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A B S T R A C T   

Various speed scenarios such as high-speed travelling trains and connected drones over ultra-dense heteroge
neous networks (HetNets) may result in a large number of handovers (HOs), which may cause further mobility 
challenges. Therefore, mobility robustness optimization (MRO) function has been proposed to contribute for 
detecting and correcting the mobility issues including too late HO, too early HO, and HO to the wrong cells. This 
function can be more effective in reducing these challenges related to mobility when proper optimization settings 
is performed for the handover control parameters (HCPs) (i.e., time-to-trigger (TTT) and handover margin 
(HOM)). In this paper, a trigger timer is proposed to reduce the unnecessary HOs. Meanwhile, this work proposes 
a weighted algorithm for optimizing the HCPs automatically based network experiences. The proposed algorithm 
rely on various factors for performing the optimization process. That includes, mobile movement speed, network 
traffic load, and the measurement report of the received signal reference power. Research work conducted by 
Matlab simulator that implement HetNets that consider Fifth Generation (5G) network and system settings based 
on 3GPP. Besides, 15 users were investigated using several mobile speed scenarios over Voronoi 5G network. The 
simulation results show that a significant achievement has been performed by the proposed algorithm as 
compared to the other algorithms investigated from the literature. The proposed algorithm has minimized the 
Radio Link Failure (RLF), Handover Ping-Pong (HOPP), Handover Probability (HOP), and handover interruption 
time by 8.8 %, 6.9 %, 6.7 %, and 344 %, respectively, lower than the other algorithms presented.   

1. Introduction 

Over the past decades, there has been a significant development in 
the advancements of mobile cellular network. The Fifth Generation (5G) 
network supports high data rates (up to 10Gbps), extremely low latency 
(1 ms), high mobile speed scenarios (500 km/hr) [1,2]. The target of 5G 
networks to offer data traffic volume that is 1000 times greater than the 
current cellular network (Fourth Generation (4G)). Furthermore, 9.21 
billion 5G mobile subscriptions are forecasted by end of 2029 [3,4]. In 
contrast, the massive growth of the connected devices in ultra-dense 
networks leads to high handover (HO) ratio [5]. This in turn will raise 
the HO issues. 

In cellular networks, a smooth HO process is a fundamental necessity 
in mobility management to preserve the quality connection without any 
disruptions. In addition, HO is defined in Third-Generation Partnership 

Project (3GPP) protocol [6]. A HO is process in wireless communica
tions, in which the User Equipment’s (UE) network resources are 
transferred from the Serving Base Station (SeBS) to the Target Base 
Station (TBS) for maintaining the quality connection to the user [7]. The 
UE is instructed to initiate the HO process when the potential TBS 
achieves an acceptable level of radio signal quality. The HO triggering is 
performed based on HO events which rely on several measurement re
ports and HO control parameters such as Time-To-Trigger (TTT) and 
Handover Margin (HOM). 

In 5G mobile networks, the measurement report plays a pivotal role 
in assessing the Received Signal Reference Power (RSRP) from neigh
boring Base Stations (BSs). This process occurs at a high frequency, 
typically every 40 ms, to ensure real-time and accurate data for seamless 
handovers and network optimization. The Measurement Report involves 
the UE periodically measuring the RSRP from nearby BSs and compiling 
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this data into a report. The RSRP represents the power level of reference 
signals received from various neighboring gNBs and is crucial for eval
uating signal strength and quality, by then, one BS is selected to be the 
candidate target BS that will serve as a serving cell. These reports serve 
as a vital input for making the HO decision. When the RSRP of a target 
BS exceeds certain thresholds or HOM, and this measurement has been 
performed in sequence for a period of time greater than or equal to TTT 
the network can trigger a HO. This process is essentially needed through 
the mobility of user to maintain a stable and high-quality connection as 
the user moves within the coverage area [8]. By collecting and analyzing 
these measurements at such a rapid rate, 5G networks can dynamically 
adapt and ensure a seamless user experience, particularly for applica
tions demanding low latency and high reliability, such as autonomous 
vehicles and augmented reality. After that, the HO decision can be 
initiated based on the periodic measurement report. 

Mobility Robustness Optimization (MRO) is one of the HO optimi
zations entities used for detecting and correcting mobility issues using 
TTT, HOM, and Cell Individual Offset (CIO) as the Handover Control 
Parameters (HCPs). Our works [7,9] have discussed the MRO functions 
extensively. Furthermore, Radio Link Failure (RLF), Handover Failure 
(HOF), Handover Ping-Pong (HOPP), and Handover Probability (HOP) 
are considered as the mobility issues which used as Key Performance 
Indicators (KPIs) to measure the network performance. Therefore, sub- 
optimal setting of the HCPs leads to increasing in the ratio of RLF, 
HOPP, and HOF. 

