
Vol.:(0123456789)

Medical Oncology          (2024) 41:125  
https://doi.org/10.1007/s12032-024-02327-3

REVIEW ARTICLE

Anti‑cancer potential of zerumbone in cancer and glioma: current 
trends and future perspectives

Alborz Soroush1 · Siavash Pourhossein2 · Dorrin Hosseingholizadeh3 · Ahmed Hjazi4 · Reza Shahhosseini5 · 
Haniyeh Kavoosi6 · Nazgol Kermanshahi7 · Parisa Behnamrad8 · Nima Ghavamikia9 · Mehdi Dadashpour10,11 · 
Sepideh Karkon Shayan12

Received: 30 November 2023 / Accepted: 5 February 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Plant-derived immunomodulators and antitumor factors have appealed lots of attention from natural product scientists for 
their efficiency and safety and their important contribution to well-designed targeted drug action and delivery mechanisms. 
Zerumbone (ZER), the chief component of Zingiber zerumbet rhizomes, has been examined for its wide-spectrum in the 
treatment of multi-targeted diseases. The rhizomes have been used as food flavoring agents in numerous cuisines and in flora 
medication. Numerous in vivo and in vitro experiments have prepared confirmation of ZER as a potent immunomodulator 
as well as a potential anti-tumor agent. This review is an interesting compilation of all the important results of the research 
carried out to date to investigate the immunomodulatory and anticancer properties of ZER. The ultimate goal of this com-
prehensive review is to supply updated information and a crucial evaluation on ZER, including its chemistry and immu-
nomodulating and antitumour properties, which may be of principal importance to supply a novel pathway for subsequent 
investigation to discover new agents to treat cancers and immune-related sickness. In addition, updated information on the 
toxicology of ZER has been summarized to support its safety profile.
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Introduction

Cancer is a major global disease and the second leading 
cause of death [1]. According to the GLOBOCAN report, 
there are projected to be 2,001,140 new cases of cancer and 
611,720 deaths from cancer in the United States in the year 
2024 [2]. There are many risk factors that increase cancer 
mortality, including environmental factors such as unhealthy 
diet, exposure to air pollution, toxic drugs, physical inactiv-
ity, etc. [3]. Present selective cancer treatments have non-
specific toxicity [4], very low efficacy [5], high costs [6], 
exert a lot of adverse effects [7], and also became resistance 
[8]; that altogether made cancers to have more mortality 
and poor prognosis. Vegetables, fruits, legumes, nuts and 
herbs have been shown to contain an important class of 
phytochemicals that exert therapeutic effects on a variety of 
human diseases and have been used in folk medicine since 
ancient times for their pharmacological effects and reduced 
side effects [9–16].

ZER (Fig. 1), a natural crystalline cyclic sesquiterpene, 
is the main biological element of Zingiber zerumbet Smith 
rhizome, which is shown in a both in vitro and in vivo stud-
ies to has significant and curable effects in chemotherapy 
approaches [17]. ZER has been shown to have therapeutic 
effects such as antipyretic, anti-hypersensitive, anti-inflam-
matory, antibacterial, antinociceptive, antioxidant, hepato-
protective, and also has immunomodulatory functions [18]. 
In addition, ZER can also act as an antitumor drug due to its 
specific properties to suppress angiogenesis and proliferation 

and induce apoptosis in a variety of cancer cell lines [19]. 
Numerous studies have shown that ZER has anti-prolifer-
ative effects in various human cancers, including cervical, 
breast, colon and liver, and that it selectively affects tumor 
cells compared to normal cells [19–21] (Fig. 2). In this arti-
cle, we have reviewed some of these effects of ZER in vari-
ous human cancers.

The potential mechanisms involved 
in cancer

Cancer, characterized by the autonomous expansion and 
spread of a somatic clone, is the second most common cause 
of death worldwide, and its prevalence is increasing [22–24]. 
Resistance to cell death, uncontrolled the proliferative sign-
aling pathways, induction of angiogenesis, evasion of growth 
suppressors, enabling replicative immortality, and activation 
of invasion and metastasis are known hallmarks of cancer 
[25–27] Nucleotide changes, small additions and deletions, 
chromosomal rearrangements and copy number changes are 
somatic mutations that disrupt protein-coding or regulatory 
mechanisms of genes [28–31].

Natural products‑ZER

Zingiber zerumbet Smith of the Zingiberaceae family, also 
known as lempoyang wild ginger, has many medicinal prop-
erties such as treating swelling, wounds, anorexia, parasitic 
diseases, and treating inflammation [32]. Inhibiting tumor 
organizer 12-O-tetradecanoylphorbol-13-acetate-leading to 
Epstein-Barr virus [33], suppressing dextran sodium sulfate-
induced colitis [34], pro-inflammatory protein production, 
suppressing free radical generation, and cancer cell pro-
liferation associated with apoptosis [35] are examples of 
hundreds of distinguishing features of this plant. ZER is a 
monocyclic compound with molecular formula C15H22O is 
used as a food phytochemicals with anti-cancer properties 
[36]. The rhizomes of Zingiber zerumbet are abundant in 
Southeast Asia and tropical countries such as India, Bang-
ladesh, Malaysia, Nepal, and Sri Lanka [37].

