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Abstract—Non-terrestrial networks (NTNs) are a critical en-
abler of the persistent connectivity vision of sixth-generation net-
works, as they can service areas where terrestrial infrastructure
falls short. However, the integration of these networks with the
terrestrial network is laden with obstacles. The dynamic nature of
NTN communication scenarios and numerous variables render
conventional model-based solutions computationally costly and
impractical for resource allocation and parameter optimization.
Machine learning (ML)-based solutions can perform a pivotal
role due to their inherent ability to uncover the hidden patterns in
time-varying, multi-dimensional data with superior performance
and less complexity. Centralized ML (CML) and decentralized
ML (DML), named so based on the distribution of the data and
computational load, are two classes of ML that are being studied
as solutions for the various complications of terrestrial and non-
terrestrial networks (TNTN) integration. Both have their benefits
and drawbacks under different circumstances, and it is integral to
choose the appropriate ML approach for each TNTN integration
issue. To this end, this paper goes over the TNTN integration
architectures as given in the 3GPP standard releases, proposing
possible scenarios. Then, the capabilities and challenges of CML
and DML are explored from the vantage point of these scenarios.

Index Terms—Centralized learning, decentralized learning,
integrated terrestrial and non-terrestrial networks, machine
learning, non-terrestrial networks.

I. INTRODUCTION

The conclusion of fifth-generation (5G) standardization ef-

forts and subsequent roll-outs have impelled academic and

industry stakeholders to undertake the sixth-generation (6G)

goal: persistent connectivity, or, satisfying the need for seam-

less, reliable, high throughput connectivity at all times and

locations [1]. This is a challenging objective for areas with

limited-to-none cellular infrastructure, scenarios where high

speed vehicles are involved, and extremely dense areas. Non-

terrestrial networks (NTNs), are an attractive enabler of the 6G

vision due to their large coverage areas and limited reliance

on terrestrial infrastructure [2]. As such, multiple entities have

been tasked with determining the exigencies for effective

terrestrial and NTNs (TNTNs) integration [3].

TNTN integration is a formidable task, with the typical

difficulties of heterogeneity in networks further encumbered

by challenges such as NTN device/network identification,

continuous positioning and mobility tracking, cell/satellite

re/selection and optimization, and beam management. The

difficulty in TNTN integration is three fold. Firstly, the in-

formation required for the optimization, such as satellite/user

equipment (UE) position/mobility, channel tracking, is difficult

to collect or obtain at the optimization device. Secondly,

the optimization problems themselves are highly dimensional

and complex, containing many variables such as UE position

and mobility, cell size and mobility, non-terrestrial device

trajectory, QoS requirements, and so on. Finally, mobility of

NTNs and UE devices require frequent re-optimizations, once

every 8-10 minutes at in the case of low earth orbit (LEO)

satellites [4]. This renders model-based solutions impractical,

as collecting the parameters for the optimization and perform-

ing the computation takes half this time, if not more [4].

Machine learning (ML) algorithms are well equipped for

solving these multi-dimensional optimization problems via

their inherent ability to detect complex patterns [2]. Nonethe-

less, these algorithms cannot be used blindly. Their perfor-

mance varies based on factors such as computational com-

plexity, amount of training data required, and the applicability

of the trained model to general scenarios. Another factor is

the preferred control and processing schemes: centralized or

decentralized. Individual or central devices may not have the

processing capability to manage the increasingly complicated

computations or the data used for network optimization may

not be procurable at one location. On the other hand, coordi-

nation in centralized control and processing is much easier.

With respect to these factors, and others discussed in this

paper, ML approaches can fall under two main categories: cen-

tralized machine learning (CML) and decentralized machine

learning (DML), so-called based on the host device(s) of the

data and training process. However, choosing the appropriate

approach for the TNTN scenarios is still an open issue [5],

which this paper aims to shed light on. This paper:

• Goes over the use-cases and scenarios for integrated

TNTN and the properties of the associated devices,

classifying them into connecting and connected devices.

