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A B S T R A C T

In this paper, we determine the spectral instability of periodic odd waves for the defocusing frac-
tional cubic nonlinear Schrödinger equation. Our approach is based on periodic perturbations
that have the same period as the standing wave solution, and we construct real periodic waves
by minimizing a suitable constrained problem. The odd solution generates three negative simple
eigenvalues for the associated linearized operator, and we obtain all this spectral information
by using tools related to the oscillation theorem for fractional Hill operators. Newton’s iteration
method is presented to generate the odd periodic standing wave solutions and numerical results
have been used to apply the spectral stability theory via Krein signature as established in
Kapitula et al. (2004) and Kapitula et al. (2005).

. Introduction

The main goal of this paper is to present new results concerning the existence and spectral stability of periodic standing waves
or the defocusing fractional nonlinear Schrödinger equation (dfNLS)

𝑖𝑈𝑡 − (−𝛥)𝑠𝑈 − |𝑈 |

2𝑈 = 0. (1.1)

ere 𝑈 = 𝑢 + 𝑖𝑣 ≡ (𝑢, 𝑣) ∶ T × R ⟶ C is a complex-valued function and 2𝜋-periodic at the first variable with T ∶= [−𝜋, 𝜋]. In our
ontext, the fractional Laplacian (−𝛥)𝑠 is defined as a pseudo-differential operator

̂(−𝛥)𝑠𝑉 (𝜉) = |𝜉|2𝑠𝑉 (𝜉), (1.2)

here 𝜉 ∈ Z and 𝑠 ∈ (0, 1] (see [1]).
The dfNLS equation (1.1) admits the following conserved quantities 𝐸, 𝐹 ∶ 𝐻𝑠

𝑝𝑒𝑟 ×𝐻
𝑠
𝑝𝑒𝑟 ⟶ R which are given by

𝐸(𝑈 ) = 1
2 ∫

𝜋

−𝜋
|(−𝛥)

𝑠
2 𝑈 |

2
+ 1

2
|𝑈 |

4 𝑑𝑥, (1.3)

nd

𝐹 (𝑈 ) = 1
2 ∫

𝜋

−𝜋
|𝑈 |

2 𝑑𝑥. (1.4)
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A standing periodic wave solution for Eq. (1.1) has the form

𝑈 (𝑥, 𝑡) = 𝑒𝑖𝛼𝑡𝜑(𝑥), (1.5)

here 𝜑 ∶ T ⟶ R is a smooth 2𝜋-periodic function and 𝛼 ∈ R represents the wave frequency which is assumed to be negative for
now. Substituting (1.5) into (1.1), we obtain the following differential equation with fractional derivative

(−𝛥)𝑠𝜑 + 𝛼𝜑 + 𝜑3 = 0. (1.6)

For 𝛼 ∶= −𝜔 < 0, we consider the standard Lyapunov functional defined as

𝐺(𝑈 ) ∶= 𝐸(𝑈 ) − 𝜔𝐹 (𝑈 ). (1.7)

By (1.6), we obtain 𝐺′(𝜑, 0) = 0, that is, (𝜑, 0) is a critical point of 𝐺. In addition, the linearized operator around the pair (𝜑, 0) is
given by

 ∶= 𝐺′′(𝜑, 0) =
(

1 0
0 2

)

, (1.8)

where

1 = (−𝛥)𝑠 − 𝜔 + 3𝜑2 and 2 = (−𝛥)𝑠 − 𝜔 + 𝜑2. (1.9)

Due to the definition of the fractional operator (−𝛥)𝑠 in (1.2), it is clear that the operators 1 and 2 are self-adjoint operators in 𝐿2
𝑝𝑒𝑟

with a dense domain in 𝐻2𝑠
𝑝𝑒𝑟 for all 𝑠 ∈ (0, 1) (see Lemma 4.1). It is worth mentioning that operator  in (1.8) plays an important

role in our study. In order to set our spectral problem concerning periodic waves with respect to perturbation with the same period,
we consider the complex evolution 𝑈 = (𝑢, 𝑣) associated with Eq. (1.1). To simplify the notation, let us consider 𝛷 = (𝜑, 0) and the
perturbation

𝑈 (𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡(𝛷(𝑥) +𝑊 (𝑥, 𝑡)), (1.10)

where 𝑊 (𝑥, 𝑡) = 𝑤1(𝑥, 𝑡) + 𝑖𝑤2(𝑥, 𝑡) ≡ (𝑤1(𝑥, 𝑡), 𝑤2(𝑥, 𝑡)). Substituting (1.10) into (1.1) and neglecting all the nonlinear terms, we get
the following linearized equation:

𝑑
𝑑𝑡
𝑊 (𝑥, 𝑡) = 𝐽𝑊 (𝑥, 𝑡), (1.11)

here 𝐽 is given by

𝐽 =
(

0 1
−1 0

)

, (1.12)

nd  is the diagonal operator given by (1.8).
To define the concept of spectral stability within our context, we need to substitute the growing mode solution of the form
(𝑥, 𝑡) = 𝑒𝜆𝑡𝑤(𝑥) into the linear Eq. (1.11) to obtain the following spectral problem

𝐽𝑤 = 𝜆𝑤.

he definition of spectral stability in our context reads as follows.

efinition 1.1. The periodic wave 𝛷 is said to be spectrally stable by periodic perturbations that have the same period as the
tanding wave solution if 𝜎(𝐽) ⊂ 𝑖R. Otherwise, if there exists at least one eigenvalue 𝜆 associated with the operator 𝐽 that has

a positive real part, 𝛷 is said to be spectrally unstable.

