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ABSTRACT High mobility travelling trains and drones connected via ultra-dense mobile networks may
lead to frequent handovers (HOs). As a consequence, this could arise the mobility problems of the serving
network such as handover ping-pong (HOPP), radio link failure (RLF), handover probability (HOP), and
handover failure (HOF). Mobility robustness optimization (MRO) function can contribute for fixing such
related problems. This can be performed by self-optimization process for the handover control parameters
(HCPs), that including time-to-trigger (TTT) and handover margin (HOM). Although various proposed
solutions available in the literature, the issues have not been addressed efficiently. Thus, this study proposes
a fuzzy logic controller (FLC) along with weighted function (WF) to perform efficient HO self-optimization
process for the HCPs over the heterogeneous networks (Het-Nets). The proposed algorithm is defined as
velocity-aware-fuzzy logic controller-weighted function (VAW-FLC-WF) algorithm. Additionally, a trigger
timer is used along with the proposed algorithm for the purpose of reducing the ratio of HOPP. The objective
of the integrated algorithms is to minimize the connections issues such as HOPP, RLF, and received signal
reference power (RSRP). Besides, this study highlighted the significant of categorizing the speed scenarios in
reducing the mobility issues by comparing the results with non-categorized speed scenarios (proposed FLC-
WF). The proposed integrated algorithms show a significant enhancements as compared to the algorithms
investigated from the literature. The average RLF probability of the proposed (VAW-FLC-WF) was reduced
to 0.006 which was the lowest probability compared to the other HO algorithms. Besides, RSRP, HOPP were
shown noticeable improvements compared to other HO algorithms.

INDEX TERMS Heterogeneous networks, 6G, 5G, mobility, handover, mobility robustness optimization,
handover control parameters, handover margin, time-to-trigger.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

I. INTRODUCTION
Large numbers of connected devices that require high
demands due to their high computational abilities, online
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gaming, and video conferencing have increased [1], [2].
Therefore, ultra-dense heterogeneous networks (HetNets)
with millimeter wave (mm-wave) communication have been
proposed to accommodate high network data rate for future
mobile HetNets. In contrast, the network complexity of
the different radio access technologies (RAT) will remain
a challenge for the network operators since deploying an
ultra-denseHetNetmay cause high interferencewith high fre-
quent handovers (HOs) compared to homogeneous networks.
Hence, a large number of HOs may lead to an increase in the
ratio of handover ping-pong (HOPP) and radio link failure
(RLF) [3], [4].
HO is accountable for preserving the user equipment’s

(UE) quality connection during the transitions between base
stations (BSs). However, the HO procedure is one of the
significant processes in mobility management to conduct the
network. Therefore, to avoid the mobility issues (i.e., too late
HO, too early HO, and HO to wrong cell), several control
parameters are necessary to be well configured for system
reliability and stability.

Mobility robustness optimization (MRO) functions may
significantly contribute to enhancing the quality of the con-
nection as well as preserving the network resources if the
handover control parameters (HCPs) are configured accu-
rately [4]. There are two parameters for HCPs. They are
time-to-trigger (TTT) and handover margin (HOM). Besides,
a proper setting value mitigates a contradiction in objectives
that may occur when optimizing the HCPs. For instance, a
high TTT setting leads to RLF, whereas a low TTT setting
leads to HOPP probability [5], [6]. Therefore, there is a trade-
off between RLF and HOPP during the HO optimization
process [7].
Mobile speed scenarios and received signal reference

power (RSRP) values need to be taken into consideration
when optimizing the HCPs in order to control the MRO
issues. Low-speed scenarios with a low HCPs setting value
may cause too early HO, whereas high-speed scenarios with
a high HCPs setting value may cause too late HO. Moreover,
a mediumRSRP value at the cell edge needs highHCP setting
value to maintain the current connection, whereas a low HCP
setting is required for a weak RSRP value to speed up the HO
process. In addition, traffic load and signal-to-interference-
plus-noise ratio (SINR) are the two input parameters that have
been investigated in MRO function to determine the suitable
setting value for the HCPs. However, various algorithms with
different deployment scenarios, simulators, and key perfor-
mance indicators (KPIs) have been developed all through
the past years. Therefore, several conventional and artifi-
cial intelligence optimization methods have been applied,
as addressed in these works [7], [8].

Fuzzy logic controller (FLC)methods have been addressed
to optimize HCPs of the MRO function, such as in [9],
[10], [11], [12], [13], [14], and [15]. These methods applied
different KPIs over a different deployment scenario for LTE
networks. Furthermore, studies [10], [11], [12], [13], [14],

[15] have been extensively addressed in [7] mainly under a
section entitled HO optimization based on FLC. In addition,
each study shows different system accuracy from other stud-
ies due to the differences in KPIs, simulation environment,
inputs and outputs parameters.

Article [9] has proposed an FLC technique to auto-tune
HOM and TTT over the fifth generation (5G) network and
used RSRP, UE’s speed, and received signal reference quality
(RSRQ) as input parameters for optimization. TheUE’s speed
was assumed to be from 20 km/hr to 140 km/hr.

Besides, the UEs were moving in a straight way in eight
directions. Furthermore, handover probability (HOP), han-
dover failure (HOF), HOPP, HO latency, and HO IT were
used as KPIs in this study.

The FLC technique has been used to self-optimize the
TTT and HOM based on three input parameters (i.e., SINR,
BS load, and UE’s load) [16]. Besides, this study manages
the contradictions in objectives between the MRO and load
balancing optimization. Furthermore, several metrics (i.e.,
HOPP, RLF, and HO latency) have been used as indicator to
measure the system performance over a HetNet using several
mobile speed scenarios.

Article [17] has proposed a FLC method for automatically
optimizing the TTT and HOM over ultra-dense SBSs using
the two input parameters (i.e., SINR and UE’s speed). Fur-
thermore, the number of HOs, system throughput, and HOPP
were used as KPIs in this study. Moreover, the proposed
algorithm was compared with the conventional scheme (A3
event).