• Examines strengths and weaknesses of CML and DML,

with respect to the 3rd generation partnership project

(3GPP) NTN use-cases and possible TNTN scenarios.

• Suggests appropriate ML approaches for some TNTN

scenarios and architectures with sound reasoning.

20
23

 IE
EE

 F
ut

ur
e 

N
et

w
or

ks
 W

or
ld

 F
or

um
 (F

N
W

F)
 |

 9
79

-8
-3

50
3-

24
58

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
FN

W
F5

82
87

.2
02

3.
10

52
04

39

Authorized licensed use limited to: Istanbul Medipol Universitesi. Downloaded on June 12,2024 at 07:12:10 UTC from IEEE Xplore.  Restrictions apply. 



Compared to existing works in the literature, which focus

on implementing various ML techniques on a single facet of

NTN operations, such as enabling Internet of things (IoT)

[6], handover optimization [7], integrating LEO satellites

and multi-unmanned aerial vehicles (UAVs) [8], sustainable

maritime networking [9], and coverage optimization [10], this

paper aims to initiate dialog on the suitability of different ML

approaches for various TNTN integration scenarios and issues.

II. NTNS IN 5G NR

NTN systems consist of non-terrestrial devices, encompass-

ing satellites and high altitude platform station (HAPS). Their

architectures include an aerial/space station that functions sim-

ilarly to a terrestrial base station (BS) or repeater, a service link

between the terrestrial terminals and the aerial/space station,

and a gateway that connects the non-terrestrial access network

to the core network via a feeder link. The payload of the non-

terrestrial device can either be transparent/bent-pipe, where

frequency filtering, conversion, and amplification operations

can be applied, or regenerative, where demodulation/decoding,

switch/routing, and coding/modulation can be applied as well.

A. NTN Devices and UEs

The devices in integrated TNTNs can be classified into six

groups: satellites, HAPS, low altitude aerial vehicles (AVs),

maritime vehicles, high speed terrestrial vehicles (HSTVs),

and mobile UEs, as depicted in Fig. 1. Some information re-

garding the operating and channel conditions and connectivity

concerns are given in Table I, and additional information is

given below. Here, connecting devices are the non-terrestrial

platforms and connected devices are devices which are able

to achieve ubiquitous connectivity through NTNs or the con-

necting devices. The common issue for all connected devices

and scenarios is the lack of or limited terrestrial architecture.

• Satellite: Satellites are classified as geostationary earth or-

bits (GEO), medium earth orbit (MEO), and LEO. GEOs

are considered stationary, while MEOs and LEOs have a

fixed orbit. LEO satellite constellations, such as OneWeb

and Starlink, intend to provide global connectivity.

• HAPS: At a lower altitude than satellites, HAPS have

limited, primary terrestrial network (TN) connections,

and wide, secondary satellite connections. 3GPP has

designated them as international mobile BSs.

• Low altitude AVs: Limited connectivity was provided for

communication with control centers in the past, but this

is insufficient for the IoT era.

• Maritime vehicles: Maritime operations require open-sea

and land-sea communication. [9], [11] consider maritime

communication services as a use-case of TNTNs in 5G

new radio (NR) networks.

• HSTVs: These vehicles, such as high speed trains, are

becoming more autonomous with the help of IoT devices.

Additionally, on-board customers have become accus-

tomed to continuous connectivity and expect a certain

level of communication services. This requires massive

number of secure and sometimes broadband connections.

Outdoor
Indoor/outdoor

GEOLEO
LEO

Air to ground 

systems

~100 m

~20 km

HAPS

~600 km

~36000 km

Indoor/outdoor

Fig. 1. Use-cases of the integrated TNTNs.

• Mobile UE: The mobile UEs can be pedestrians and

UEs in automobiles. Connectivity is possible in urban

environments due to the presence of TN infrastructure.