Anti‑cancer mechanisms of ZER

Today, despite advances in cancer treatment techniques, 
cancer is still one of the worst diseases, causing many 
deaths every year [38]. Available cancer therapies are 
mostly infectious and have caused a lot of terrible side 
effects and resistance [39]. Overall, there is a need to find 
a novel, alternative, effective and non-toxic treatment for 
cancer. Studies indicate that ZER inhibits proliferation, 

Fig. 1   Chemical structure of Zerumbone (2,6,9,9-tetramethyl-
[2E,6E,10E]-cycloundeca-2,6-10-trien-1-one, MW 218.33 g/mol)
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arrests the cell cycle and induces apoptosis in many types 
of cancer, including colon, liver, breast, lung and brain 
tumors, by modulating various proteins and signaling 
pathways [20, 40–42].

From a pathogenesis-wise perspective, the anti-cancer 
effects of ZER can be categorized accordingly:

1.	 Genetic mutations: Zerumbone shows promise in regu-
lating genetic mutations linked to cancer, particularly 
by downregulating oncogenic pathways. Its ability to 
inhibit the expression of critical genes such as RAS and 
MYC suggests a potential role in impeding the onco-
genic potential and promoting DNA repair mechanisms.

2.	 Epigenetic changes: Studies hint at Zerumbone's influ-
ence on epigenetic modifications, including DNA meth-
ylation and histone alterations. By modulating these pat-
terns, Zerumbone could potentially affect the expression 
of genes involved in cancer progression by regulating 
their epigenetic landscape.

3.	 Cell signaling pathways: Zerumbone’s impact on vital 
cell signaling pathways, such as PI3K/AKT/mTOR and 
MAPK/ERK, suggests its potential to disrupt aberrant 
cell growth and survival in cancer cells.

4.	 Angiogenesis: Research explores Zerumbone’s anti-
angiogenic effects, potentially inhibiting the formation 
of new blood vessels around tumors by interfering with 
pro-angiogenic factors like VEGF.

5.	 Apoptosis: Zerumbone’s ability to induce apoptosis in 
cancer cells is noteworthy, preventing these cells from 

evading programmed cell death and contributing to lim-
iting their survival.

6.	 Immune system evasion: Although limited, stud-
ies propose that Zerumbone might modulate immune 
responses, potentially enhancing the immune system's 
ability to recognize and eliminate cancer cells, possibly 
through the regulation of immune checkpoint proteins.

7.	 Inflammation: Recognized for its anti-inflammatory 
properties, Zerumbone may create an environment 
less conducive to cancer initiation and progression by 
attenuating chronic inflammation associated with cancer 
development.

8.	 Metastasis: While requiring further investigation, some 
studies suggest that Zerumbone may impact cell motility 
and invasion, crucial processes in metastasis, potentially 
hindering the spread of cancer cells to distant sites.

9.	 Metabolic reprogramming: evidence suggests that 
Zerumbone may influence cellular metabolism, poten-
tially altering metabolic pathways like the Warburg 
effect and impacting the energy dynamics of cancer cells 
[31–35].

It is noteworthy that in various in vitro studies showed 
that ZER could also suppress the CXCR4 expression, 
NF-κB activity, and other proteins. In addition, this com-
pound can also inhibit the AKT/STAT3/PI3K/mTOR/
IL-6/JAK2 lines and the expression of related genetic 
factors such as ETV1, COX2, IL-6 and cyclin D1, thus 
suppressing the proliferation and angiogenesis activity of 

Fig. 2   Anti-proliferative effects ZER in the various human cancer categories such as cervical, breast, colon, and liver cancer
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malignant cells by inducing cell cycle arrest and apoptosis. 
In addition, ZER has shown anti-cancer activity against 
tumor growth and metastasis in various mouse models and, 
rarely, in clinical trials [43]. So we looked at some in vitro 
and in vivo trials that showed the effectiveness of ZER as 
a treatment for different types of cancer. ZER leads to cell 
detoxification of oxidative, genotoxic, and carcinogenic 
chemicals by induction of GSH-related enzymes of stage 
II, including glutathione-transferase (GST) [37]. Inhibi-
tion of tumor cell growth, induction of apoptosis, differen-
tiation and cytoprotective activity are the mechanisms by 
which ZER acts as an anti-proliferative agent [44]. Studies 
have shown that ZER prevents the proliferation of colon 
adenocarcinoma HepG2 cells in a dose-dependent manner 
and also inhibits the activation of the primary antigen of 
the Epstein-Barr virus [45]. ZER reduces the production 
of tumour necrosis factor-alpha (TNF-α) and interleukin-4 
(IL-4) and suppresses LTC4 production from lung tissue, 
downregulates NF-KB and NF-KB gene expression, sup-
presses CXCR4 and HER2-overexpressing breast cancer 
cells [46]. Inhibition of leukaemia cells by stimulating Fas 
receptors and reduction of cyclin B1/CDK1 protein levels 
by inhibiting the G2/M cell cycle in HL-60 cells are other 
protective mechanisms of ZER [20, 47]. ZER reduces 
the expression of NF-kB and NF-kappa regulated gene, 
which increases in cases of carcinogenicity. It also pre-
vents pancreatic and invasive breast cancer by reducing the 

expression of the chemokine receptor CXCR4 by induc-
ing the reduction of CXCL12 [48, 49]. It is hypothesized 
that the carbonyl b-unsaturated group with the depletion 
of intracellular glutathione (GSH) causes the therapeutic 
effects of ZER [41, 50].