Several methods have used weighted function (WF) as a
solution technique to self-optimize the HCPs. Reference [16]
introduces a self-optimizing HO method that uses fuzzy
coordination to achieve a seamless HO for users who move
across multiple radio access networks. Furthermore, [16] has
applied two self-optimization functions (i.e., MRO and load
balancing optimization) using three inputs (i.e., SINR, cell
load, and mobile speed scenarios). Through simulation, the
proposed method is shown to effectively optimize mobility
by reducing issues like HOPP, RLF, and HO latency over dif-
ferent mobile speed scenarios. Furthermore, recently, Shayea
et al. came up with an algorithm that aims to self-optimize
HO parameters (i.e., TTT and HOM) in 5G networks by
focusing on individual user performance [18]. The algorithm
is based on automatic weight function and input metrics such
as UE SINR, speed, and cell load to improve key performance
indicators such as RSRP, HOP, HPPP, and RLF. Moreover,
a method called weighted fuzzy self-optimization technique
has been addressed which relies on factors such as the SINR
ratio, the traffic load of the serving and target BSs, and the
velocity of the UE. This method was presented to enhance
TTT and HOM with the goal of reducing RLF and HOPP.

To enhance system performance, a proper HCP setting
value should be addressed to avoid degradation in qual-
ity connection due to improper configuration of the HCPs.
Therefore, auto-tuning TTT and HOM are a significant
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process during HO since no optimal HO triggering points
were achieved up-to-date. However, the HCPs setting values
should be changed automatically based on user experience,
such as mobile speed scenarios, changes of RSRP values,
and the traffic load. Therefore, self-optimizing the HCPs with
different mobile speed scenarios over a HetNet environment
requires an essential HO optimization algorithm that is able
to optimize the HCPs effectively.

In this paper, an integrated algorithms (FLC and WF)
were proposed to self-optimize the HCPs of the MRO (i.e.,
TTT and HOM). The proposed algorithm is compared with
different algorithms addressed in the literature [12], [18].
Furthermore, MRO issues are investigated over a HetNet at
different mobile speed scenarios over HetNet for speed values
between 20 km/hr and 200 km/hr. Moreover, a trigger timer
was proposed for reducing the HOPP when the received sig-
nal strength indicator (RSSI) above threshold. The objective
of the trigger timer is to prevent the user from executing the
HO to the target base station (BS) that has the same ID as
the serving BS. In addition, RSRP, RLF, HOPP, and HOP
are investigated in this study. Moreover, with more focus
on the mobile speed scenarios, a velocity-aware-fuzzy logic
controller-weighted function (VAW-FLC-WF) is proposed
based on three input parameters, including RSRP, traffic load,
and mobile speed scenarios.

The rest of this paper is organized as follows. Section II
presents the MRO. Section III describes the related works.
Section IV provides the challenges of MRO in next-
generation mobile HetNet. Section V addresses a system
model. Section VI presents the proposed adaptive system
for the HCPs. Results and discussion are addressed in
Section VII. Section VIII concludes the paper.

II. MOBILITY ROBUSTNESS OPTIMIZATION
MRO has been implemented and enhanced as a crucial self-
optimization network feature in future mobile HetNets. The
primary objective of MRO is to tackle the challenges related
to mobility management that arise when users are on the
move. Additionally, MRO has the capability of establishing
a seamless connection by controlling the HCPs (i.e., TTT
and HOM). Fig. 1 represents three issues that MRO is able
to detect and correct. These issues include too early HO, too
late HO, and HO to the wrong cell. However, controlling the
HCPs values have a great impact on minimizing the MRO
issues, which subsequently lead to a reduction in the ratio
of the RLF and HOPP. Therefore, Fig. 1 highlights the inap-
propriate setting of the HCPs, where a low setting value of
the TTT and HOM leads to too early HO, whereas too late
HO occurs due to a high setting value of the TTT and HOM.
Besides, mobile speed scenarios for individual connected
users require high consideration. For instance, during high
speed scenarios, low setting values of the TTT and HOM
are needed to avoid too late HOs, while high setting values
are required during low speed scenarios in order to avoid
too early HOs. Furthermore, user experience (i.e., mobile
speed scenarios, interference) is required to assign the HCP

setting value to each user individually. Therefore, optimal
HO triggering necessitates an efficient HO self-optimization
decision algorithm to preserve the quality connection during
HO. Fig. 2 represents the HO decision based on A3 events,
where the TTT and HOM require an accurate configuration
to avoid the issues addressed in Fig. 2 [7].
TheHOdecision algorithm is a set of rules and criteria used

in wireless communication networks to determine when and
how connected devices should switch from one BS to another.
However, the key goals of the HO decision algorithm include
maintaining the quality of service, reducing RLFs, HOPPs,
optimizing resource utilization, and improving overall net-
work efficiency. For the HO decision, the algorithm takes into
account various parameters and measurements, as shown in
Fig. 3. Some of these parameters are as follow.
Signal strength: The strength of the signal from the serving

and the target BSs is a fundamental parameter. The HOmight
be triggered when the signal strength falls below threshold
or the target BS has higher signal strength compared to the
serving BS.
Signal quality: In addition to signal strength, the quality of

the received signal, which includes factors such as SINR and
RSRQ, is crucial for ensuring a smooth HO.

Load balancing: The algorithm considers the load on dif-
ferent BSs to distribute the traffic and prevent congestion. If a
BS is heavily loaded, the algorithm might initiate the HO to
a less congested BS.
Distance: The physical location of the connected device

in relation to neighboring BSs is considered. Some research
works has taken the distance as a factor for HO decision.
Mobile Speed Scenario: The speed of the connected

devices is a significant factor. High-speed movement may
require more frequent HOs to maintain connectivity.
Quality of Service Requirements: Different applications

and services have varying requirements for latency, data rate,
and reliability. The algorithm may consider these require-
ments when setting the HO decisions.
HO History: The algorithm may also take into account the

history of HOs for a particular device to avoid unnecessary
and frequent HOs.