Stability and reliability of the network system can be achieved by 
proper settings of the TTT and HOM. In addition, RSRP, HOPP, RLF, and 
HOP have a relationship between each other when applying a HO 
optimization of the TTT and HOM [10–12]. For, instance, high average 
of RSRP leads to high HOPP which will subsequently increases the HOP. 
This is because of low setting values of TTT and HOM. Furthermore, low 
average of RSRP leads to high RLF and decreased HOP because of high 
setting values of TTT and HOM. Moreover, controlling the TTT and HOM 
for speed scenarios can contribute for seamless transition of the UE from 
BS to another without causing too late HOs due to high-speed with high 
HCPs values. Also, preventing too early HOs during low-speed with low 
HCPs values [13]. 

HO decision is a crucial process for ensuring seamless and uninter
rupted connectivity as users move within the coverage area of different 
base stations (gNBs) [14]. These decisions are typically based on key 
parameters, including the and the HOM. RSRP is a metric that quantifies 
the power level of the reference signals received from neighboring gNBs. 
It provides an indication of the signal strength and quality, aiding in the 
selection of the target gNB for HO. The HOM is a predetermined 
threshold that determines when a HO should occur. When the RSRP of a 
neighboring gNB exceeds the RSRP of the serving gNB by the HOM, a HO 
decision is triggered. Therefore, the HO decision algorithm in 5G net
works is taken based on these parameters. The system is continually 
evaluating these parameters and decides when to initiate a HO, ensuring 
that the UE connects to the most suitable gNB [15]. This can be repre
sented simply in a mathematical expression as illustrated in Equation 
(1). 

High mobility, unplanned ultra-dense 5G networks, and sub-optimal 
setting of the HCPs have impacted the robustness of the communication 
networks. Signal quality degradation occurs rapidly, particularly with 
higher frequencies (i.e., mm-Wave communications), which will be 
increasingly employed in 5G networks. However, a proper HO self- 
optimization algorithm for optimal HO triggering is required. There
fore, high mobility over BSs that uses high operating frequencies (small 
geographical area) necessitate an accurate HO setting value for the HCPs 
(i.e., TTT and HOM). 

The main contributions of this study are summarized as follows: 

• Weighted function (WF) is presented as a solution method for opti
mizing HCPs settings that include the TTT and HOM. The proposed 

algorithm is compared with other algorithm addressed in the 
literature. 

• Triggering Timer is deployed to contribute for reducing the unnec
essary HOs by preventing the HO executions to the TBS that has the 
same ID as the SeBS.  

• 15 users have been investigated using several mobile speed scenarios 
over 5G network. Furthermore, RLF, HOP, and HO interruption time 
are used as the KPIs and different simulation times are applied to 
investigate the behavior of KPIs on the system performance. 

The rest of this article is structured as follows. Section 2 provides the 
research background. Section 3 addresses the related works. Section 4 
presents the system model. Section 5 provides the proposed HO self- 
optimization algorithm. Section 6 presents the results and discussions. 
Section 7 provides the simulation challenges. Section 8 concludes the 
study. 

2. Research background 

A brief description including 4 subsections will be provided in this 
section. 

2.1. 5G network 

The world of telecommunications is undergoing a paradigm shift 
with the advent of 5G. This groundbreaking innovation promises to 
revolutionize the way we communicate, connect, and interact with the 
digital world. As 5G takes its first steps in commercialization, global 
research institutions are already setting their sights on the next frontier. 
The key driver behind the 5G to 6G transition lies in meeting new service 
requirements and adapting to the relentless growth in mobile data traffic 
[16,17]. The international telecommunication union, which predicts an 
increase of 5 zettabytes by 2030, underlines the need for ultra-high data 
rates (up to 1 Tbps), ultra-low latency, high energy efficiency, and 
ubiquitous global network coverage in next-generation wireless net
works. The evolution of mobile communication networks from 1G to 5G 
is setting the stage for the quantum leap expected in 6G. The first- 
generation mobile network, designed for voice services, has evolved 
through digital modulation technologies, high-speed data transmission 
(3G), and fully IP-based 4G networks [18]. With their revolutionary 
advances in data rates, latency, reliability, and connectivity, the ongoing 
deployment of 5G networks serves as a foundation for the research and 
development of 6G. 

In 5G mobile networks, the signal path loss is a fundamental 
component used to accurately replicate real-world radio propagation 
scenarios. Path loss models are indispensable for predicting signal 
strength, optimizing network design, and evaluating coverage and 
interference in 5G networks. By accurately modeling these path losses, 
researchers and network planners can develop strategies to enhance 
network performance and ensure that 5G systems deliver reliable and 
efficient connectivity across diverse environments. 