The study of spectral (orbital) stability of periodic standing waves of the form 𝑈 (𝑥, 𝑡) = 𝑒𝑖𝛼𝑡𝜑(𝑥) associated to the cubic nonlinear
Schrödinger equation

𝑖𝑈𝑡 + 𝑈𝑥𝑥 + 𝑏|𝑈 |

2𝑈 = 0, (1.13)

has attracted the interest of a large number of researchers. Let 𝛼 > 0 be fixed. The case 𝑏 = 1 in (1.13) represents the focusing
nonlinearity, while 𝑏 = −1 represents the defocusing nonlinearity. In both cases, sufficient conditions and applications of known
techniques have been shown to be efficient. For the case 𝑏 = 1, the author of [2] established the stability properties of periodic
standing waves solutions with dnoidal profile with respect to perturbations with the same period 𝐿 by using the ideas introduced
in [3,4], (see also [5,6]). Existence of smooth branches of solutions with cnoidal profiles were also reported in [2]; however, the
author was not able to obtain the orbital stability/instability in the energy space for these waves. Next, by using the techniques
introduced in [7,8], the cnoidal waves were shown to be orbitally stable in [5,9] with respect to anti-periodic perturbations,
i.e., when 𝑓 satisfies 𝑓 (𝑥+𝐿∕2) = −𝑓 (𝑥) for all 𝑥 ∈ R. Spectral stability with respect to bounded or localized perturbations were also
reported in [5]. For 𝛼 > 0 in a suitable interval (0, 𝛼∗), the authors of [6] have established spectral stability results for the cnoidal
waves with respect to perturbations with the same period 𝐿 and orbital stability results in the space constituted by anti-periodic
functions with period 𝐿∕2 (see also [10]). Their proofs rely on proving that the cnoidal waves satisfy a convenient minimization
problem with constraints, which yields the orbital stability. The spectral stability follows by relating the coercivity of the linearized
action with the number of eigenvalues with negative Krein signature of 𝐽.
2
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The integrability of Eq. (1.13) can be used to determine spectral stability results of periodic waves. In [11] the authors studied
eriodic solutions with dnoidal and cnoidal type for the case 𝑏 = 1. The same approach was used in [12] to prove spectral stability
esults for the case 𝑏 = −1 and snoidal type solutions. The spectral stability presented in both cases was with respect to subharmonic
erturbations, that is, perturbation of an integer multiple 𝑛 times the minimal period of the solution. The authors employed the
rguments in [7] to conclude the orbital stability by considering the orbit generated only by one symmetry of Eq. (1.13).

We present some recent contributions concerning the fractional version

𝑖𝑈𝑡 − (−𝛥)𝑠𝑈 + 𝑏|𝑈 |

2𝑈 = 0, (1.14)

f Eq. (1.13). Indeed, when 𝑠 ∈ (0, 1) and 𝑏 = ±1 the orbital stability of real-valued, even and anti-periodic standing wave solutions 𝜑
f (1.1) has been studied in [13]. The authors determined the existence of real solutions via a minimization problem in the context
f anti-periodic functions (denoted by 𝐿2

𝑎(0, 𝐿)) and they established that the associated linearized operator acting in 𝐿2
𝑎(0, 𝐿) is

on-degenerate. By the additional assumption 𝑑
𝑑𝛼 ∫

𝐿
0 𝜑2𝑑𝑥 > 0, the authors were able to show that 𝜑 is orbitally stable with respect

to anti-periodic perturbations in a suitable subspace of 𝐻𝑠(0, 𝐿) ∩ 𝐿2
𝑎(0, 𝐿).

In [14] the authors studied the existence and orbital stability of positive and periodic standing wave solutions of the form
(𝑥, 𝑡) = 𝑒𝑖𝛼𝑡𝜑(𝑥) for Eq. (1.14) with 𝑏 = 1. The existence of periodic waves was determined by using a minimizing constrained
roblem in the complex setting and the orbital stability was proved by combining some tools regarding the oscillation theorem for
ractional Hill operators and the Vakhitov–Kolokolov condition. The authors also presented a numerical approach to generate the
eriodic standing wave solutions of (1.14) with 𝑏 = 1 by using Petviashvili’s iteration method. It is important to mention that the
umerical method has also been used to establish the values of the frequency 𝛼 > 1

2 and the index 𝑠 > 0 in (1.13) where the wave
𝜑 is spectrally (orbitally) stable or not. In fact, if 𝑠 ∈

(

1
4 ,

1
2

]

the periodic wave is spectrally (orbitally) unstable. If 𝑠 ∈ [𝑠∗, 1], the

periodic wave is spectrally (orbitally) stable, where 𝑠∗ ≈ 0.6. For 𝑠 ∈
(

1
2 , 𝑠

∗
)

, the authors guaranteed the existence of a critical value

𝛼𝑐 >
1
2 such that the periodic wave is spectrally (orbitally) unstable if 𝛼 ∈

(

1
2 , 𝛼𝑐

)

and spectrally (orbitally) stable if 𝛼 > 𝛼𝑐 .
Now, we give the main points of our paper. First, we show the existence of an odd periodic two-lobe solution 𝜑 for Eq. (1.6).