III. RELATED WORKS
MRO has attracted considerable interest from the research
community. For instance, surveys [7], [8], and [19] have
discussed the HO self-optimization, mainly the MRO func-
tions. We have addressed several summary tables related
to MRO studies in our surveys [7] and [8]. Each study in
these tables includes a solution method, scenario, mobility
model, HCPs, KPIs, simulator, and achievements. Besides,
challenges, solutions, topologies, and future directions were
outlined in our surveys.Moreover, to highlight the differences
between the evaluated approaches, various researchers have
applied different HO decision algorithms with different solu-
tion methods, such as weight function [16], [18], [20],
[21], [22], [23], FLC [10], [12], [13], [14], [15] velocity-
aware [24], [25], [26], [27], [28], [29], [30], UE speed
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FIGURE 1. Mobility robustness optimization issues.

FIGURE 2. Handover decision with handover control parameters of the MRO.

with traffic load [13], dwelling time [31], RSRP-based [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], supervised
machine learning ( ML) in [42], [43], [44], [45], [46], [47],
and [48], unsupervised ML in [49], and reinforcement learn-
ing in [5], [50], [51], [52], [53], [54], [55], [56], [57], [58],
and [59]. Moreover, several mobile speed scenarios over a
different deployment scenarios have been investigated using
various KPIs. Therefore, the main objective is to achieve the
optimal HO triggering point which subsequently improves
the system’s performance.

To avoid the redundancy work done in [7] and [8], several
up-to-date MRO studies have been addressed in this study
such as in [4], [21], [60], [61], [62], [63], [64], [65], and [66].
Besides, Table 1 summarizes various studies by addressing
the problem, system, HCPs, mobility model, KPIs, solution
method, drawback, and the operating frequency for each
study.

Huang et al. [4] have presented a deep reinforcement
learning algorithm to self-optimize the TTT and HOM.
Besides, HOF and HOPP have been used as an indicators for
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TABLE 1. Summary of MRO studies.
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FIGURE 3. Handover decisions.

measuring the system’s performance. Furthermore, random
way point mobility has been employed over ultra-dense small
BSs. Additionally, the technique for order of preference by
similarity to ideal solution (TOPSIS) has been introduced to
preselect the optimal target BSs based on three criteria: RSRP,
SINR, and traffic load. The aim of the proposed approach
was to decrease the HOF rate and minimize unnecessary HOs
while allowing UE to fully utilize the advantages of a dense
deployment of BSs.

Article [21] has proposed a WF as a solution method
to self-optimize the TTT and HOM over the 5G network.
Furthermore, themain objective of [21] is to reduce theHOPP
probability using the input parameters (i.e., RSRP, mobile
speed scenarios, and traffic load). Besides, a trigger timer has
been introduced to minimize the HOPP effects by prevent-
ing the UE from initiating a HO decision to a BS with the
same ID as the current serving BS. Moreover, various mobile
speed scenarios (between 20 km/hr and 200 km/hr) have been
applied using two simulation time intervals, including 150 sec
and 400 sec.

Mbulwa et al. [60] have self-optimized the HCPs including
TTT, hysteresis, and threshold using several metrics such as
RSRP, speed, and UE’s direction. Besides, the study was
deployed over a 5G network using speed scenarios between
20 km/hr and 200 km/hr. Furthermore, a directional mobil-
ity model has been applied using speed scenarios between
0 km/hr and 120 km/hr. Moreover, the study aims to reduce
the ratio of HOPP, HOF, and HOP.

Mixed integer linear programming has been proposed
over the 5G network [61]. Furthermore, a fixed TTT has
been assigned using speed scenarios between 30 km/hr and
90 km/hr. Besides, the study investigated the effect of block-
age and speed scenarios on HO mechanisms over a vehicular
network environment. However, the objective of the proposed

approach was to reduce the HOPP probability, HO delay,
number of HOs, and capacity.

A deep Q-learning technique has been proposed over a
deployed ultra-dense network, taking into account various
signal fading conditions [62]. Besides, a virtual system with
long-short-term-memory was setup for predicting the occur-
rence of HOPPs andHOFs. However, the primary goal of [62]
was to minimize the HOF, HOPP, and HOP.

Karmakar et al. [63] have proposed a reinforcement learn-
ing algorithm along with a Kalman filter using a deployed 5G
network. Moreover, the Kalman filter is used for estimating
the RSRP values of the serving and target BSs, whereas state
action-reward-state-action reinforcement learning is used for
selecting the proper target BS. Furthermore, a constant speed
mobility model was applied using speed scenarios between
50 km/hr and 350 km/hr. However, the aim of this study was
to minimize the HO latency and HOF while maintaining a
high level of throughput.

Authors in [64] present an artificial intelligence multiple
linear regression model designed to self-optimize the TTT
and HOM over 5G networks. A random mobility model is
applied to all users using fivemobile speed scenarios, ranging
between 40 km/hr and 140 km/hr in increments of 40 km/hr.
However, the objective of this study was to reduce mobility
issues including HOP, HOPP, and HOF while sustaining a
high throughput level.

Haghrah et al. [65] have proposed FLC techniques based
on RSRQ. The HO triggering was implemented over a cover-
age area of 1 km x 1 km. A randomway point mobility model
was applied to the 20 measured users using speed scenarios
between 36 km/hr and 288 km/hr. Moreover, an ultra-dense
SBSs outdoor environment has been taken into consideration.
However, the study aims to reduce the ratio of the HOF and
HOPP.

Article [66] has proposed a deep reinforcement learning
approach to self-optimize the TTT and HOM. A random way
point mobility model is used for all UEs (8 users) using
various speed scenarios (i.e., 5 m/s, 10 m/s, 30 m/s, and
60 m/s). However, the main objective of [66] was to reduce
the ratio of both HOPP and HOPP.