However, this infrastructure may be overloaded in times

or locations of extreme UE density. Rural or uninhabited

locations also necessitate alternative solutions.

B. Use-Cases

While the devices and their operation scenarios effectively

give insight to the challenges, the use-cases effectively deter-

mine the requirements pertaining to communication. The type

of service these users require is explained herein [12].

• Connectivity: TNs alone are incapable of providing global,

ubiquitous connectivity in the following scenarios:

1) Rural/uninhabited locations: These locations have little to

none permanent residents or visitors. As such, installing

infrastructure is not feasible for operators.

2) Extremely dense populations/crowded events: Concerts,

sports matches, and other events push the limits of cellular

networks and significantly degrade the quality of service.

3) High mobility UEs: These UEs are subject to constant

handovers, lowering the quality of service for the UEs

and adding a burden to the networks.

These scenarios can exist in the same instance, i.e.: high

speed passenger trains or commercial airplanes both contain

a large amount of UEs and pass through locations with no

or limited cellular infrastructure. Conditioned on the service,

connectivity can be multi, fixed, mobile, or mobile-hybrid.

The categories proposed to enable connectivity are [12]:

– Multi/resilient: In multi-connectivity, a UE has multiple

connections to increase data rate or as a back-up connec-

tion for reliability. Here, the NTN connection can be the

back-up or main connection. Resilient connectivity aims

to prevent complete network outage. Thus, the NTN is

expected to provide broadband connectivity between the

UEs and the core network in outage scenarios.

– Fixed/trunking: In fixed connectivity, NTNs will provide

the only connection. Planned to be deployed in rural or

ad-hoc areas, broadband connectivity between the core

network and nomadic UEs is aimed. Trunking is to pro-

vide temporary 5G connectivity in emergency situations.

– Mobile cell: This is the solution for the third scenario

where connectivity is compromised. Here, the NTN is

expected to provide broadband connectivity between the

core network and UEs on board a highly mobile platform.
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TABLE I
DEVICE CATEGORIES IN NTNS USE-CASES.

Device Category Altitude Mobility Channel Connectivity Concerns

Connecting Devices

Satellite

GEO: 35786 km
MEO: 7000-20000 km
LEO: 600-1200 km

GEO: None
MEO: High, circular orbit
LEO: High, circular orbit

Free space with atmospheric &
scintillation losses
- Sat2Sat: LoS
- Sat2(dense)Urban UE: nLoS
- Sat2Rural UE: LoS

- Large delay & Doppler spread
- Strong fading effects
- Satellite mobility
- nLoS connections

HAPS 8-50 km Low

Free space with AWGN, 2-tap model
- HAPS2HAPS/Sat: LoS
- HAPS2UE: LoS/nLoS

- UE positioning
- Trajectory planning

Connected Devices

Low altitude AVs 0.1-6 km High, known trajectory

Free space
- AV2AV: LoS
- AV2HAPS/Sat: LoS
- AV2UE: nLoS

- Frequent handovers
- Doppler shifts
- Dynamic channel conditions
- May cross national borders

Maritime vehicles Sea level Low
Free space with ocean clutter and
evaporation duct

- Large distances between UEs
- Unique channel conditions

HSTVs Terrestrial High

Varies depending on environment
- (Dense) Urban: nLoS
- Suburban/Rural: LoS

- Doppler spread
- Frequent handovers
- May cross national borders

Mobile UEs Terrestrial Low
Indoor: nLoS
Outdoor: nLoS/LoS

- UE positioning
- Undeterministic UE trajectory
- Limited device capabilities

– Mobile-hybrid: This is for enabling connectivity to UEs

on public transport with fixed routes. NTNs will provide

a back-up or auxiliary connection for routes where the

TNs have a limited capacity.

– Hot-spot-on-demand: Here, NTNs are expected to provide

temporary 5G connectivity to under-served areas.

