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Abstract
Introduction  Neurodevelopmental disorders (NDDs) refer to a broad range of diseases including developmental delay, 
intellectual disability, epilepsy, autism spectrum disorders, and attention-deficit/hyperactivity disorder caused by dysfunctions 
in tightly controlled brain development. The genetic backgrounds of NDDs are quite heterogeneous; to date, recessive or 
dominant variations in numerous genes have been implicated. Herein, we present a large consanguineous family from Turkiye, 
who has been suffering from NDDs with two distinct clinical presentations.
Methods and results  Combined in-depth genetic approaches led us to identify a homozygous frameshift variant in NALCN 
related to NDD and expansion of dodecamer repeat in CSTB related to Unverricht-Lundborg disease (ULD). Additionally, 
we sought to functionally analyze the NALCN variant in terms of mRNA expression level and current alteration. We have 
both detected a decrease in the level of premature stop codon-bearing mRNA possibly through nonsense-mediated mRNA 
decay mechanism and also an increased current in patch-clamp recordings for the expressed truncated protein.
Conclusion  In conclusion, increased consanguinity may lead to the revealing of distinct rare neurogenetic diseases in a single 
family. Exome sequencing is generally considered the first-tier diagnostic test in individuals with NDD. Yet we underline 
the fact that customized approaches other than exome sequencing may be used as in the case of ULD to aid diagnosis and 
better genetic counseling.
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Introduction

Neurodevelopmental disorders (NDDs) including autism 
spectrum disorder and intellectual disability/developmen-
tal delay (ID/DD) are characterized by defects in brain 
development and function that may affect cognition, 
behavior, and motor skills [1]. The phenotypic heteroge-
neity of NDDs has been attributed both to the variable 
expressivity of the phenotype within the distinct NDD 
category and also to the comorbid features, including epi-
lepsy, motor deficits, behavioral and psychiatric issues, 
and other congenital malformations [2].

NDDs are also heterogenous on the genetic level. To date, 
various genes and loci have been implicated in NDDs based 
on copy number variation analyses and next-generation 
sequencing approaches, particularly exome sequencing [3–5]. 
Indeed, in 2019 exome sequencing was recommended as a 
first-tier clinical diagnostic test for individuals with NDDs [6].

It has been reported that clinically and molecularly 
diagnosed patients may have multilocus pathogenic vari-
ations (MPV) almost approaching 5% [7, 8]. Among these 
MPVs, the significant proportion comprises de novo vari-
ants in autosomal dominant (AD) or X-linked disease genes. 
Observation of MPVs in double autosomal recessive (AR) 
disease genes is much lower with a percentage of around 
10% [7, 8]. As is known, in populations with a high rate of 
parental consanguinity, there is the increased contribution 
of AR private pathogenic variations to disease phenotypes 
[5]. Accordingly, increased consanguinity may result in 
observing two AR disorders in a single family [9]. Taken 
together, combined genetic analyses in such families can 
aid in dissecting the identity of the associated genes and 
provide genetic counseling.

Herein, we have set out to analyze the genetic defects in 
a family from Turkiye who has multiple siblings with an 
initial clinical diagnosis of Unverricht-Lundborg disease 
(ULD) and an undiagnosed form of NDD. ULD is an AR 
form of progressive myoclonus epilepsy that is associated 
with the cystatin B (CSTB) gene (ULD MIM: # 254800, Gene 
MIM: *601145) [10]. Expansion of the dodecamer repeat in 
the putative promoter region of CSTB is responsible for the 
majority of the ULD cases [11]. Therefore, we have used 
an in-depth genetic approach first to sequester homozygous 
regions associated both with ULD and NDD in this family 
and then to identify the associated variation with long PCR 
or whole exome sequencing (WES). Biallelic pathogenic 
variation in the NALCN gene (NM_052867.2:c.3056dupT, 
MIM: *611549) identified for the undiagnosed NDD 
phenotype has also been functionally analyzed. Our findings 
demonstrate the value of next-generation sequencing (NGS) 
in improving exact molecular diagnosis for Mendelian 
diseases and providing better genetic counseling for families.