Several solution methods have been applied in the litera-
ture to accurately configure the HCPs of the MRO functions,
as mentioned in Table 1. Additionally, these approaches were
implemented using different systems, mobile speed scenar-
ios, KPIs, and mobility models. Thereby, different accuracy
levels were achieved. Furthermore, the next section presents
various challenges related to mobility.

IV. CHALLENGES IN MOBILITY
Different deployed network environments, methods, and
speed scenarios have been investigated by several studies
during the last few years to optimize the HCPs. How-
ever, for achieving an accurate HCP setting value, several
challenges have been raised which can be summarized as
follows:
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A. MASSIVE CONNECTED DEVICES
Ericsson has reported approximately 4.4 billion 5G subscrip-
tions by 2027 [67]. Consequently, to guarantee the quality of
experience (QoE), ultra-dense HetNets have been deployed
for user satisfaction. In contrast, HO management problems
may occur such as high HO ratio, HOPP, RLF, and high
signaling loads due to the deployment of various types of BSs
such asmacro-BS (MBS), micro-BS, pico-BS, and femto-BS.

B. IMPLEMENTATION OF HIGH FREQUENCY BANDS
High frequency bands are gaining interest due to their capac-
ity to achieve significant transmission capabilities in future
wireless systems. In contrast, due to the characteristics of
mm-wave communications, including limited transmission
range, high sensitivity to obstacles, and large transmis-
sion loss, HO triggering conditions become more complex.
Besides, several mobility issues have been raised, such as
frequent HOs due to the requirement of delaying an ultra-
dense SBSs to cover large areas. Subsequently, the ratio of
RLF, HOP, and HOPP will increase [68], [69].

C. ULTRA-DENSE NETWORKS
One of the main motivations of HetNets is the substantial
increase in data capacity. However, in recent years, there
has been a significant demand for data capacity in mobile
internet usage. However, the increase in requirements for data
capacity is primarily driven by the widespread adoption of
more sophisticated mobile devices. On average, the capac-
ity required for a 3G smartphone approximately equals to
30 times the system capacity of a 2G voice phone, while
5 times the system capacity of tablet is needed compared to
smartphone system capacity [70]. Therefore, mobile devices
are an excellent platform for social networking applica-
tions like Facebook and instagram as they provide constant,
always-connected coverage, making them highly accessible.
In HetNets, usage of different RATs causes more signaling
load, especially in HO cases due to the ultra-dense Het-
Nets [71]. Furthermore, increasing the HO ratio in HetNet
may lead to several mobility issues such as HOP, HOPP, and
RLF which will subsequently deteriorate the system perfor-
mance. Hence, an advanced HO optimization algorithm is
required to maintain the UE’s quality connections.

D. HIGH SPEED MOBILITY
The rise of innovative technologies like self-driving cars,
unmanned aerial vehicles, and fast trains has led to a greater
demand for uninterrupted connectivity when traveling at high
speeds. As a result, mobility management systems are under
increased pressure to guarantee a seamless transition between
different network cells and minimize any negative effects on
the user’s overall experience.

E. LACK OF DATASET AVAILABILITY
ML predictions are more accurate when the dataset gets big-
ger and consist of more different cases. However, obtaining

accurate and sufficient training dataset become a challenging
problem due to the privacy of disclosing the wireless com-
munication datasets. However, examining the user’s mobility
has been obtained by generating a synthetic dataset. But, the
authenticity of the simulator’s dataset may not be used as
a benchmark for investigating the precision of ML models
when applying the HO self-optimization processes.

F. DEVICE POWER CONSUMPTION
Due to the ultra-dense HetNet deployments, the UE’s power
consumption is raised. Moreover, different mobility sys-
tems (i.e., inter-system and intra-system) with mm-wave
communications may contribute to power consumption neg-
atively [72]. Therefore, high power consumption mostly
occurs during the UE’s updating and locating process which
is called track area update and paging [73].

G. COVERAGE AND PROPAGATION ISSUES
As the utilization of mm-wave frequencies becomes more
prevalent future mobile HetNets, characterized by high prop-
agation losses and susceptibility to obstructions. Thereby,
a proper HO decision algorithm is required to preserve the
quality connection.

V. SYSTEM MODEL
This work is deployed over a HetNet environment that
includes 61 MBSs, each MBS consists of 3 sectors, and
183 5G small BSs located in each sector. In addition, the
simulation area covering 8 × 8 km2 within an urban area.
Furthermore, very small wavelength due to high frequency
(i.e., 28 GHz) are applied for small 5G BS which requires a
small geographical area [74].

The mobility scenario of this work is that the users are
moving in fixed directions (θ = 0◦). To the best of our
knowledge, utilizing one direction mobility model is better
than using a random mobility model as this will enable the
users to cross several BSs faster and this helps for raising
the number of HOs during the simulation, since our system
environment has a symmetrical form, θ value is insignificant.
In addition, this model simulates the real network scenarios
more logically. But, in the random mobility model the users
will mostly keep moving in the same area, as a probability,
and this means the HO probability will be so low. In the
random mobility model, the users may move to other BSs
and cross several cells, but this scenario still has a proba-
bility. Thus, the scenario is not as close to the real network.
The black arrow presented in Fig. 4 shows the movement
of the investigated users. Besides, 20 UEs whose starting
points (x, y) are different over a HetNet have been inves-
tigated using several mobile speed scenarios. Furthermore,
the movement steps between each simulation cycle varies
from speed scenario to another. The step movements increase
when the mobile speed scenarios increase. Hence, decreasing
in the HCPs is required. Furthermore, 10 various mobility
speed scenarios between 20 km/hr and 200 km/hr have been
investigated. Table 2 highlights the network parameters which
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FIGURE 4. Proposed mobility model, in each sector, there is one SBS.

FIGURE 5. Minimum distance of the users versus simulation cycles and
simulation time (v = 200 km /hr).

are estimated based on third-generation-partnership-project.
(3GPP) specifications [18], [27], [32], [75], [76].