In vitro studies of the effects of ZER on lipid peroxida-
tion in biological systems (phospholipid and cholesterol 
membrane oxidation) showed that ZER induce to the accu-
mulation of cytosolic lipid droplets and protein dynamics/
altered cell membrane organization, depolarizing the mito-
chondrial membranes and causing alteration of nuclear 
morphology and apoptosis [51]. ZER with obstructing 
the excretion of pro-inflammatory cytokines, stimulat-
ing NF-κB p65 in LPS-activated inflammation of THP-1 
cell-derived macrophages, inhibiting mRNA and protein 
levels of TLR-2/4 prevents diabetes, cancer and athero-
sclerosis [52]. ZER stimulates Hsp90 ATPase activity and 
modifies cysteine residues that destabilise cytotoxicity and 
anti-cancer efficacy [53]. ZER anti-proliferative activity on 
the cell lines Hep-G2 (hepatocellular carcinoma, ATCC-
HB-8065), LU (lung adenocarcinoma, ATCC-HTB-57), 
P338 (leukaemia, ATCC-CCl-46), MCF7 (breast cancer, 
ATCC-HTB-22) and SW 480 (colon adenocarcinoma, 
ATCC-CCL-228) is evident [54]. ZER has anti-inflam-
matory and anti-proliferative activities by inhibiting the 
activation of NF-κB and NF-κB-regulated gene expression 
caused by carcinogens (Fig. 3) [55].

Fig. 3   Zerumbone’s key signaling pathways in cancer prevention and treatment
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ZER and glioma

The most common and deadly cancer of the adult central 
nervous system that is resistant to alkylating agents and 
other antineoplastic treatments is glioblastoma multiform 
(GBM) [56]. A number of signaling pathways have been 
implicated in glioma resistance to alkylating agents and/
or the maintenance of brain tumor stem cells, including 
sonic hedgehog (SHH), Notch and Wnt-β-catenin [57]. 
ZER induces WOX1-overexpressed U373MG and U87MG 
cells, and transient overexpression of WOX1 (The WW 
domain-containing oxidoreductase gene) and blockade of 
SHH signaling can increase the radiosensitivity of GBM 
cells independent of p53 and WOX1 levels [58]. Activation 
of inhibitory κB (IκB) proteins. IκB kinase (IKK), followed 
by activation of the Akt-FKHR cascade and inactivation of 
caspase-3, contributes to the resistant to apoptotic process 
in GBM [59]. Apoptosis pathway of the GBM8401 cell 
includes inactivating IKKα that affecting to FOXO1 dephos-
phorylating, via Akt dephosphorylating or not, then induc-
ing caspase-3 activation [60]. ZER treatment reduced cell 
viability and induced apoptosis in GBM cells by inactivating 
IKKα, resulting in suppressed FOXO1 and Akt phosphoryla-
tion and activation of caspase-3 protein and PARP [60].

ZER and breast cancer

Breast cancer is the second most common cause of cancer 
death in women and therefore requires special attention [61, 
62]. Seventy percent of breast cancers are luminal carcino-
mas that have alpha estrogen receptor (ER) [63]. ZER binds 
to estrogen receptors (ERs) and mediates critical patho-
physiological signaling pathways in breast cancer, known 
to be the most common malignancy in women worldwide 
[64]. The rhizome in ginger has a significant role in the care 
of a breast concert with inhibiting the migration of MDA‐
MB‐231 cells [65]. The expression of integrin αvβ3 appears 
to play a key role in the development of bone marrow from 
breast cancer [66]. ZER, when co-administered with the 
TP5-iRGD peptide, has better antitumour activity by target-
ing the integrin αvβ3 [67].

ZER by inhibiting IKKβ kinase and thus preventing it 
from binding to NF-κB can lead to the ultimate induction 
of apoptosis [68]. ZER was noted that effects on the vitality 
of MCF-7 and MDA-MB-231 cells [69]. ZER also decrease 
Breast Cancer–leading to Bone Loss, inhibits Osteoclas-
togenesis with MDA-MB-231 breast cancer, and suppresses 
RANKL-leading to NF-KB Activation [70]. In a study, ZER 
was leading to decreased in Notch1 and Notch4 cleaved pro-
teins, that produced in the inhibition of cellular migration 
and increased apoptosis. On the other hand, it caused the 
cleavage of Notch2 to rise the induction of presenilin-1 pro-
tein and Notch transcriptional activity [71]. Further, ZER is 

leading to suppressed IL-1βinduced cell invasion and migra-
tion in TNBC through the downregulation of NF-κB activity 
that inhibited MMP-3 and IL-8 expression [48, 72].