2.2. Handover issues in 5G 

The challenges of the HO in 5G network are associated with the 
preservation of the quality connection of the UEs when they move from 
one BS to another within the network. Unlike the existing mobile net
works, 5G introduces higher operating frequencies and ultra-dense SBSs, 
which pose unique HO challenges as shown in Fig. 1. These include 
increased HO frequency due to the smaller coverage areas of small cells, 
leading to potential disruptions in services like voice calls and video 
streaming. Moreover, the integration of multiple radio access technol
ogies, including mm-Wave and sub-6 GHz bands, complicates the HO 
procedures, which require an efficient HO decision algorithm. In addi
tion, addressing the HO latency becomes an essential factor in ensuring 
uninterrupted connectivity for latency-sensitive applications like real- 
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time gaming. However, it is necessary that HO issues in the 5G network 
be handled through smart algorithms that aid the BSs in carrying out 
predictive HO, avoid interferences, and use coordination techniques that 
guarantee quality of service among the network users. 

2.3. Mobility robustness optimization (MRO) 

The purpose of the HO optimization networks is to enhance the 
system performance by achieving a HO triggering points. One essential 
aspect of this optimization lies in improving the mobility robustness, 
which plays a significant role in reducing the HO issues. However, MRO 
contributes in correcting and detecting the mobility issues by optimizing 
the HCPs such as TTT and HOM [7]. In addition, the HOM is used to 
measure the signal strength threshold at which a HO is triggered, while 
the TTT determines the duration before a HO decision is made. 
Furthermore, several factors can be used as input parameters for auto- 
tuning the HCPs. These factors including RSRP, SINR, mobile speed 
scenarios, and traffic loads. Therefore, appropriate configuration of the 
HCPs through MRO may deliver enhanced reliability, reduced latency, 
improved quality connection of the users during HOs. 

2.4. Research gap 

Although advanced technological progress has been achieved, the 
problem of HO optimization and MRO is still a challenge for 5G and 
future HetNets. The integration of unplanned ultra-dense SBSs, different 
cell sizes, high operating frequencies, and high UE’s mobility creates 
more complexity for 5G and HetNets. The complexity includes 

propagation challenges, signal blockages, and maintaining smooth HOs. 
Besides, the number of HOs is increasing due to densification networks, 
which subsequently increases the ratio of HOPP, RLF, and HOF. To meet 
these challenges, the development of innovative solutions is necessary 
for the HO algorithm design, interference management, and predictive 
analytics to achieve optimum handover control parameter values 
dynamically. Along with 5G network development and heterogeneous 
deployment enlargement, further research and development are 
required to overcome these challenges and offer seamless connectivity 
and quality of service for users in different use cases and scenarios. 

3. Related works 

Several MRO studies were comprehensively addressed in our surveys 
[7] and [9]. These studies were classified into several groups based on 
the solution method applied such as RSRP-based [19–28], weight 
function [1], [29–31], Fuzzy Logic Controller (FLC) [32–36], supervised 
machine learning (ML) in [37–43], unsupervised ML in [44], and rein
forcement learning in [45–55]. Furthermore, Several solution methods 
were proposed in MRO for auto-tuning the HCPs (i.e., TTT and HOM) 
[11,12], [56–59]. However, our study has focused on addressing the 
most recent MRO investigations in order to avoid duplicating the work 
already presented in our published surveys. 

Kwong et al. [60] have proposed a deep reinforcement learning al
gorithm to adjust the HOM to achieve HO optimality over the 5G 
network. Several KPIs, including the number of HOs, HOPP, HOF, 
throughput, and latency, have been investigated for system perfor
mance. Furthermore, the study has applied a random-way point mobility 
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Fig. 1. Handover concept in a deployed Heterogeneous Networks with 5G technology.  
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model to a 6x6 km2 coverage area. In addition, several mobile speed 
scenarios (i.e., 3 km/hr, 30 km/hr, 60 km/hr, 72 km/hr, 90 km/hr, 120 
km/hr, and 300 km/hr) have been applied. Moreover, FR1 (between 4.1 
GHz and 7.125 GHz) and FR2 (between 24.25 GHz and 52.6 GHz) were 
the carrier frequencies evaluated by [60]. The number of BSs deployed 
for FR1 and FR2 was 30 and 20, respectively. The study should include 
the TTT as a significant HCP in order to control the mobility issues such 
as HOPPs and the number of HOs. In addition, RLF requires an inves
tigation to measure the effectiveness of this study. Improper configu
ration of the HOM may lead to high RLFs. 