Materials and methods

Identification of ULD and NDD‑associated variants

Patients and clinical assessments

A family from Turkiye with ten children had been 
recruited for this study. The parents (I-1 and I-2) were 
first-degree cousins, two sibs (II-1 and II-2) had an initial 
clinical diagnosis of ULD, and two sibs were born with 
an undiagnosed NDD (II-7 and II-9) (Fig. 1A). Physical, 
neurological, and electroencephalography (EEG) 
examinations together with consultation on family history 
were performed. DNA was extracted from peripheral blood 
samples of all family members using the QIAamp DNA 
Blood Maxi Kit (Qiagen GmbH, Hilden, Germany).

Genotyping

Two different SNP genotyping platforms were used 
throughout the study. II-3, II-4, II-5, and II-9 were genotyped 
using Illumina Human HumanCytoSNP-12 BeadChip kit 
(300K), while II-1, II-7, and II-9 (replicated as a batch 
control) were genotyped using Illumina HumanOmniExpress 
BeadChip (700K) kit (Fig. 1A).

Analysis of CSTB to dissect the ULD phenotype in the family

SNP array–based homozygosity of the region encompassing 
the CSTB gene in individual II-1 was consistent with the 
diagnosis of ULD. In order to detect the presence of CSTB 
dodecamer expansion, we have PCR amplified the CSTB 
promoter region encompassing the GC rich dodecamer 
(CCC​CGC​CCC​GCG​)n using primers 5-CCC​GGA​AAG​
ACG​ATA​CCA​G-3 (forward) and 5-CGG​CTT​CTT​TCG​
CTC​CAG​-3 (reverse). The PCR refractive individuals for 
this region (II-1, II-2) were further analyzed with long PCR 
through the service provided by Ulm University, Institute of 
Human Genetics (Fig. 1B).

Dissecting the genetic cause underlying the undiagnosed 
NDD phenotype in the family

LOD score analysis in the pedigree was performed selecting II-7 
and II-9 as the only affected individuals in the family and using 
matching SNP data from 300K and 700K chips. This analysis 
was run using ALLEGRO version 1.2c software under the 
software package easyLINKAGE plus version 5.08 assuming 
recessive inheritance with full penetrance [12]. Haplotypes in 
regions with positive linkage peaks were manually inspected for 
identical by descent (IBD) inheritance of the shared haplotypes 
in the affected children. WES was performed in two affected 
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sibs (II-7 and II-9) as previously reported [13]. The candidate 
variants residing in LOD score-positive regions were validated 
by Sanger sequencing.

Functional characterization of the truncating NALCN 
variant associated with NDD

Upon identification of a frameshift variant in NALCN, 
we have first investigated the possible involvement of the 
nonsense-mediated mRNA decay (NMD) mechanism that 
may cause a null effect. For this purpose, HEK293T cells 
were transfected with wild-type NALCN (NALCNWT) and 

mutant-type NALCN (NALCNMut) encoded plasmids and 
treated with 0.1 mM cycloheximide (CHX) for 4 h. After-
ward, the cells were subsequently harvested, and RNA 
expression levels were assessed through a real-time quanti-
tative PCR method (detailed in supplementary data).

Then, we sought to analyze the role of the truncated protein 
on the electrophysiological properties of cells due to potential 
escape from the NMD mechanism. Therefore, MCF7 cells were 
transfected with NALCNWT and expressing truncated NALCN 
protein (NALCNTrun) plasmids followed by whole-cell patch-
clamp technique to evaluate possible current alteration in a 
truncated protein (detailed in supplementary data).

Fig. 1   Genetic findings in the family. A Pedigree of the family. “*” 
indicates individuals were 300K SNP genotyped, “+” indicates 
individuals were 700K SNP genotyped, and “#” indicates individu-
als have WES data. B Conventional PCR results of CSTB expansion 
region. The PCR refractive individuals (II-1, II-2) were further ana-

lyzed with long PCR. C Multipoint LOD scores were obtained by 
Allegro in the family along the autosomes. D SNP-derived haplotypes 
around the linkage region including NALCN on chromosome 13. The 
gray square indicates linkage region sharing in two affected siblings. 
E Segregation of NALCN variant within the family
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Statistical analysis

In the present study, whether the data were distributed normally 
was tested with the Shapiro-Wilk test. In comparing the data 
with normal distribution between two independent groups, a 
t-test was used. The non-normal distribution of the data between 
two independent groups was evaluated with the Mann-Whitney 
U test. Statistical analyses were performed at GraphPad Prism 
8.0 program (GraphPad Software, Inc., CA, USA) with a sig-
nificance level of 0.05 and 95% confidence level.