ZER caused a reduction in cell growth and proliferation 
by arresting the cell cycle in the G1 phase due to a reduction 
in CD1d expression and the lipid antigen presentation path-
way [73]. CD44 shown to promote protumorigenic signal-
ing and metastatic cascade [74]. ZER decreased expression 
of CD44 through EGFR ligands, TGF-α or EGF and also 
inhibited STAT3 phosphorylation that resulted reduction of 
tumor metastasis and progression [75].

ZER also reduced the tumor growth and caused Bax- 
and Bak-mediated apoptosis by inducing G2/M cell arrest 
[47]. The elevated levels of CXCR4 indicate that the patient 
has a high probability of lymph node metastasis [76]. ZER 
decreased CXCL12-Induced metastasis and invasion in 
breast cancer through downregulating the CXCR4 expres-
sion [77]. In addition, this natural compound reduce phos-
phorylation of TGF-β1-affected from Smad3 and Ki67 
expression following that inhibit TGF-β1-induced MMP-2, 
FN, and MMP-9 expression, which lead to restrain the motil-
ity and tumorigenicity of triple-negative breast malignance 
cells [78].

In addition, Bcl-2-positive tumors with increased loss of 
apoptosis were associated with metastasis [79]. ZER reduced 
expression of Bcl-2 genes and increased Bax. ZER also 
N-acetyl cysteine (NAC) and elevated reactive oxygen spe-
cies (ROS) which led to the NF-κB p65 activation. Therefore 
ZER has an apoptotic induction potential and increased cell 
cycle arrest at G2/M stage in GBM U-87 MG cells [80].

ZER and colorectal cancer

The incidence of colorectal cancer in the general population 
is about 5 to 6% and is the second most common cancer in 
the world [81]. The expression of miR-200c was increased 
in higher grade CRC and has been implicated in CRC tumor 
progression and aggressiveness via regulation of epithelial-
to-mesenchymal (EMT) and mesenchymal-to-epithelial 
(MET) transition processes [82]. ZER has an important role 
on colorectal cancer (CRC), cancer stem cells (CSCs) and 
including EMT as one of the most rampant and lethal malig-
nancies in the world by inhibiting the β-catenin pathway 
through miR-200c and inhibiting mesenchymal-epithelial 
transition and cancer stem cells characterizes [83].

This tropical ginger can increase tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL), deletion of 
DR5 or DR4, decrease regulation of cFLIP and inhibit 
caspase-8 [84]. In addition, ZER has protective effects 
opposite bowel cancer in Enterotoxigenic Bacteroides 
fragilis (ETBF)-colonized AOM/DSS BALB/c mouse 
[85]. A study by Edagawa et al. demonstrated that dur-
ing celecoxib and ZER treatment in human p53-deficient 
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colorectal cancer cells, ATF3 promotes DR5 producting 
and apoptotic cell death [86]. ZER induces apoptosis of 
colon cancer by inhibiting the formation of colonic prene-
oplastic ACFs, and its anti-proliferative influences were 
noted effectiveness as an anti-cancer agent [87].

The majority of colorectal cancers express high lev-
els of cyclin B1 [88], that ZER inhibited DNA synthesis 
and cyclin B1 expression as an antitumor and anti-can-
cer agent, especially on human colon cancer [89]. ZER 
decreases the proliferation of bowel cancer cells and 
induced apoptosis through translocation of phosphati-
dylserine, mitochondrial transmembrane dysfunction, 
and chromatin condensation [35]. ZER Modulated Fak/
PI3k/NF-κB-uPA pathway and proved its anti-metastatic 
potential and Suppressed Human Colorectal Cancer Inva-
sion on HCT-116 and SW48 cells [50].

In addition, ZER increases oxidative stress in a thiol-
dependent ROS-independent pathway to enhance apop-
tosis and radiosensitivity of colorectal cancer cells while 
inhibiting the expression of radiation-induced DNA repair 
proteins DNA-PKcs and ataxia-telangiectasia mutated 
(ATM) through GSH depletion, leading to cell cycle 
arrest (G2/M) [17].

In one study, ZER was found to stimulate the expres-
sion of interleukin (IL)-1α, IL-1β, IL-6 and production of 
tumor necrosis factor (TNF)-α in human colon adenocar-
cinoma cell lines [90]. Further ZER treatment repressed 
NF-κB and heme oxygenase (HO)-1 that caused inhibition 
of the multiplicity and inflammation in colonic adeno-
carcinomas, induction of apoptosis and suppression of 
the proliferation [21]. ZER treatment suppressed TNF-
alpha and downregulated HCT116 colon cancer cells pro-
liferation [40]. ZER increased Bax, Caspase 3, Caspase 
8, Caspase 9 and also caused enhancement of cell cycle 
stopping at G2/M stage by down regulated Bcl2 expres-
sion, mitochondrial membrane potential and the cellular 
antioxidant status [91].