• Broadcasting: This encompasses direct-to-node, direct-to-

mobile, and edge network delivery broadcasts. In the former,

the information is transmitted to an access point, from which

it is distributed to the UEs within the network. Direct-to-

mobile broadcast is used to transmit information to multiple

UEs simultaneously. Such a service is required for issuing

alerts to the community or responders during emergency sit-

uations and global software updates. Edge-network delivery

is used to offload popular content or system updates to the

edge nodes for caching and redistribution. Here, broadband

connectivity is expected of the NTN devices.

• Public safety: The aim here is to provide connectivity be-

tween the emergency responders, regardless of their location

and presence of terrestrial infrastructure. This can be divided

into wide-area, local, and regional public safety. The role of

the NTNs is to provide connectivity between the emergency

responder UEs, tactical cells, and the core network.

• IoT service: Depending on the mobility and coverage area,

these use-cases can be divided into wide-area and local

IoT service connectivity. IoT devices on HSTVs and other

scenarios involving mobility over a known area are expected

to be supported by NTNs providing wide-area connectivity.

Others, like devices on smart grid, are expected to be

supported by NTNs providing local area connectivity. Here,

the NTN will provide connectivity between the IoT devices,

their hub/central point, and the core network.

C. Existing Integration Issues and 3GPP Studies

Integrated TNTNs require a flexible centralized or decen-

tralized architecture that can manage traffic smoothly between

TNs and NTNs for better, more intelligent utilization of the

network resources. At the minimum, idle and active UEs

should be able to get ubiquitous coverage worldwide without

receiving a congestion rejection or service degradation.

Achieving these goals has several challenges. NTNs have

a considerably larger propagation delay than TNs, increasing

service interruption time during idle mode service continuity

or active mode handover. Another challenge is the number

of handovers in active mode due to non-GEO satellite move-

ments. Meaning, while the coverage area of a GEO satellite is

static with fixed large spot cells, LEO coverage area is changed

with time and the satellite’s ephemeris, requiring frequent

updates or handovers. Additionally, the cells of the NTNs have

a significant signal difference between the cell center and edge.

As such, the same or similar transmission parameters cannot

be used for UEs at both locations. The time delay brought on

by the random access procedure is another challenge, because

this procedure affects UE connection establishment and time

synchronization, while integrated TNTN needs to support

high-speed UE handover and service continuity, requiring a

minimum response time in the random access procedure.

In this regard, NTNs have been a focus of the 5G stan-

dardization efforts by 3GPP, with related works in Release

(Rel)-15, Rel-16, and Rel-17. Rel-15, started in 2017, reported

the results of a feasibility study targeting the channel models

and deployment scenarios [12]. Subsequently, Rel-16 defined

the minimum changes to the present standards to integrate the

essential NTN features [13], while Rel-17, completed in 2022,

focused on the transparent payload architecture with earth-

fixed tracking areas and frequency division duplex systems

[14]. A study phase for network-verified NTN UE location

was completed, and its normative phase is approved in 3GPP

Plenary #98e electronic meeting [15].

The 3GPP Rel-18, Rel-19, and Rel-20 are the upcoming

releases for 5G-Advanced and focus on fine-tuning the scenar-

ios and the usage of NTNs. Currently, the 3GPP are working

on Rel-18, the NTN IoT enhancement [16]. This release

aims to cover the integration of TNs and NTNs, throughput

performance, and the optimization of the global navigation

satellite system sparse usage to decrease power consumption

for long-term connections. Additionally, enhanced machine
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type communication with minimum feature updates using

TNTNs is also within the scope of this release. The Rel-18

study items also include the integrated TNTNs mobility, ser-

vice continuity, and coverage enhancement. These discussions

cover the potential low rate codecs performance enhancements

in a link budget limited context, including voice over NR.