Saad et al. [61] have proposed a linear regression model to auto
matically adapt both TTT and HOM. Additionally, several metrics 
including HOP, HOPP, and RLF have been used as system indicators to 
display the effectiveness of the implemented algorithms. The presented 
algorithm investigates the user experience based on the Signal-To- 
Interference-Plus-Noise-Ratio (SINR). Mobile speed scenarios ranging 
from 40 km/hr to 140 km/hr have been applied. In addition, 15 users 
were examined over the 5G network using 200 m as a cell radius. 
Furthermore, 50 ms and 28 GHz are used as the measurement time and 
operating frequency, respectively. However, the speed scenarios and 
BS’s load should be investigated during HOs to increase the robustness 
of the system and to achieve optimal HO triggering. 

A HO self-optimization algorithm has been proposed in [62] for auto- 
tuning the HCPs (i.e., threshold, HOM, and TTT). Besides, HOP, HOPP, 
and HOF were applied as the KPIs over a deployed 5G network. 
Furthermore, the users are moving in a directional mobility over 
0.6x0.6 km2 using mobile speed scenarios between 0 km/hr and 120 
km/hr. In addition, 3GPP release 16 has been used as the standard for 
the 5G simulating environment. Moreover, 4 users have been investi
gated using 4 BSs, each BS has a radius of 200 m. However, increasing 
the average of the HOPP leads to decreasing the average of the RLF. 
Therefore, the ratio of the RLF should be examined in this study. 

Alhammadi et al. [11] have applied two self-optimization functions 
including MRO function and load balancing optimization function to 
adapt the HCPs. Furthermore, the study has proposed the FLC using 
three input parameters which are SINR, UE’S velocity, and BS load. In 
addition, urban Heterogeneous Networks (HetNet) is deployed as the 
simulation environment where the UEs are moving in a fixed directions 
using speed scenarios between 10 km/hr and 160 km/hr. In addition, to 
measure the robustness of the system compared to other algorithm 
presented in the literature [63], HOPP, RLF, HO latency, and outage 
probability were presented as the KPIs. Moreover, the operating fre
quencies applied for the 4G macro BS and 5G small BS were 2.1 GHz and 
28 GHz, respectively. 

FLC algorithm is proposed in [12] to automatically adjust the TTT 
and HOM using the measured parameters including RSRP, UE’S veloc
ity, and Received Signal Reference Quality (RSRQ). HOF, HOP, HOPP, 
and handover interruption time were considered as the measurement 
indicators of the proposed algorithm over the 5G network. Moreover, 
the UEs were moving in a random way points over 3x3 km2 simulation 
area using different mobile speeds (between 20 km/hr and 160 km/hr). 
In addition, 28 GHz operating frequency is applied to 183 5G small BSs 
which has radius of a 200 m each. The investigation of RLF is required 
due to the inverse relationship between the ratio of HOPP and the ratio 
of RLF. 

To preserve the quality connection of the UEs during HO, efficient 
HO decision algorithm is required. So, Article [56] has proposed an 
approach for optimizing the Cell Individual offset (CIO) to increase the 
UE’s capacity using reinforcement learning (i.e., Q-learning). Besides, 
deep reinforcement learning mainly actor-critic-based has been applied. 
Three KPIs (i.e., capacity, HOF, and HOPP) have been used to measure 
the effectiveness of the proposed algorithm. Multiple ground and flying 
BSs were deployed over 1x1 km2 using suburban scenario. Furthermore, 
the 150 users are moving in a random way points at mobile speed sce
narios between 1 and 3 m/s. Moreover, the study has considered 2 GHz 
as the operating frequency. Besides, 0.16 s and 3 dB were the fixed 

values assigned for the HCPs (TTT and HOM), respectively. However, 
the HCPs (i.e., TTT and HOM) should be auto-tuned in [56]. Assigning 
fixed values to the TTT and HOM will negatively impact on system op
erators in terms of operational expenses (OPEX) and capital expenses 
(CAPEX). Thereby, influencing the network performance. Another effect 
is the time consumption which results in higher operational costs and 
less revenue. 

Farooq et al. [57] have proposed a ML mainly XGBoost model using 
three KPIs including edge RSRP, HO successful rate, and traffic load. 
Therefore, 3GPP events including A3 and A5 events were discussed in 
[57]. Different radio access technologies were applied using 3 different 
operating frequencies (i.e., 1.7 GHz, 3.1 GHz and 3.5 GHz). In addition, 
the users are moving in four speed scenarios (i.e., 3 km/hr, 60 km/hr, 
120 km/hr, and 240 km/hr) over a simulation coverage area of 4 km2. 
However, HOPP and RLF are significant KPIs that should be investigated 
to measure the system performance and the user satisfaction. 