ZER and cholangiocarcinoma

Cholangiocarcinoma (CCA) is the most common malig-
nancy of the biliary tract and has increased significantly 
in recent decades [92]. EGFR signaling is involved in 
cholangiocarcinoma development and progression [93]. 
In a study on seventeen ZER derivatives has been shown 
the presence of amine, hydroxylamine, epoxyamine, and 
nitrile groups by interacting with the molecular target 
EGFR have the most effective anti-proliferative activity 
against KKU-100 cell lines with an IC50 level of 16.44 
mM which can exhibit acutely anti-cancer activities 
opposed to CCA cells [94].

ZER and gastric cancer

Stomach cancer is the second most common cause of can-
cer deaths worldwide because it is usually detected in the 
late stages [95]. Cyclophilin A (CypA) was expressed at 
abnormally high levels in several types of cancer, including 
gastric cancer, and was implicated in cancer cell prolifera-
tion, cell migration/invasion, drug resistance and inhibition 
of apoptosis in several cancer cell types [96]. ZER block the 
action of cyclophilin A and promote mitochondrial pathway-
interceded apoptosis, as a result, produce caspase-dependent 
apoptosis in gastric cancer cells [97]. Gene products con-
trolled by NF-κB include the angiogenesis modulator vas-
cular endothelial growth factor (VEGF), which supports 
cell survival and leads to the acquisition of chemoresist-
ance [91]. ZER reduces NF-κB activities and the expression 
of VEGF, thereby inhibiting angiogenesis, leading to sup-
pression of cell proliferation and tube formation in human 
umbilical vein endothelial cells [98].

ZER and leukemia

Leukaemia is characterized by starting in the bone mar-
row and resulting in high numbers of abnormal blood cells, 
which, like other cancers, arise from mutations in DNA [93]. 
In research on the murine leukaemia model using WEHI-
3B cells by Rahman et al, ZER also induced the mitochon-
drial-dependent apoptotic pathway [99]. ZER stimulates 
the intrinsic apoptotic proteins (Caspase-3 and Caspase-9), 
releases Cytochrome c from the mitochondria, and following 
that cleavage of poly (adenosine diphosphate-ribose) poly-
merase (PARP) which led to arrest the Jurkat cells at G2/M 
stage with inactivation of cyclin B1 protein. As a result, 
ZER treatment showed the anti-proliferative effect on human 
lymphoblastic leukemia cell line [100, 101].

ZER suppresses K562 chronic myeloid leukaemia cell 
proliferation and colony formation due to DNA damage 
and upregulation of total histone H2AX, increased calcium, 
generation of ROS with activation of pro-caspase-3, -9 and 
PARP cleavage on Western blots, termed mitochondria-
mediated apoptosis [102]. ZER treatment against CEM-ss 
leukemic cells enhanced the number of TUNEL-positive 
stains and the caspase-3 level of cells and also revealed 
membrane blabbing holes and cytoplasmic discharges which 
are characteristics of apoptosis [103].

In one study, two distinct pathways [mitochondrial and 
Fas (CD95)-mediated] were identified in ZER-treated NB4 
cells. ZER inhibits the proliferation of leukaemic promye-
locytic NB4 cells by inducing G2/M cell phase arrest fol-
lowed by apoptosis via the onset of Fas (CD95)/Fas ligand 
(CD95L) expression associated with caspase-8 action. It also 
reduced B1/CDK1 protein cycling along with ATM/Chk1/
Chk2 phosphorylation. In this study, both caspase-8 and -9 
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were cleaved into their active forms by treatment with ZER. 
ZER also induced the cleavage of Bax and Mcl-1 proteins, 
but not Bcl-2 or Bcl-XL [104, 105].

ZER and liver cancer

The incidence of liver cancer has increased and it is the 
third most common cause of cancer and leads to death 
[106]. Several studies have identified alterations and dys-
regulated expression of the phosphatidylinositol-3-kinase 
(PI3K)/serine-threonine protein kinase (Akt)/mammalian 
target of rapamycin (mTOR) pathway in hepatocellular 
carcinoma (HCC) [107]. ZER decreased proliferation and 
clonogenic survival of HCC cells and induced apoptosis 
via stopping cells at the G2/M stage due to the significant 
suppression of the STAT3 and PI3K/AKT/mTOR signaling 
pathways [108]. ZER enhanced Bax pro-apoptotic protein 
and inhibited Bcl-2 anti-apoptotic protein expression and 
leads to inducing apoptosis [44]. In addition, ZER induced 
mitochondria-regulated apoptosis and inhibited proliferation 
by upregulating Bax, decreased Bcl-2 protein expression, 
reduced oxidative stress, and as a result, lessening DEN/
AAF-caused carcinogenesis in rat liver [109].