Since our simulation environment includes MBSs and
small BSs, a UE can receive service from different BSs
depending on its location. Fig. 5 shows the minimum dis-
tances of the users (UE1, UE2 and UE20) to the nearest BS in
each simulation cycles. However, we are giving an example
of one mobile speed scenario (200 km/hr) shown in Fig. 5.
Therefore, the user moves 3.11 km overall the simulation
time. Furthermore, x-axis of Fig. 5 shows the minimum

distances of the user to the BS versus both the simulation
cycle and simulation time. However, at the whole simulation
cycles (1400 cycles), the user moves 56 secs. As seen from
the figure, path-loss (PL) behavior for all UEs changes peri-
odically, since the simulation environment is symmetrical.
As the UE moves at each simulation instant, it moves away
from the serving BS and approaches another BS. When the
signal strength from the nearest BS is higher than the RSRP
value of the serving BS plus the HOM value, the UE will
want to HO to the nearest BS. The minimum distance value
in Fig. 5, we can figure out that the considered UE makes HO
to the BS which is closest when it has the minimum distance.
However, for Fig. 5, UE1 will be described in more details
as an example for easier understanding of the movement of
the UEs inside the simulation environment. The annotations
addressed in Fig. 5 are related to UE1. Therefore, according
to Fig. 4, the initial position of UE1 x-axis and the y-axis
are [-136.37, 91.38], respectively. Furthermore, at this initial
position, the nearest BS was SBS with ID 185. Besides,
145.81 m was the minimum distance. The UE1 linked to ID
185 for six simulation cycles. Then, MBS with ID 1 was the
nearest BS to UE1 starting from the simulation cycle number
7 to simulation cycle 103. The UE1 keeps moving to SBS
from simulation cycle 104 to 263.

Fig. 6 shows the PL (dB) behavior of the UEs versus
distance in meter as well as the PL versus the simulation time.
The PL is calculated by using (1) when MBS is the serving
cell by taking into account carrier frequency, BS antenna
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FIGURE 6. Minimum path-loss (dB) of the UEs versus distance and
simulation time.

height and distance between the serving BS and the
user [76].

We have presented three users among the 20 users as an
example of the PL across all the BSs. Therefore, the mobile
speed scenario used in Fig. 5 and Fig. 6 is 200 km/hr. How-
ever, the step movements for low-speed scenarios are small
compared to high mobile speed scenarios.

PLdB = 40×
(
1 − 4×10−3)dhb

)
log10 (R) −18×log10 (dhb)

+ 21×log10 (f ) + 80dB, (1)

TABLE 2. HetNet parameters.

TABLE 3. Proposed algorithm for auto-tuning the HCPs over a HetNet.

where R is UE-BS separation in km, f is the carrier frequency
in MHz, and dhb is the BS antenna height.
However, the operating frequency and the BS antenna

height have been mentioned in Table 2. Moreover, two differ-
ent PL models have been applied in this study by changing
the operation frequency and BS antenna height in (1). For
example, f and dhb values used for MBS are different from
those used for SBS as addressed in Table 2.

VI. PROPOSED INTEGRATED MODEL
In this paper, by taking into consideration UE’s speed, RSRP,
and traffic load, the TTT and HOM values of the MRO func-
tion, which are HCP settings, are automatically optimized.
It is mentioned that UE’s speed has been ignored by majority
of researchers. However, it can lead a severe deterioration of
connection quality. Two proposed methods were applied for
auto-tuning the HCPs which vary in their simulation time,
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FIGURE 7. Proposed method 1 for HO self-optimization over the HetNet.

TABLE 4. Simulation parameters for the proposed method 1.

number of users, and classification of input parameters. Fur-
thermore, the investigation of the proposed algorithm is done
usingMATLAB 2021a and based on the network deployment
and system setting defined by 3GPP Release 16. Therefore,
Table 3 represents the proposed algorithm in sequential man-
ner for self-optimizing the TTT and HOM.

A. FUZZY WEIGHTED OPTIMIZATION FUNCTION
In our study, we have used the proposed FLC-WF algorithm
for self-optimizing the TTT and HOM over a HetNet sce-
nario. Fig. 7 represents the proposed solution method which
includes FLC and weighted function. Moreover, the FLC is
used to auto-tune the HOM parameter, whereas the weighted
function is used for optimizing the TTT. Furthermore, Table 4
presents the supplementary estimated parameters that have
been incorporated into Table 2 to support the proposed
method illustrated in Figure 7. However, 20 users have been
analyzed using 10 different mobile speed scenarios.

Table 5 presents the way of controlling the HCPs of the
MRO to preserve the network resources and keeping the qual-
ity connection. Besides, it represents the actions needed to be
considered when different events happen. Furthermore, the
table illustrates the relation of mobile speed scenarios and the
HCPs. For example, low-speed scenarios require low settings

TABLE 5. Events controlled by MRO [77].

of HCPs, while high setting value for HCPs is required
for high-speed scenarios. Therefore, the enhancement of the
performance metrics can be achieved by adapting the HOM
and TTT to achieve optimal HO triggering point as shown in
Table 5.

1) FUZZY LOGIC CONTROLLER (FLC)
For the proposed FLC-WF, the proposed FLC algorithm is
used for the decision-making process to self-optimize the
HOM. In FLC, several processes are taken into considerations
which are as follow:

• Fuzzification:
It is the process of transforming the input crisp quantity
into fuzzy sets. The linguistic variables define the inputs
and outputs in the FLC. However, a set of membership
functions for the inputs should be generated. For exam-
ple, mobile speed scenario is an input which has been
converted to fuzzy sets with ranges. Therefore, the
fuzzy membership function of our proposed algorithm
is addressed as follow:

• Inputs membership function:
Three membership functions are applied as shown in
Fig. 8. Eachmembership function includes several fuzzy
sets and each fuzzy set has its own range. In Fig. 8 (a), the
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FIGURE 8. Inputs membership functions (a) UE’s velocities (b) UE’s RSRP (c) Traffic load.

speed membership function has four fuzzy sets which
defined as slow, moderate, fast, and very fast. We called
the fuzzy input slow when UE speed is between 0 and
50 km/hr, while called it moderate for UE speed is
between 40 and 80 km/hr. It is assumed that the mobile
speed scenarios range between 0 km/hr and 200 km/hr.
Furthermore, Fig. 8 (b) represents the serving RSRP
(dBm). Three fuzzy sets are applied which includes
weak, fair, and strong. In addition, Fig. 8 (c) represents
the cell loads which are classified into three fuzzy sets
(i.e., low, medium, and high). However, the generated
fuzzy rules are applied according to the fuzzy sets of
the input parameters. Therefore, Fig. 8 is generated by
creating a new fuzzy inference system and then adding
our input parameters with ranges.