Different settings values for the TTT and HOM were investigated 
over 5G mobile network using several KPIs such as HOPP, HOP, and 
outage probability [58]. Furthermore, this study is addressed to inves
tigate the impact of several mobile speed scenarios on the system per
formance when different HCPs setting values are applied. However, low 
HCP setting values leads to high HOPPs, the case becomes worse during 
high mobility. The assessment of the RLFs is required in this study 
because of the trade-off that arises between HOPP and RLF. 

FLC algorithm over ultra-dense 5G network has been proposed by 
[59] to self-optimize the TTT and HOM. SINR and UE’s velocity were the 
two FLC input parameters that determine the setting values of the TTT 
and HOM. NS-3 was used as the simulation tool to conduct this study 
over an area of 0.3 km2. Furthermore, number of HOs, HOPP, and 
throughputs were investigated as the KPIs. In addition, for the mobility 
model, the users (5 users) are moving in two-dimensional random walk 
using several mobile speed scenarios (between 2 m/s and 20 m/s). The 
traffic load of the TBS should be investigated to avoid HO execution to 
the congested TBS. 

4. System model 

The simulation has been conducted using MATLAB 2021b. One 
reused operating frequency has been used in the simulation environ
ment (i.e., 28 GHz) which make the users moves under one radio access 
technology. Furthermore, 200 m is the cell radius since operating fre
quency is high and the path-loss is increasing [64]. Moreover, 183 BSs 
are deployed using 30 dBm transmission power. Besides, the minimum 
assigned power for the received signal is − 101.5 dBm. Fig. 2 displays the 
Voronoi-based simulation environment used for the deployment of the 
5G mobile network. 2x2 km2 is the study simulation area. Therefore, the 
user is allowed to connect only to one cell. Furthermore, we have used 
the voronoi environment for unplanned deployments of the locations of 
the BSs. The simulation environment is a practical deployment where 
the locations of the BSs are randomly distributed. Thereby, the calcu
lated input parameters (i.e., RSRP, UE’s speed, and traffic) from the 
voronoi simulation environment determine the output values of the 
HCPs (i.e., TTT and HOM). 

The users (15 users) are moving in a random way points using several 
mobile speed scenarios (between 40 km/hr and 140 km/hr). Further
more, the. 

Euclidian distances are calculated periodically (every 40 ms) for 
each user inside the coverage of the BSs. In this study, the signal’s path 
losses, are calculated alongside the log-normal shadowing and Rayleigh 
fading. Table 1 represents the 5G simulation parameters. These pa
rameters are applied based on 3GPP release 16 [65,66]. 

The simulation time to measure a large number of users may take a 
longer time. However, we have investigated 15 users to validate our 
proposed algorithm and to show the improvements of our algorithm 
compared to other algorithms presented. Each user experiences mobility 
issues including RLF, HOPP, and HOP, which may affect the system’s 
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performance. Investigating more or less than 15 users may affect the 
total average of the mobility issues (RLF, HOPP, and HOP). We have 
investigated the performance of the whole system so that, regardless of 
the number of users, our proposed algorithm will lead to better perfor
mance. Several researches have considered 1 user for the system vali
dation such as in [67,68,69], and [70]. 

The movement steps between each simulation cycle differ depending 
on the speed situation. The step movements are directly proportional to 
the rise in mobile speed scenarios. Therefore, it is necessary to decrease 
the values of the HCPs. However, the HO procedure, consisting of HO 
preparation, HO execution, and HO completion, begins when the HO 
decision algorithm in (1) is met. 

5. Proposed handover self-optimization algorithm 

When the TBS is greater than the SeBS, a trigger timer will be 

involved to identify the TBS’s ID. If the TBS’s ID has the same ID as SeBS, 
no HO decision algorithm will not be activated. The counter of a trigger 
timer 

Timer countermax =
TTT

Measurement intervel
(2) 

The measurement interval used in this study is 40 ms. In addition, the 
pre-defined value of the TTT is 120 ms. However, the maximum timer 
counter should be 3 according to (2). Then the TTT and HOM will be 
auto-tuned based on the proposed WF. The main objective of addressing 
the trigger timer is to prevent the user to transit to the BS that has the 
same ID as the previous BS. Subsequently, the unnecessary HOs will be 
reduced. Fig. 3 represents a trigger timer for reducing unnecessary HOs. 

WF is proposed as a solution method for auto-tuning the TTT and 
HOM. In WF, three input parameters are addressed to determine the 
auto-tuning setting value of the TTT and HOM. These three input pa
rameters are addressed below:  

• RSRP function 

Equation (3) represents the RSRP function where the SeBSs and the 
TBSs are calculated every 40 ms. 

f(RSRP) =
(

RSRPT

RSRPmax

)

−

(
RSRPS

RSRPmax

)

=
RSRPT − RSRPS

RSRPmax
(3) 

where T, S, and max subscripts represent the RSRP of the TBS, the 
RSRP of the serving BS, and the maximum value of the RSRP, 
respectively.  