HCC is characterized by marked vascular abnormalities, 
arteriogenesis and capillarisation [110]. Another in vitro 
study about the anti-tumor effect of ZER on HCC demon-
strates suppression angiogenesis in cells of HepG2 through 
suppression the expressions of VEGF, MMP-9, and VEGFR 
[86]. In a study noted that to prevent the proliferation and 
migration of HepG2 cell in a dose-dependent method, ZER 
decreased tube formation through HUVECs inhibits new 
blood vessel and tissue matrix formation and also reduces 
expression of molecular effectors of angiogenesis, MMP-
9, VEGF, and VEGF receptor proteins [111]. Further ZER 
influence on nuclear localization of the transcription factor 
(Nrf2) that activated the Nrf2/ARE-dependent detoxification 
pathway and therefore showed the antioxidant role in the 
lipid peroxidation neutralization in hepatocytes [112]. ZER 
encapsulated by hydroxypropyl-β-cyclodextrin (HPβCD) 
recognized induced apoptosis and G2/M stage stopping in 
HepG2 cells beside the release of cytochrome c and dam-
age of mitochondrial membrane potential and also increased 
Caspase 3/7, Caspase 8, and Caspase 9 with the depletion 
of BID divided by Caspase 8 [113]. ZER increased apop-
tosis and cell cycle arrest at G2/M stage in HepG2 cells via 
upregulated cytochrome c, p27, p38, Bcl‑2, caspase‑3 and‑9 
expression through MAPK signaling pathway [114].

ZER and lung cancer

Lung cancer is the leading cause of cancer death worldwide 
[115]. Lipopolysaccharide (LPS) increased the expression 
of haem oxygenase (HO-1) and Nrf2 and lipid peroxidation, 

activation of antioxidant enzymes and activation of MMP-9 
and myeloperoxidase (MPO), which was suppressed by ZER 
and led to a reduction in acute lung injury [116]. NF-κB 
and HO-1 signaling pathways reduce ROS production in 
lung cancer cells which followed by chemoresistance [117] 
and ZER decreased growth, inflammation, and expression 
of NF-κB and HO-1, which caused apoptosis, suppression 
of lung carcinogenesis, and inhibited the multiplicity [21].

In addition, ZER leads to loss of mitochondrial membrane 
potential resulting in cytochrome c production, activation 
of caspase-3 and -9, promotion of Bax and p53 expression 
and upregulation of ROS production. Thus, ZER induces 
increased susceptibility to cisplatin and mitochondrial apop-
tosis in non-small cell lung cancer (NSCLC) cells [118]. 
LIM kinase (LIMK) is a serine/threonine protein kinase 
that includes members LIMK1 and LIMK2, which protect 
cancer cells from death and promote cell proliferation and 
chemotherapeutic resistance. LIMK2 expression was also 
upregulated in radioresistant NSCLC cells [119] and in vitro 
showed that ZER suppressed LIM kinase 1 and 2 and AKT 
and FAK phosphorylation Non-Small Cell Lung Cancer 
A549 Cells and also reduced osteopontin through blocking 
ROCK1 expression [120].

ZER and oral cancer

Oral squamous cell carcinoma (OSCC) is one of the ten most 
common cancers worldwide, with high mortality and poor 
response to treatment [121]. Regarding the distant metastasis 
from the oral cancer and as over activation of PI3K/Akt sign-
aling pathway in human oral cancers [122], A study of ZER 
treatment in oral squamous cell carcinoma by Zainal et al. 
showed that ZER suppressed OSCC proliferation, migra-
tion and invasion, and induction of G2/M cell phase exit 
and apoptosis by downregulating the expression of RhoA, 
CXCR4 proteins, and also decreased the PI3K-mTOR sign-
aling pathway via inactivation of S6 and Akt proteins [123]. 
Regarding the apoptosis-resistant of oral cancer cells, ZER 
induced apoptosis via S and G2/M stages of cell cycle arrest 
due to its antiproliferative, antioxidant, anticancer, and anti-
inflammatory effects on Human Laryngeal Carcinoma Cell 
Line Hep-2 [41].

ZER and cervical and ovarian cancer

Cervical cancer is known to be a major problem in most 
developing countries and the second most common cancer in 
women worldwide [124]. Ovarian cancers have the highest 
occurrence and mortality rate among gynecologic cancers 
that, unlike cervical cancer, there is no proper prevention 
program [125]. Thirteen percent of women with cervical 
cancer are diagnosed at an advanced stage of the disease that 
in contrast to localized type, there is no standard treatment 
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for patients with metastatic cervical cancer and median sur-
vival is only 8 to 13 months [126]. ZER is an active agent 
that induces apoptosis, cytotoxicity and anti-migratory 
effects in cervical cancer cells by preventing cell migration 
of HeLa cells, reducing the production of MMP-2/9 and 
proangiogenic factor VEGF, and stimulating programmed 
cell death in HeLa cells through phosphatidylserine trans-
location, increased caspase 3 activity, DNA fragmentation, 
upregulation of the expression of pro-apoptotic protein Bax, 
cleaved caspase 3, cleaved PARP and downregulation of 
anti-apoptotic protein Bcl-2 [38].