• Fuzzy rules:
A set of rules is then applied to the membership func-
tions to yield to output value. Furthermore, ‘‘and’’ logic
gate ‘‘or’’ logic gate are initiated based on the designer’s
interest. We have ‘‘and’’ logic gate for this study. How-
ever, the fuzzy rules are changed according to the ranges
of output membership functions. Therefore, we have
generated fuzzy rules as addressed in Table 6. Further-
more, the HOM values are tuned based on the input
parameters. For example, if the speed is slow and RSRP
is weak and load is low set, then HOM should be
assigned to low set as highlighted in Fig. 9. Therefore,
Table 6 shows 36 rules which are all possible rules that
can be obtain from 4 fuzzy sets in speed, 3 fuzzy sets
in RSRP, and 3 fuzzy sets in load. Furthermore, the
output value obtained from the output fuzzy sets (HOM)
can determine the performance of the system. However,
accurate configuration of HOM value leads to reduction
in HOP, HOPP, and RLF. Besides, the RSRPwill be kept
in acceptable level.

• Defuzzification:
Defuzzification is a procedure used to transform
the ambiguous output of an FLC, expressed as a
membership function, into a distinct numerical or crisp

FIGURE 9. Output membership function of the proposed FLC.

value that can be implemented as a control action or
decision.

• Output membership function:
The output membership function for HOM value (dB)
is addressed in Fig. 9 which consists of several fuzzy
sets ranging between 0 dB and 16 dB. Therefore, the
fuzzy sets include very low set, low set, average set,
high set, and very high set. However, HOM’s fuzzy sets
are assigned according to the input linguistic variables
addressed in Table 6. Therefore, high HOM values have
been used carefully in the applied FLC’s rules to avoid
high HOPPs and/or high RLFs.

2) WEIGHTED OPTIMIZATION FUNCTION
The second control parameter that is required to be self-
optimized is the TTT. Therefore, the weighted function is
used to self-optimize this parameter. The weighted function
(WF) is used to self-optimize the TTT parameter. However,
three function have been used as addressed below:
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TABLE 6. Fuzzy rules for auto-tuning HOM.

RSRP function: The maximum RSRP is pre-determined
by -20 dBm and will be updated according to the maximum
RSRP value of the measurement report.

f (RSRP) =

(
RSRPT
RSRPmax

)
−

(
RSRPS
RSRPmax

)
=
RSRPT − RSRPS

RSRPmax
, (3)

where T , S, and max subscripts represent the RSRP of the
target BS, the RSRP of the serving BS, and the maximum
value of the RSRP, respectively.
Traffic load’s function: The loads of the BSs are updated

periodically in every simulation cycle which stated as
40 msec.

f (TL) =

(
TLT
TLmax

)
−

(
TLS
TLmax

)
=
TLT − TLS
TLmax

, (4)

where TLT , TLS , and TLmax represent the target BS’s traffic
load, serving BS’s traffic load, and maximum traffic load,
respectively.
Velocity function: Several mobile speed (v) scenarios are

applied to the following velocity function.

f (v) = 2log2

(
1 +

v
vmax

)
−1, (5)

where vmax is the maximum velocity applied which is
200 km/hr. However, the mathematical model is addressed
as below:

wn =
1 − f (xn)∑F
i=1 (1−f (xi))

, (6)

where wn is the weight of function n, and n can be one of the
three functions (i.e., RSRP, TL, or v). For simplifying (4), the
below equation is addressed:

wRSRP =
1 − f (RSRP)

(1 − f (RSRP)) + (1 − f (TL)) +(1−f (v))
(7)

However, wTL and wv can be simplified easily from (6).
According to the weights of the functions, the TTT values
are self-optimized. Therefore, the main objective is to reduce
MRO issues (i.e, too late HOs, too early HOs, and HO to
wrong cell).

B. VELOCITY AWARE FUZZY WEIGHTED OPTIMIZATION
FUNCTION
Assigning precise values to the HCPs (TTT and HOM) at
different mobile speed scenarios is significant to avoid the
mobility issues (i.e. too late HOs, too early HOs, HOs to
wrong cell). However, the RSRP quickly decreases in high
speed scenarios, which requires a low setting value for the
TTT and HOM in order to avoid too late HOs. Moreover,
since the mobile speed scenarios are low, the UE keeps
connecting to serving BS longer compared to high mobile
speed scenarios, which require assigning high values for the
TTT and HOM in order to avoid too early HOs. However,
in Table 8, we indicated that the values of the HCP are directly
related to speed scenarios. For instance, low speed scenarios
require high setting values to avoid too early HOs, whereas
high speed scenarios require low setting values to initiate a
fast triggering HO in order to avoid too late HOs. Further-
more, speed category 1 (slow speeds) has higher HOM values
compared to speed category 4 (very fast speeds), as addressed
in Table 8.
This proposed algorithm differs by the mobile speed cat-

egorization compared to the previous method mentioned in
Fig. 8. Moreover, the mobile speed scenarios have been clas-
sified into four categories such as speed less than 60 km/hr,
speed between 60 km/hr and 120 km/hr, speed between
120 km/hr and 160 km/hr, and speed between 160 km/hr
and 200 km/hr. However, the membership function has been
established for each speed category. Therefore, each mobile
speed scenario applied in the simulation environment will fall
into one of the four speed categories generated. The objective
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FIGURE 10. Proposed method 2 for HO self-optimization over the HetNet.