• Traffic load’s function 

The Loads of the BSs are updated periodically in every simulation 
cycle which stated as 40 ms. 

f(TL) =
(

TLT

TLmax

)

−

(
TLS

TLmax

)

=
TLT − TLS

TLmax
, (4) 

where TLT, TLS, and TLmax represent the TBS’s traffic load, serving 

Fig. 2. Voronoi Simulation environment.  

Table 1 
Network parameters of the simulated 5G technology.  

Network Parameters Assumption 
5G small BS 

Deployed BSs 183 
Applied Frequency (GHZ) 28 
transmitter Power (dBm) 30 
Height of the BSs (meter) 15 
Bandwidth (MHz) 500 
Received Signal Strength Indicator (RSSI) 

(dBm) 
− 101.50 

Height of the UE (meter) 1.5 
Noise figure of the UE (dB) 9 
HOM (dB) Adaptive 
TTT (ms) Adaptive 
Mobile speed scenarios (km/hr) Between 40 and 200 
Number of users 15 
Measurement interval 40 ms 
HO decision algorithm RSRPTarget ≥ RSRPServing +

HOM (1) 
Environment Urban areas, 5G network  
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BS’s traffic load, and maximum traffic load, respectively.  

• Velocity function 

Several mobile speed scenarios are applied to the following velocity 
function. 

f(v) = 2log2

(

1+
v

vmax

)

− 1, (5) 

where vmax is the maximum velocity applied which is 200 km/hr. 
However, the mathematical model is addressed as below: 

wn =
1 − f(xn)

∑F
i=1(1 − f(xi))

(6) 

where wn the weight of function n, and n can be one of the three 
functions (i.e., RSRP, TL, or v). For simplifying (6), the below equation is 
addressed: 

wRSRP =
1 − f(RSRP)

(1 − f(RSRP) ) + (1 − f(TL) ) + (1 − f(v))
(7) 

However, wTL and wv can be simplified easily from (6). According to 
the weights of the functions, the TTT values are self-optimized. There
fore, the main objective is to reduce MRO issues (i.e, too late HOs, too 
early HOs, and HO to wrong cell).   

The trigger timer is added to the HO decision algorithm as shown in 
Equation (8) and Fig. 3. 

RSRPTarget ≥ RSRPServing + HOM&& 

Fig. 3. Trigger timer for reducing unnecessary HOs (T represents the simula
tion cycle). 
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Trigger timer ≥ TTT (8) 

Algorithm 1 shows general steps of the proposed WF algorithm. 
Therefore, the measurement reports were calculated every 40 ms for 
each user and for each mobile speed scenario over the whole simulation 
time. In Algorithm 1, the symbol T represents the number of simulation 
cycles. Line 13 indicates that. 

there is no HO decision at simulation cycle = 1. However, when T >
1, the HO decision algorithm will be initiated. 

The initial value of the TTT is 100 ms. Then, we have presented the 
optimization steps as 0.1. Equation (6) is evaluated in each simulation 
cycle T. The WF at T is compared with (T-1) to decide whether to add or 
subtract from the current TTT value. Furthermore, 25 ms have been used 

for the addition and subtraction processes based on equation (6). 
However, the TTT values range between 0 ms and 5120 ms [6]. The 
HOM optimization level is given by equation (9) 

f(HOM) =
HOMmax − HOMmin

2
(9)  

where HOMmax and HOMmin are the maximum and minimum HOM, 
respectively. The prediction of the HOM is obtained by multiplying 
equation (6) by the average HOM level f(HOM). 

6. Results and discussions 

In this section, the proposed WF algorithms is compared with other 
algorithms to show its effectiveness on reducing the applied KPIs. 
Therefore, the KPIs include HOPP, RLF, HOP, and HO interruption time. 

Before discussing the results, we will provide an explanation of the 
relationships between the HCPs and mobility issues such as too late HO, 
too early HOs, and HO to wrong cell, as well as the connection between 
these issues and KPIs such as HOPP, RLF, and HOP. Table 2 shows the 
suboptimal settings of the HCPs (TTT and HOM). Assigning high values 
to the TTT and HOM will result in a decrease in the HOPPs. Thereby, 
increasing RLF due to too late HO. Assigning lower HCP settings will 
result in a decrease in RLFs and an increase in HOPPs due to too early 
HO. Subsequently, increasing the ratio of the HOPP leads to a high HOP 
probability. Improper configurations may cause the HO to wrong cell or 
lead to unnecessary HOs. 