In a study on ZER treatment in Cervical Intraepithelial 
Neoplasia (CIN) of Female BALB/c mouse, noted ZER 
reduced immunoexpressions of proliferating cell nuclear 
antigen and proved an anti-cancer effect on cervical cancer 
cells [127]. Regarding the overexpression of Bcl-2 and Bax 
in CIN [128], ZER modulated the expression of Bcl-2 gene 
and Bax protein and induced mitochondria-regulated apop-
tosis through the regression of CIN tissues [129]. IL-6 was 
significantly upregulated in ovarian cancer and subsequently 
promote a pro-inflammatory tumor microenvironment [130]. 
ZER suppressed the IL-6 levels secreted by both Caov-3 
and HeLa cells and induced apoptosis by stopping cells 
at the G2/M phase [131]. ZER also upregulated the Cas-
pase-3 cellular level in HeLa cells and originated distinctive 
morphological features of apoptosis concluded chromatin 
and nuclear condensation, multinucleation, cell shrinkage, 
membrane blebbing, holes, abnormalities of mitochondrial 
cristae, cytoplasmic extrusions and formation of apoptotic 
bodies [132].

ZER and pancreatic cancer

Pancreatic cancer has poor prognosis among solid tumors. 
And the response to chemotherapy is not so good [133]. 
CXCR 4/CXCL12 is associated with tumor invasion and 
metastasis in pancreatic cancer also induced chemoresist-
ance [134] that ZER treatment decreased CXCR4 expres-
sion and inhibited CXCL12-induced invasion in pancreatic 
tumor cells, which leads to suppressed cancer metastasis 
[77]. Similar to CXCR4, IL8/CXCL8 could play an impor-
tant role in tumor progression and angiogenesis [135], ZER 
reduced the mRNA expression and protein secretion of the 
main angiogenic factors VEGF and IL-8 in PaCa cells and 
blocked the PaCa-associated angiogenesis through the sup-
pression of NF-κB and NF-κB-dependent proangiogenic 
genesis which leads to suppressed tube structure of human 
umbilical vein endothelial cells [136]. In a study using the 
pancreatic cancer cell lines AsPC-1, SW1990 and PANC-1, 
ZER treatment resulted in upregulation of p21 expression, 
p53 protein levels and ROS production. Therefore, ZER 
decreased cell viability and induced apoptosis via the p53 
pathway [137].

ZER and prostate cancer

Prostate cancer in men has a significant prevalence and a 
good prognosis with early detection through prostate specific 
antigen (PSA) in the blood for and improved procedures with 
radiotherapy and surgical intervention [138]. Ataxia telangi-
ectasia mutated (ATM) kinase is a 350 kDa nuclear protein 
kinase that is activated by DNA double-strand breaks to acti-
vate DNA repair, but is down-regulated in prostate cancer 
that induces resistance to radiotherapy [139]. In research on 
PC3 and DU145 prostatic cancer cells, emphasized that ZER 
increased the radiation effect on prostate cancer cells and 
reduced the radiation-caused expression of phosphorylated 
ATM. ZER also suppressed the expression of STAT3 and 
JAK2, which are implicated in DNA damage repair signal-
ing [140].

A primary sensor and master regulator of ER stress is 
glucose-regulated protein 78 (GRP78), overexpression of 
which confers resistance to a variety of chemotherapy drugs 
[141]. In a study on anti-proliferative and apoptotic effects 
against DU-145 and PC-3 cell lines, ZER induced (ER) 
stress and mitochondrial damage by upregulation of GRP-
78 and CHOP/GADD153 expression and the loss of mito-
chondrial membrane potential [142]. ZER also increased 
intracellular Ca2+ levels, which related to the structure of 
the active calpain I fragment and induced autophagy and 
apoptosis in human hormone-refractory prostate cancers 
(HRPCs) through tubulin binding and a Caspase-dependent 
way and dramatic LC3-II formation.

In addition, ZER suppressed microtubule assembly 
and increased MPM-2 expression, Mcl-1 protein expres-
sion, phosphorylation of Bcl-xL and Bcl-2, leading to the 
tubulin-binding effect. ZER also downregulated Cdc25C 
and increased the expression of C/EBP homologous protein 
(CHOP)/growth arrest and GRP-78 and DNA damage 153 
(GADD153) [143]. Furthermore, ZER induced apoptosis via 
cell cycle arrest at the G0/G1 stage, and also ZER decreased 
the JAK2/STAT3/IL-6 signaling pathway and blocked the 
prostate cancer-associated genes including: IL-6, cyclin D1, 
COX2 (cytochrome c oxidase) and ETS variant 1 (ETV1) 
[144].