Results

Clinical presentation

Patients with ULD

In the last examination, the eldest sibling was at the age of 29 
(II-1). She was reported to have no symptoms till the age of 10. 
After this age, she has begun to experience myoclonic seizures, 
typically triggered by auditory stimuli. She developed severe 
impairments in motor and cognitive functions. EEG revealed 
generalized epileptiform activity and magnetic resonance 
imaging (MRI) showed prominent cerebellar folia along with 
cerebral and cerebellar atrophy. Unfortunately, her epilepsy 
was refractory. Her younger brother (II-2) had a similar disease 
history with refractory epilepsy and motor-mental delay.

Patients with NDD

Two affected sisters (II-7 and II-9) had severe congenital 
motor-mental developmental delay and progressive epilepsy. 
Myoclonus progressive seizures had begun from 3 months 
old for patient II-9. Unfortunately, both patients (II-7 and 
II-9) were lost at the ages of 13 and 9, respectively.

Long PCR results for ULD phenotype

Dodecamer expansion in the promoter of the CSTB gene was determined 
with 60±2 repeats in two siblings with ULD (II-1 and II-2, Fig. 1B).

Genetic and functional analyses for NDD phenotype

Whole genome genotyping and Linkage analysis

Linkage analysis using a combination of 300K and 700K 
arrays data through PLINK in an autosomal recessive model 
revealed three linkage peaks on chromosomes 9, 10, and 13 
with maximum LOD scores of 2.29 each (Fig. 1C).

WES and segregation analyses

WES data were filtered for linkage interval and candidate 
variants that were shared between affected individuals were 
validated by Sanger sequencing and segregation analysis. 
The linkage interval of chromosome 13, which includes the 
strongest candidate variant, is compiled in Fig. 1D. This 
collective effort has led us to identify a frameshift variant in 
NALCN (NM_052867.2:c.3056dupT, p.(Leu1019Phefs*30), 
rs772394714) in the homozygous state as the most likely 
gene associated with the NDD phenotype in the family. 
Segregation of the variant within all family members was 
consistent with recessive inheritance pattern (Fig. 1E). The 
variant was classified as pathogenic with evidence codes of 
PVS1, PP1, PM2, and PS3 [14].

RNA expression analyses

The mRNA level of NALCNMut was significantly lower 
compared to NALCNWT at t=0 time point most probably 
due to nonsense-mediated mRNA decay (p=0.0379). How-
ever, there was an expression of NALCNMut, which could 
be due to the low-level escape of NALCNMut mRNAs from 
NMD. After treatment with CHX for 4 h, mRNA levels of 
NALCNMut were statistically significantly increased com-
pared to the initial expression level through NMD blocking 
(t=0 NALCNMut vs CHX NALCNMut, p=0.0051) (Fig. 2A).

Electrophysiological findings

NALCNWT or NALCNTrun plasmid transfected MCF7 cells 
were used for current recording, and these two groups were 
compared to assess alteration. The Patch-clamp recording 
revealed that the current of NALCNTrun expressed cells was 
increased compared to NALCNWT (p=0.0007) (Fig. 2B). 
This finding supports that truncated NALCN protein might 
have the gain of protein function.

Discussion

In populations with high parental consanguinity, genomic 
studies have especially uncovered recessive disease-causing 
alleles [15, 16]. Moreover, there is a substantial increase 
that the offspring are born with two different autosomal 
recessive disorders due to identical descent inheritance of 
independent pathogenic alleles [9]. It is not surprising as 
we are all heterozygous for potentially pathogenic yet silent 
recessive variations, which may result in severe diseases in 
the subsequent generations due to parental consanguinity 
[17]. In this instance, next-generation sequencing combined 
with linkage analysis provides an important opportunity for 
diagnosis and genetic counseling [15, 16, 18]. Herein, we 
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present a large consanguineous family suffering from two 
rare recessive neurological disorders (ULD and NDD) with 
multiple children born to first-degree cousin parents.