Fig. 4 presents the average HOPP probability in the form of the cu
mulative distribution function (CDF). The proposed algorithm in Fig. 4 
shows a significant improvement compared to the conventional and the 
FLC [33] algorithms. Therefore, the increasing and decreasing the 
average probability of the HOPP relay on the configurations of the TTT 
and HOM. Low TTT and HOM setting values lead to high HOPPs 
whereas, high setting values lead to low HOPP but high RLFs. However, 
our algorithm gave an optimal reduction of the HOPPs and RLFs due to a 
proper configuration of the TTT and HOM. 

Fig. 5 shows the CDF of the average RLF probability where the 
proposed algorithm shows the lowest average compared to another al
gorithm. In addition, Table 3 addresses the average RLF values using 
different time intervals and several speed scenarios. Therefore, a trade- 
off between RLF and HOPP need an optimal HO triggering value which 
has been achieved in our proposed algorithm. Based on the proposed 
algorithm in Table 3, it can be seen that the average values of both RLF 
and HOPP are the lowest values. Therefore, RLF can occur during the 
handover process, either because the UE did not receive the HO com
mand or the network did not receive the measurement report. Addi
tionally, the UE might experience difficulty in accessing the target cell 
which may lead to RLF. Moreover, Fig. 6 to Fig. 9 represents the average 
RLF probability where Fig. 6 represent the average RLF probability 
versus HO optimization algorithm. Besides, the figure displays that the 
proposed algorithm has the lowest RLF probability with value of 0.002. 
Furthermore, Table 3 addresses the averages of probabilities using 
several mobile speed scenarios and simulation time. In addition, Fig. 7 
displays the average RLF probability at different mobile speed scenarios 
where the proposed algorithm shows the lowest average RLF probability 
at all mobile speed scenarios. Moreover, Fig. 8 and Fig. 9 represent the 
average RLF probability using different simulation time. Besides, Fig. 8 
and Fig. 9 show that the proposed algorithm has the lowest RLF prob
ability over all the simulation time. Therefore, by increasing the simu
lation time to 400 sec, the behavior of the system in term of RLF is shown 
below Fig. 9 using three mobile speed scenarios (i.e., 40 km/hr, 120 km/ 
hr, 200 km/hr). Therefore, by extending the simulation time to 400 s, 
the proposed algorithm has shown a significant reduction in all KPIs 
applied (HOPP, RLF, HOP, and HO interruption time). 

Fig. 10 and Fig. 11 display the average HOP where the proposed 
algorithm shows a significant reduction compared to the conventional 

Fig. 4. CDF of the average HOPP probability.  

Fig. 5. CDF of the average RLF.  

Table 2 
Mobility issues due to improper configurations of the HCPs.  

MRO issues TTT value HOM value Affected KPI levels 

Too late HO High High High RLF 
To early HO Low Low High HOPP 
HO to wrong cell Inappropriate Inappropriate High RLF or High HOPP  
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and FLC algorithms. Furthermore, Table 3 highlights the values of the 
HOP where the proposed WF has the lowest average HOP. Moreover, 
Fig. 10 shows the average HOP using various mobile speed scenarios. It 
can be observed that the proposed algorithm has achieved the lowest 
HOP over all mobile speed scenarios compared to other algorithms. 
Therefore, the proposed algorithm has self-optimized the TTT and HOM 
properly by assigning a different setting value according to the mobile 
speed scenario. 

For instance, at low mobile speed scenarios a high TTT and HOM 
setting values were assigned to avoid too early HOs whereas, low setting 
value were assigned to the TTT and HOM during high mobility in order 
to avoid too late HOs. 

Fig. 12 represents the HO interruption time overall the simulation 
cycles (i.e., 150 sec.). Besides, the proposed algorithm shows the lowest 
average with 0.17 ms compared to 0.75 ms and 3.78 ms for the con
ventional algorithm and FLC, respectively. Furthermore, Table 3 shows 
the average HO interruption time at various mobile speed scenarios and 

Table 3 
Investigated KPIs using different simulation time, speed scenarios, and HO algorithms.  

HO Algorithm Speed scenarios (km/hr) Simulation time HOPP RLF HOP Interruption time (ms)  

FLC 
[40, 60, 80, 100, 120, and 140] 150 sec.  0.07  0.09  0.07  3.78 
[40,120, and 200] 400 sec  0.1  0.06  0.12  6.25   

Conventional [40, 60, 80, 100, 120, and 140] 150 sec.  0.003  0.062  0.15  0.75    

Proposed WF 
[40, 60, 80, 100, 120, and 140] 150 sec.  0.001  0.002  0.003  0.17 
[40,120, and 200] 400 sec  0.004  0.007  0.006  0.34  

Fig. 6. Average probability of the RLF vs HO algorithms.  