ZER and renal cell carcinoma

Renal cell carcinoma (RCC) accounts for approximately 3% 
of adult cancers and is characterized by resistance to con-
ventional cancer treatments [145]. ZER treatment induced 
apoptosis in human renal cell carcinoma through inhibition 
of Bcl-2 and Gli-1, which caused chemoresistance of RCC, 
inhibition of cell viability and DNA fragmentation. On the 
other hand, stimulation of caspase-3 and -9 led to PARP 
cleavage [146]. STAT3 is aberrantly activated in several 
types of malignancy, including RCC, where it regulates 
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the expression of genes involved in cell survival, prolifera-
tion and angiogenesis [147]. ZER stimulates JAK 1/2 and 
upstream kinases c-Src. It therefore inhibits the activation of 
STAT3 in RCC cells in a time- and dose-dependent manner. 
As a result, ZER suppresses proliferation and induces apop-
tosis in RCC. ZER induced the expression of the tyrosine 
phosphatase SHP-1, which is associated with its ability to 
block STAT3 activation [148].

ZER and skin cancer

One of the most common types of cancer, especially in 
fair-skinned populations, is skin cancer, which is divided 
into melanoma and non-melanoma skin cancers (NMSCs), 
affecting the skin in the form of basal cell carcinoma and 
squamous cell carcinoma (BCC and SCC, respectively) 
[149]. Mice genetically deficient in Nrf2 are highly suscep-
tible to chemically induced skin tumorigenesis. They are 
also less responsive to the cytoprotective effects of some 
chemopreventive phytochemicals [150]. ZER with sup-
pressed nuclear Nrf2 activation in HSF cells prevents from 
aging skin cells [151]. Reactive oxygen species such as 
NOX, iNOS, COX‐2 play a key role in skin tumorigenesis 
[150] and ZER decrease NOX, iNOS, COX‐2 with inhibiting 
mRNA expression. This mechanism is also seen in the colon 
[152]. Melanoma is known as a high malignancy tumor. 
ZER with suppressing the migration and proliferation of the 
melanoma cell line CHL-1, also decreasing mitochondrial 
activity that leads to the subsequent raising in ROS genera-
tion, decrease in MMP, and a reduction in mtDNA and ATP 
levels can be a valuable treatment option [42].

The xenobiotic-metabolizing enzymes (NQO1, GSTP1) 
and mRNA levels for manganese superoxide dismutase 
(MnSOD), glutathione S-transferase-P1, glutathione per-
oxidase-1 (GPx1), and NAD (P) H quinone oxidoreductase 
are examples on antioxidant that protect in cells the epider-
mis from tumorigenesis and could be upregulated over ZER 
treatment. ZER also reduced cyclooxygenase-2 (COX-2) 
expression, H2O2-induced oedema formation, ERK1 phos-
phorylation and leukocyte infiltration, suppressing the initia-
tion and promotion stages of skin cancer [153]. ZER induced 
HO-1 expression via stimulation of Nrf2, which led to an 
antioxidant effect on skin carcinogenesis [43]. In a study on 
UVA-irradiated damages that caused skin cancer, noted ZER 
increased expression of c-glutamyl cysteine ligase (c-GCLC) 
and HO-1 genes and also upregulated antioxidant response 
element (ARE) and Nrf2 nuclear translocation that related 
to the PI3K/AKT, p38 MAPK, and PKC signaling [149]. In 
addition, ZER suppressed the expression of microphthalmia-
associated transcription factor (MITF) and downregulated 
melanin aggregation in α-melanocyte stimulating hormone 
(α-MSH), leading to the induction of melanogenesis [154].

ZER and esophageal cancer

Adenocarcinoma and esophageal squamous cell carcinoma 
(SCC) of the esophagus is a serious malignancy with a 
poor prognosis and the eighth most common cancer in the 
world [155]. ZER can be useful in on the proliferation and 
apoptosis of the esophagus cancer EC-109 cells by down
regulating the Bcl-2 protein expression and upregulating the 
P53 protein expression [156]. The results showed that Rac-1 
was upregulated at the protein and mRNA levels in ESCC 
cancer and associated with lymph node metastasis were two 
independent factors for poor survival [157]. ZER decreased 
Rac1 protein by enhancing Rac1 ubiquitination through the 
proteasome-dependent inhibition pathway, which led to sup-
pressed migration in human esophageal squamous cell car-
cinoma KYSE-150 and KYSE-30 cells [158] and may be a 
potential agent for targeting and therapy of ESCC.

Future directions

As reviewed above, many in vitro studies have shown the 
significant effect of ZER on various human cancers, but 
only a few in vivo studies on breast, lung, cervical, renal 
cell, colorectal and skin cancers have been conducted to 
demonstrate these effects. There are also no relevant clini-
cal trials to test the safety and efficacy of ZER, so there is 
a paucity of in vivo evidence. In addition, some studies are 
needed to analyze the pharmacokinetic properties of this 
product, such as distribution, solubility, etc. As an exam-
ple, previous research designed to improve the solvability 
of ZER and it was investigated to evaluate its relationship 
with hydroxypropyl-β-cyclodextrin (HPβCD) in containing 
compounds and demonstrated that the solvability of ZER 
dramatically improved with an increase in the release of 
HPβCD at 20 °C, thus indicating that this product could be 
consumed in this drug formation [159]. Therefore, in this 
field of medicine on cancer therapy with ZER, we urgently 
need to more studies in both in vivo and clinical trials and 
also pharmacokinetic features, to accredit its clinical use in 
various human cancers.
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