III. CML AND DML FOR INTEGRATED TNTNS

Pervasive system intelligence is critical for the evolution

and long-term operation of integrated TNTNs. Particularly,

real-time decision-making substantially enhances network per-

formance. The ML-based remote control allows for further

investigation of fundamental and unexplored characteristics

of TNTN and the creation of novel communications and

networking technologies, such as new protocol designs, ar-

chitectures, and advanced algorithms. Network designs can be

optimized to increase spectrum access flexibility, while radio

channels can be modeled efficiently. Furthermore, using ML

in TNTN enables seamless autonomous communication in the

presence of channel effects, such as attenuation, fading, and

interference, and TNTN integration can be done without the

need for prior mathematical study and modeling. However, ML

algorithms can not be used blindly; rather, how and where to

use them should be investigated to get the maximum benefit

from the ML algorithms.

CML infrastructures are designed to meet the requirements

of numerous ML models that demand locality and persistent

training. The data is collected in a powerful and robust device,

which runs the ML algorithm. It comes with the advantages of

fewer resources required on training departments, networking

opportunities, reduced buddy costs of training materials, and

best practices across multiple sites. Still, CML-based systems

face challenges such as data delivery costs (latency), the

possibility of involving poor channel and unstable connectivity

conditions, coordination and scheduling durations, and generic

training results, rendering them unsuitable for real-time appli-

cations. Additionally, CML systems require sharing of sen-

sitive operational data, which is a privacy issue. Also, there

are different use-cases, devices, and user types, with various

problems, scenarios, and requirements. Thus, CML requires

coordination between different use-cases and problems.

DML allows a set of local devices to locally and collabo-

ratively participate in the training process of a global model

without having to upload their local raw data to centralized

servers. Thus, they restrict the amount of data transmission

across the network. This adds a privacy feature and removes

the delivery time, which is the time takes for data to be pre-

pared and delivered to a central device. However, some devices

may not have the capability to process complex mathematical

equations of ML, e.g., IoT and reduced capability devices.

Additionally, DML only trains with its own dataset, which may

restrict the learning capability and produces internal models,

i.e.: models which cannot be utilized in general scenarios.

Recently, implementation of federated learning (FL), a

specialized DML approach, has gained interest [17]. Here,

clients do local training and send their model parameters to

CML

DML

DML

DML

FL

Fig. 2. Example scenarios for CML, DML, and FL for integrated TNTN.

an aggregator for further inference. This can simultaneously

address the privacy issues brought by CML techniques and the

lack of generality of the models trained by DML techniques.

An illustration depicting the possible CML, DML, and FL

approaches are given in Fig. 2. In this figure, a LEO satellite,

maritime UE, HAPS device, and a mobile UE train their mod-

els locally (coarse learning) and share the trained parameters

with the FL cloud for fine learning. For CML approach, the

BS, mobile UE, and drone may send their data to a central

device, where the model is trained using all the datasets and a

generic model is obtained. For the DML approach, a train,

plane, and GEO satellite can learn their individual model

parameters, using the data specifically available for them.

Specific scenarios and design criteria where CML and/or

DML approaches are useful are given below. Note that while

one approach can be beneficial for a scenario, another ap-

proach may also be beneficial from a different perspective.

Accordingly, hybrid approaches can be useful for a scenario.

• Updating the location of the satellites: When the locations

of several LEO satellites need to be updated frequently,

CML could cause problems due to delivery time and

synchronization between different devices. Also, there

can be bottlenecks and single-point failure problems for

mobile LEO satellites. Therefore, a DML approach can

be promising for this problem.

• Propagation channel and synchronization: There are dif-

ferent delay and Doppler models. For example, satellite

communications have outdoor and line of sight (LoS)

conditions, whereas indoor and non-LoS (nLoS) com-

munication conditions are addressable using HAPS. The

signal is primarily direct LoS for satellite-based systems

and follows a Ricean distribution with a robust direct

signal component; slow fading is possible due to transient

signal masking, such as beneath trees and bridges. The

signal in HAPS-based systems also follows a Ricean

model, however, it comprises of considerable multipath

components. Therefore, the receiver synchronization con-

figuration, such as the preamble sequence and aggregation

to take into account the Doppler and specific multipath

channel models and cyclic prefix to compensate the delay

spread, at both UE and Next Generation NodeB (5G gNB)

levels are different. Thus, the same ML algorithm may

not work, so, a CML device should be capable of doing

feature extraction for all of the problems, which may be
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difficult in several use-cases. However, if DML is used,

each device can extract the features by itself and run

its own algorithms. Therefore, the DML approach could

perform better in this scenario.