ULD, also named progressive myoclonic epilepsy 1 
(PME1), is a rare neurodegenerative disorder and inherited 
autosomal recessively (MIM: #254800) [19]. ULD is the most 
common type among progressive myoclonic epilepsies and 
is characterized by seizures, myoclonus, ataxia, and cogni-
tive decline [20]. The main cause of ULD has been defined as 
repeat expansion (>30 repeats) of a dodecamer sequence in the 
promoter region of the CSTB (cystatin B) gene which encodes 
inhibitor of lysosomal proteases [20, 21]. In the present study, 
we sought to find out repeat expansion regarding two siblings 
with suspected ULD; long-PCR revealed 60±2 repeats in 
affected siblings and was consistent with clinical findings.

NALCN is an orphan gene and encodes sodium ion leak 
channel which is mainly expressed in the nervous system. 
This channel plays a crucial role in modulating respiration, 
circadian rhythm, locomotion, and pain sensitivity by regu-
lating the resting membrane potential (RMP) and excitability 
of neurons [22]. The importance of NALCN for RMP has 
been recapitulated in animal models that underline its indis-
pensable function conserved across species. For instance, 
impaired expressions of NALCN resulted in hyperpolariza-
tion of hippocampal neurons’ RPM and reduction in firing 
rate in mice. Additionally, bi-allelic knockout variants led 
to the premature death of mice within a day after birth due 
to disrupted respiratory rhythm [23].

Both dominant and recessive pathogenic variants in 
NALCN (MIM: * 611549) have been implicated in clinically 

Fig. 2   Functional experiment results for the NALCN variant. A Relative mRNA expression levels of NALCNWT and NALCNMut before and after 
cycloheximide (CHX) treatments. B Patch-clamp recording findings of cells transfected with NALCNWT and NALCNTrun plasmids
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distinct NDDs. Heterozygous dominantly inherited vari-
ants lead to congenital contractures of the limbs and face, 
hypotonia, and developmental delay (CLIFAHDD, MIM: 
#616266), while recessively inherited variants cause infan-
tile hypotonia with psychomotor retardation and character-
istic faces 1 (IHPRF1, MIM: #615419) [24]. It is presumed 
that gain-of-function mutations are related to CLIFAHDD, 
whereas bi-allelic loss-of-function mutations are related to 
IHPRF1 [25]. As consistent, Bouasse and colleagues have 
shown missense mutations associated with CLIFAHDD 
present higher current in electrophysiological recordings 
compared to wild type [23].

We identified a bi-allelic NALCN frameshift variant in two 
siblings with NDD. As expected, we aimed to experimentally 
test whether mRNA bearing premature stop codon degrades 
through the NMD mechanism. Accordingly, the NALCNMut 
mRNA level was low compared to NALCNWT mRNA, 
whereas after being treated with CHX increased compared 
to the initial level. This result was consistent with the 
NMD hypothesis resulting in null alleles. Nevertheless, we 
wanted to gain insight into what would happen if mRNA 
escaped from NMD and produced truncated protein under 
physiological conditions. Surprisingly, truncated protein 
has displayed a gain-of-function feature according to patch-
clamp recording. This finding may be speculated as if the 
NMD mechanism could not work properly, heterozygous 
individuals would also show phenotypes like CLIFAHDD. 
Despite that, a 50% reduction in NALCN activity seems to be 
tolerable according to heterozygous loss-of-function variants 
in gnomAD [26]. Thus, it has been again underlined how an 
important control mechanism NMD is to protect organisms 
against incorrect protein production.

According to recent studies, the frequency of MPV should 
not be underestimated. Indeed, in a large NDD cohort from 
Turkiye, MPV’s prevalence has been found to be 28.9% (in 51 
of the 176) which mostly contained homozygous loci shared 
due to consanguinity [27]. Herein, the presented consanguineous 
family from Turkiye supports the aforementioned frequency.

Consequently, we have identified genetic background 
underlies two distinct rare neurologic diseases in a family 
thanks to the combination of plausible genetic approaches 
including linkage and haplotype analyses, targeted PCR 
approaches, and WES. Genetic identification of two separate 
disease genes in the same family has led us to conclude that 
the different neurological phenotypes in affected siblings are 
not solely due to the variable expressivity of the same disor-
der. Despite some limitations, WES is still quite a powerful 
and precise tool to elucidate disease-causing variants/genes 
in clinically rare and recessively inherited Mendelian dis-
eases. Yet pitfalls of WES are well known [28]. Therefore, 
complementary and targeted genetic techniques chosen in 
the presence of proper clinical guidance may be required to 
resolve the additional pathogenicity as in the case of ULD.
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