed method for use with unknown data.

V. CONCLUSION

This paper proposed the simultaneous estimation of the

number of channel taps and coefficients to exploit the re-

lationship between them. A DL-based multi-task learning

method was designed for this purpose. This method estimated

the number of channel taps and coefficients simultaneously.

Therefore, there was no need to train two models to estimate

them. Simulation results showed that the proposed method can

identify the number of channel taps with higher performance.

Furthermore, the simulations proved that the proposed DL

method did not exhibit overfitting or underfitting. Last but
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important, the proposed method works automatically to iden-

tify the number of channel taps. In future work, the proposed

method will be investigated in the real environment.
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