• Cell pattern generation: Compared to cellular networks,

satellite and HAPS systems often have larger, possibly

mobile, cells. These cells can produce a high differential

propagation delay between a UE at the cell center and

a UE at the cell edge, particularly at low operational

elevation angles. This affects contention-based access

channels when the network does not know where the

UEs are. Here, the differential latency caused by the large

cell size may cause a near-far effect during the initial

access procedure. To boost performance, an extended

acquisition window may be required. However, if the

UE position is known during a session, the network can

correct for the differential latency. As a result, specialized

signaling may be required to support these larger, mobile

cells for broadcast services. Since specialized signaling

is required, a DML approach is more promising.

• Service continuity between TN and NTN: To ensure ser-

vice continuity, a handover to or from the satellite/HAPS

system can occur whenever a UE leaves or enters the

cellular coverage. The handover triggering mechanisms

may differ depending on the circumstances, such as

terminating the satellite connection as soon as there is

an adequate-strength cellular signal, but only terminating

the cellular connection when there is very little signal

strength. The service enablers, characteristics, and mea-

surement reports of both access technologies should be

considered during the handover operation. Since there are

several aspects that should be investigated jointly, CML-

based approach is promising for this issue. On the other

hand, the differences in the propagation delay between

NTNs and cellular networks will cause substantial jitter.

If the service continuity is ensured with CML, an extra

delay time of delivery time and scheduling will be added

to the system as explained before. Therefore, if the delay

is important for the use-case, DML can be preferred.

Alternatively, to use the advantages of both CML and

DML, FL can be used for this scenario.

• Satellite and HAPS-based design: Several design criteria

exist for satellite and HAPS-based communication sys-

tems. Some of these are:

– Maximizing throughput from the uplink UE and the

downlink satellite/HAPS for a given transmit power.

– Maximizing service availability in cases of deep fading.

– Maximizing the throughput/power ratio; the operation

point in the power amplifier at the satellite or the UE

should be adjusted as close to the saturation point as

possible when needed.

– Maximizing signal availability with slow and deep

fading; vital for UE near the cell edge, modulation and

coding techniques with very low SNR operating points

or other options should be studied.

– The MAC layer should be able to flexibly and dynam-

ically allocate physical resource blocks to maximize

spectrum efficiency and accommodate low-power ter-

minals.

Since there are multiple different design criteria and

they should be taken into consideration jointly, a CML

approach can yield a better performance.

• Terminal mobility: Enabling communication for very high

speed UEs, e.g. aircraft systems up to 1000 km/h speed

[18], is a challenging task. In these speeds, CML ap-

proaches will not work, as sharing data with other nodes

will cause latency. Thus, DML is more promising.

• Security: Integrated TNTNs can manage sensitive infor-

mation, such as user mobility, service usage statistics or

operator data. Sharing this data may not be preferred by

operators or even legal, depending on the nation’s laws.

Here, DML can be the only option available.

• Dynamic service deployment: The presence of numerous

NTNs, and varying ground-UE demands, could have an

effect on dynamic service deployment policies. Learning

their data together may increase the performance of the

system. CML can be useful in these networks.

• Energy efficiency: CML can be designed as a service

which supports mobile network operators for energy

efficiency, operational efficiency, and delivering ubiqui-

tous coverage in machine type communications. This

service can help mobility and service continuity for

TNTN machine type communication with easy-to-deploy,

always available, secure, and reliable communications.