TABLE 7. Simulation parameters for the proposed method 2.

of categorizing the mobile speed scenarios is to assign an
accurate HOM. Furthermore, Table 7 presents the simulation
parameters for the proposed Method 2 that shown in Fig. 10.
Furthermore, the parameters in Table 7 are considered as a
supplementary parameters to Table 2. The simulation cycles
are increased in Method 2 which allow the user moving a
longer distance with crossing more BSs. Subsequently, more
HOs can be investigated. Besides, to prevent user edge cross-
ing, the user is returning back when reaching to the last BS
of the simulation environment.

In this section, the membership function of the mobile
speed scenarios addressed in Fig. 12 was generated based
on speed categories shown in Fig. 10. However, the speed
membership function has 4 different levels of fuzzy sets
specified as slow, moderate, fast, and very fast. Therefore,
the mobile speed scenario will determine which fuzzy set
will be chosen. Then, the output fuzzy set will be determined.
However, the other input membership functions are addressed
in Fig. 8 (b, c).

The output membership function shown in Table 8 will
be determined based on the mobile speed scenario applied.
However, the auto-tuning of the HOM is achieved by obtain-
ing a HO triggering value from Table 8. Whereas the TTT

TABLE 8. Output membership function.

triggering value is achieved by the proposed weighted opti-
mization function. Therefore, these HO triggering values
(i.e., TTT and HOM values) have a significant impact in
reducing the KPIs applied in this study (i.e., HOPP, RLF, and
HOP) as well as obtaining high RSRP (dBm). Furthermore,
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FIGURE 11. Flowchart of the HOPP’s counter in HetNet.

the HOPPs is obtained using the algorithm given in Fig. 11.
Therefore, low average probability of the HOPP and RLF
indicate that the HCPs are configured accurately.

VII. RESULTS AND DISCUSSION
The results have been classified into two parts. The first
part proposes the fuzzy weighted optimization function based
on Fig. 7. The second part proposes a velocity aware fuzzy
weighted optimization function based on Fig. 10.

A. FUZZY WEIGHTED OPTIMIZATION FUNCTION
10mobile speed scenarios (i.e., 40 km/hr, 60 km/hr, 80 km/hr,
100 km/hr, 120 km/hr, and 140 km/hr) have been applied.
In addition, 20 users have been measured over all the sim-
ulation cycles.

This subsection explains the results related to our proposed
FLC-WF algorithm. However, the proposed solution method
is addressed in Fig. 7 where the output parameters (TTT and
HOM) have been auto-tuned by two algorithms (i.e., FLC and
WF), HOM was tuned by FLC whereas WF is used to self-
optimize the TTT. However, the simulation parameters of the
proposed algorithm are addressed in Table 2 and Table 4.
Fig. 13 and Fig. 14 are simulated over all the mobile

speed scenarios, all users, and over all simulation cycles. The

average HOPP probability versus HO optimization algorithm
is addressed in Fig. 13. However, decreasing the HOPP to
0 for the WF in Fig. 13 has impacted on both RLF and
RSRP as we can see in Fig. 14 and Fig. 16, respectively.
Therefore, the trade-off in our proposed algorithm is kept to
0.0002 for the HOPP in order to decrease the RLF effect as
low as possible. However, theHOPPs have impact on network
resources and it may not affect customer satisfaction.

The following points explain the HOPP level to justify why
the HOPP values were low in this simulation study:

• The simulation time (56 sec.) which is 1400 cycles
that used for evaluating the KPIs has also impact on
HOPP level. However, increasing the simulation cycles
allow the user to across a large number of BSs which
will increase the number of HOs. Besides, increasing
simulation time with increasing mobile speed scenarios
will make the user even crossing more BSs.

• Proposing a trigger timer has a great impact of reducing
HOPPs. The objective of the trigger timer is to avoid the
HO from sector to the same sector or from SBS to the
same SBS. This impacted on reducing the HOPP which
subsequently reduces the HOP. However, as shown in
Table 3, the trigger timer is initiated under a certain
conditions such as when the HO decision is satisfied as
well as the ID of the target BS is different from the ID
of the serving BS.

• The setting value of the HCPs (i.e., TTT and HOM) has
a great impact on increasing and decreasing the HOPPs.
However, Table 4 shows the suboptimal settings ofMRO
parameters (i.e., TTT and HOM).

However, we have increased the simulation time in our pro-
posed Method 2.

Fig. 14 shows the average RLF probability versus the pre-
sented self-optimization algorithms. However, the proposed
algorithm shows that the WF algorithm has the highest aver-
age RLF with 0.02 while the proposed algorithm has 0.0084.
However, the great concern for network operators is to reduce
the RLFs of the network to keep the customer connected to
the network.

The results presented in Fig. 13 and Fig 14 were obtained
based on the proposed method 1, without categorizing the
mobile speed scenarios. Utilizing a wide speed range (from
20 km/hr to 200 km/hr) with FLC may lead to inaccura-
cies in assigning optimal points for the TTT and HOM.
Hence, minimal improvements have been achieved in Fig. 13
and Fig. 14. Therefore, we further enhanced the proposed
method 1 by proposing the velocity-aware-FLC-WF (VAW-
FLC-WF) algorithm as mentioned in Fig. 10.

Fig. 15 represents the average RLF probability for each
mobile speed scenarios.

Besides, the simulation is implemented over all simulation
time using 20 UEs. Moreover, it can be seen from Fig. 15
that the proposed algorithm has the lowest average RLF
probability at all speed scenarios compared to WF algorithm.
In addition, the proposed algorithm shows less RLFs in
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FIGURE 12. Input membership function of mobile speed scenarios.