Fig. 7. Average probability of the RLF at different speed scenarios.  

Fig. 8. Average probability of the RLF vs simulation time.  

Fig. 9. Average probability of the RLF vs simulation time.  
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different simulation time. However, the proposed WF algorithm in 
Table 3 shows the lowest average values compared to another algorithm. 
Moreover, Fig. 13 presents the average HO interruption time at different 
mobile speed scenarios. In addition, the proposed algorithm shows a 
significant reduction in the average interruption time at all mobile speed 
scenarios compared to the other algorithms. 

7. Simulation challenges 

Several challenges during the simulation phase have been faced. 
These challenges are summarized as follow: 

7.1. Simulation time 

The simulation time depends on some parameters applied in our 
study. These parameters include the number of simulation cycles, the 
number of users, and mobile speed scenarios applied. However, 
increasing one of these parameters leads to increasing the simulation 
time. The simulation time highly increasing if all of these parameters are 
applied with large number of both simulation time, users, and mobile 
speed scenarios. 

7.2. Memory storage and processor 

Due to the long simulation time required for the simulation, the 
computer getting stuck for completing the simulation due to the com
puter processor issues. Furthermore, storing large number of data leads 
to memory issues. Low on memory caused by saving data for the dis
tance, path-loss, RSRP, and KPIs every 40 ms for each user in each BS for 
every mobile speed scenario. To cope up with these challenges, high 
quality computer may help to solve these challenges. 

7.3. Scalability of network 

Scalability is a critical consideration in the development and testing 
of 5G networks. The promise of 5G technology lies in its ability to 
support an unprecedented number of devices, from smartphones and IoT 
sensors to autonomous vehicles and industrial machinery. To assess and 
optimize network performance, simulating large-scale networks with 
numerous users and base BSs is essential. However, this ambition comes 
with computational challenges. Simulating massive 5G networks de
mands substantial computational resources. The sheer volume of in
teractions, data exchanges, and signal calculations between a multitude 
of users and BSs can strain even high-performance computers. 

Fig. 10. Average handover probability at different speed scenarios.  

Fig. 11. Average handover probability vs HO algorithms.  

Fig. 12. Average HO interruption time vs simulation time.  

Fig. 13. Average HO interruption time for all UEs with different mobile.  
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Researchers face the task of efficiently processing and analyzing enor
mous datasets, which can slow down simulations and hinder the 
research process. Addressing scalability challenges often involves 
advanced parallel computing, cloud-based solutions, and distributed 
simulation frameworks. Researchers must strike a balance between 
achieving a realistic representation of 5G network behavior and man
aging the computational complexities to enable meaningful analysis and 
optimization. 

7.4. Realistic mobility models 

Realistic mobility models are pivotal in the simulation of 5G net
works, as they aim to mirror the dynamic nature of real-world user 
behavior and movement patterns. These models play a central role in 
evaluating network performance, especially in scenarios where mobility 
is a critical factor, such as urban environments, vehicular communica
tion, and smart cities. Creating such models is a complex undertaking 
due to the multifaceted and unpredictable nature of human mobility. 
Factors like pedestrian and vehicular traffic, user density, user prefer
ences, and environmental conditions must be considered. Mobility 
models need to replicate the random and non-uniform movement of 
users, considering sudden changes in speed, direction, and pauses, 
which occur in real life. Moreover, it’s essential to account for different 
mobility scenarios, including urban, suburban, and indoor environ
ments, each characterized by distinct movement patterns. Striking the 
right balance between complexity and simplicity in mobility models is 
crucial. While intricate models can capture the nuances of mobility, they 
can also demand substantial computational resources. Therefore, re
searchers must carefully design and calibrate these models to ensure that 
simulation results closely align with the real-world behavior of 5G 
network users and devices. 

8. Conclusion 

As a conclusion, it is noticeable that the investigated solution 
methods from the literature were not achieved the HO optimality due to 
their implementation drawbacks and limitation of considered input 
parameters and deployment scenarios. However, this study proposes a 
WF algorithm based on three input parameters (i.e., RSRP, speed sce
narios, and network traffic load) to determine the auto-tuning setting 
value of the TTT and HOM. Additionally, HOPP, RLF, HOP, and HO 
interruption time were applied as KPIs to measure the robustness of the 
proposed algorithm. Furthermore, the proposed algorithm was deployed 
using several mobile speed scenarios over a 5G network. The simulation 
results demonstrated that the proposed algorithm achieved a crucial 
reduction in all addressed KPIs compared to the other algorithms pre
sented. Therefore, the reduction achieved for the RLF, HOPP, HOP, and 
handover interruption time were lower than the other algorithm by 8.8 
%, 6.9 %, 6.7 %, and 344 %, respectively. 
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