IoT, reduced capability devices, or sensors do not need to

have complex compute resources with a CML approach.

• Radio resource management adapted to network topol-

ogy: The particular cell patterns of NTNs need to be

accommodated via mobility management. Also, cells in

the NTN may pass national borders. This will have an

effect on cell identification, tracking and location area

design, roaming and charging procedures, and location-

based services. Thus, NTN should be aware of several

procedures simultaneously. This can be possible with a

CML approach. Also, the access control mechanism must

respond quickly to meet fluctuating traffic demand while

also taking UE mobility requirements into account. Thus,

both of them are learned jointly with a CML approach.

• Frequency planning and channel bandwidth: There are

several aspects here in integrated TNTN. For example,

frequency reuse and flexibility of spectrum allocation in

different cells may be supported. Also, there are tech-

niques to minimize the risk of inter-cell interference for

efficient spectrum usage. To enable the targeted spectrum

and the pairing between uplink/downlink bands with

precise band separation, the carrier numbering can be ex-

amined. Carrier aggregation can be employed to provide

equal throughput while allowing for greater flexibility

in carrier allocation between cells and conforming to

frequency reuse limits. These aspects require the system
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to learn the relationship between different parameters and

adapt the upper layers, such as MAC and network layer

signaling in a specific manner. Since CML is promising

for jointly learning relationships between different prob-

lems, it may also be convenient here.

IV. CHALLENGES AND FUTURE DIRECTIONS

There are considerable challenges that need to be overcome

in order to implement CML and DML approaches efficiently:

• Simulation models: Both CML and DML are data hun-

gry. Since the implementation of integrated TNTNs are

limited, it is difficult to get a real dataset. Therefore, sim-

ulation models for integrated TNTNs should be defined.

• Simulation analysis: Simulation analysis should be made

for CML and DML. Possible scenarios are routing tech-

niques with UAVs, satellites, and HAPS in hierarchical

architecture, identification, localization and optimal tra-

jectory design, analyses to ensure privacy, integrity, and

secrecy, resource management, network planning, power

control, received signal strength prediction, interference

management, and transmission parameter tuning.

• Number of updates: This should be well optimized,

along with the update message itself, i.e., the training

derivatives, to reduce traffic.

• Data: A TNTNs system regularly generates data that is

statistically unique from each other due to varied opera-

tion, or surroundings, i.e. in a non-independent identically

distributed (i.i.d.) manner. Because both CML and DML

relies on the i.i.d. assumption, unique strategies to handle

statistical heterogeneity must be created.

• Privacy: It is necessary to take precautions to ensure that

sensitive data is not relegated to specific individuals or

devices. Deviating units are the most likely to be harmed

since their usage patterns stand out and may influence the

model in a unique way.

• Dynamism: The storage, computing, and communication

capabilities of a TNTN system are heterogeneous. As a

result, a TNTN training system must be dynamic or adapt

to the device’s lowest denominator.

• Theoretical analysis: Data driven vs. model-based algo-

rithms’ performance for TNTNs should be investigated.

• Complexity: Despite the advantages of CML and DML

approaches, most ML approaches are computationally

heavy. Therefore, these approaches should be investigated

in terms of computational complexity, latency, and delay.

• Selection of CML device: This can be based on the

device’s processing capability, location, scheduling, and

memory, all of which are critical for the performance of

the chosen approach, and should be investigated further.

V. CONCLUSIONS

Integrating NTN devices and networks with the current

TN technology brings about significant challenges. Much of

these challenges are not present in TNs, and so require in-

depth studies and novel solutions. Therefore, making 5G

and beyond from space a reality also necessitates initiatives

that go beyond standardization. This paper highlighted the

importance of choosing the appropriate ML approach for

several challenges of the integrated TNTN. The feasibility of

using these ML approaches for each scenario was also debated.

Because studies on CML and DML for TNTN integration

are still recent, this paper also highlighted future research

directions.
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