FIGURE 13. Average HOPP probability versus HO algorithms.

several mobile speed scenarios such as in 40Km/hr, 60 km/hr,
and 140 km/hr compare to FLC. Therefore, accurate config-
uration of the HCPs (i.e., TTT and HOM) leads to low RLFs
in several speeds of the proposed algorithm. High average
HOPP has a direct impact on increasing the level of RSRP

FIGURE 14. Average RLF probability versus HO algorithms.

(dBm) because in HOPP the UE is triggering to the target BS
that has the highest RSRP value which will subsequently lead
to high average serving RSRP as shown in FLC of Fig. 16.
Moreover, WF has the lowest average serving RSRP since
it has 0 HOPPs. However, the average serving RSRP of our
proposed FLC-WF was kept between -57 dBm and 49 dBm.
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FIGURE 15. Average RLF probability versus mobile speed scenarios.

FIGURE 16. Serving RSRP (dBm) for all users and all mobile speed
scenarios vs simulation time.

FIGURE 17. Average HO probability versus mobile speed scenarios.

Fig. 17 represents the average HOP over several mobile
speed scenarios. However, increasing the mobile speed sce-
narios leads to increasing in HOP since the user is crossing

FIGURE 18. Average RSRP versus HO algorithms.

more BSs compared to low-speed scenarios. Furthermore,
increasing the amount of HOPPs increases the HOP which
subsequently negatively impact on system performance since
it leads to wasting the network resources.

B. VELOCITY AWARE FLC-WF
The results of this part are achieved based on our
improved method shown in Fig. 10. Therefore, the developed
algorithm velocity-aware-FLC-WF (VAW-FLC-WF) shows
more results enhancement compared to the proposed FLC-
WF obtained by Fig. 7. Moreover, the number of both
simulation cycles, mobile speed scenarios, and users are pre-
sented in Table 7. Furthermore, the proposed VAW-FLC-WF
was compared with other HO algorithms.

Fig. 18 represents the average RSRP (dBm) versus HO
optimization algorithms. In addition, Fig. 18 shows the pro-
posed algorithm (VAW-FLC-WF) has been improved com-
pared to the proposed FLC-WF. Furthermore, VAW-FLC-WF
shows more enhancement compared to WF. 1.3 dBm was
the difference between VAW-FLC-WF and FLC because due
to high HOPPs in FLC which made the users fluctuating
between high RSRP.

Besides, Figs. 18, 21, and 20 have been implemented over
all mobile speed scenarios, over all users, and all simulation
time. In addition, Figs. 19 and 20 show the average RSRP
versus different mobile speed scenarios and simulation time,
respectively. Besides, these two figures show that VAW-FLC-
WF has the highest RSRP compared to the other algorithms
except that FLC achieves a small higher RSRP. However,
it can be summarized that, high RLFs have an inverse propor-
tion to RSRP value since the user keep connecting to the same
BS until it goes to below the RSSI. Consequently, the average
RSRPwill be decreased.Moreover, high HOPPs have a direct
proportion to RSRP value since the user keep fluctuating
between BSs that have a high RSRP. Consequently, the aver-
age RSRP will be increased.

Fig. 21 shows the average HOPP versus HO algorithms
where VAW-FLC-WF shows a significant enhancement by
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FIGURE 19. Average RSRP at different mobile speed scenarios.

FIGURE 20. Serving RSRP (dBm) for all users and all mobile speed
scenarios vs simulation time.

FIGURE 21. Average HOPP probability versus HO algorithms.

0.004 compared to the other algorithms. However, a proper
configuration of TTT and HOM of the proposed VAW-
FLC-WF leads to less HOPPs. Consequently, enhancing the

FIGURE 22. Average RLF probability versus HO algorithms.

TABLE 9. List of abbreviations in alphabetical order.

system’s performance. Fig. 22 represents the average RLF
probability versus HO algorithms. The proposed algorithm
VAW-FLC-WF shows the lowest average RLF probability
compared to the other HO optimization algorithms presented.
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FIGURE 23. Average RLF probability versus different speed scenarios.

FIGURE 24. Average RLF probability versus simulation time.

This is due to the proper assignment of the values of TTT and
HOM during HOs which made the VAW-FLC-WF algorithm
decreases to 0.006. Furthermore, Figs. 23 and 24 address
the average RLF probability versus different mobile speed
scenarios and simulation time, respectively. Moreover, six
mobile speed scenarios were applied over the whole sim-
ulation time (150 secs). However, an increase in the ratio
of HOPP means the signaling load has increased as well
as the network resources have been wasted. Subsequently,
the cost and time for the network operators will increase.
On the other side, to achieve user satisfaction, the ratio of the
RLF must be decreased by having an optimal HO triggering
algorithm. Therefore, the velocity aware consideration used
in the proposed algorithm VAW-FLC-WF shows a significant
improvement compared to other algorithms.

The proposed algorithm has the capability to be imple-
mented in practice due to the proper configurations of
the HCPs. Besides, the algorithm auto-tunes the HCPs to
maintain the UE’s quality connection during HOs. Addition-
ally, the algorithm has been validated by measuring several
users using different mobile speed scenarios. Furthermore,

to enhance the robustness of the system, we have applied
significant metrics as KPIs, such as RSRP, RLF, HOPP, and
HOP.

VIII. CONCLUSION
In this study, a novel algorithm was proposed to self-optimize
the TTT and HOM based on the three input parameters
(i.e., UE’s speed, TL, and RSRP). Furthermore, the proposed
algorithm was implemented using several mobile speed sce-
narios over a HetNet. Assigning proper values to the TTT and
HOM with taking mobile speed scenarios into consideration
will lead to an improvement in the system’s performance
as addressed in our VAW-FLC-WF algorithm, where the
average RLF is minimized to 0.006. Furthermore, RSRP,
HOPP, RLF, and HOP were applied as the KPIs. However,
the proposed algorithm shows an improvement in RSRP,
HOPP, RLF compare to other HO algorithms. However, in our
upcoming research, we will conduct further studies involv-
ing other algorithms described in the literature, explore new
scenarios, and enhance the simulation model to improve the
accuracy and comprehensiveness of our findings.
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