For this aim, we need to solve the real constrained minimization problem

inf
{

(𝑢) = 𝐸(𝑢, 0) ∶= 1
2 ∫

𝜋

−𝜋
((−𝛥)

𝑠
2 𝑢)2 + 1

2
𝑢4 𝑑𝑥 ; 𝑢 ∈ 𝐻𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 , ∫

𝜋

−𝜋
𝑢2 𝑑𝑥 = 𝜏

}

, (1.15)

for fixed 𝜏 > 0, where 𝑠 ∈
(

1
4 , 1

]

.

Periodic odd solutions of (1.15) are real functions 𝜑 and therefore the existence of a periodic standing wave having the form
(1.5) is established without further problems. This fact is different from the approaches in [13,14] since they obtained, complex
periodic solutions of a complex constrained minimization problem. In both cases, they need to assume suitable assumptions in order
to get the existence of periodic standing waves of the form (1.5) (see [13, Lemma 2.2] and [14, Remark 3.3]). Our periodic solution
obtained from the problem (1.15) enables us to consider a real-valued solution 𝜑 for the problem (1.15) which is automatically odd.
In addition, we can consider that 𝜑 has a two-lobe profile for all 𝜔 > 1 (see Proposition 3.3).

A different way to construct periodic real-valued solutions associated with Eq. (1.6) is established by using the local and global
ifurcation theory as determined in [15]. First, we construct small amplitude periodic solutions in the same way as in [16] (see
lso [17]) for 𝜔 > 1 and close to the bifurcation point 1. Afterwards, we establish sufficient conditions to extend 𝜔 to the whole
nterval (1,+∞) by constructing an odd periodic continuous function 𝜔 ∈ (1,+∞) ⟼ 𝜑𝜔 ∈ 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 where 𝜑𝜔 is a periodic solution
f (1.6). It is important to mention that the periodic wave obtained by the global bifurcation theory may not have a two-lobe profile,
nd thus we can choose the periodic waves which arise as a minimum of the problem (1.15). The existence of small amplitude waves
ssociated with the Schrödinger equation was determined in [5] for Eq. (1.13) with 𝑏 = ±1. They first show that these waves are
rbitally stable within the class of solutions that have the same period. For the case of general bounded perturbations, they prove
hat the small amplitude travelling waves are stable in the defocusing case and unstable in the focusing case.

Since the minimizer 𝜑 of (1.15) is a real odd two-lobe solution of (1.6), we obtain that 𝑛(1) = 1 (see Lemma 4.2), where 𝑛()
enotes the number of negative eigenvalues of a certain linear operator  (counting multiplicities). In addition, Lemma 4.2 also
ives that ker(1) = [𝜑′] and we can use the implicit function theorem to obtain, for a fixed value 𝜔0 > 1, the existence of an open
nterval  containing 𝜔0 and a smooth function

 ∋ 𝜔⟼ 𝜑𝜔 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 (1.16)

hat solves Eq. (1.6). Deriving this equation with respect to 𝜔 ∈ , it follows that 1(𝜕𝜔𝜑) = 𝜑, so that 𝜑 ∈ range(). Concerning
he linear operator 2, we obtain by Lemma 4.3 that 𝑛(2) = 2 and ker(2) = [𝜑]. Gathering all spectral information regarding 1
nd 2, we obtain from the fact  in (1.8) has a diagonal form that 𝑛() = 3 and ker() = [(𝜑′, 0), (0, 𝜑)].

The strategy to prove our spectral instability result is based on an adaptation of the arguments in [18,19]. Let 𝑧() denote the
imension of the kernel of a certain linear operator . Since in our case we have 𝑧() = 2, let 𝛩1 = (𝜑′, 0) and 𝛩2 = (0, 𝜑) represent
he elements in ker(). Let 𝑉 be the 2 × 2 matrix whose entries are given by

𝑉 = (−1𝐽𝛩 , 𝐽𝛩 ) , (1.17)
3

𝑗𝑙 𝑗 𝑙 𝐿2
𝑝𝑒𝑟×𝐿𝑛𝑝𝑒𝑟
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where 1 ⩽ 𝑗, 𝑙 ⩽ 2. Thus, 𝑉 is given by

𝑉 =

(

(−1𝐽𝛩1, 𝐽𝛩1)𝐿2
𝑝𝑒𝑟

(−1𝐽𝛩1, 𝐽𝛩2)𝐿2
𝑝𝑒𝑟

(−1𝐽𝛩2, 𝐽𝛩1)𝐿2
𝑝𝑒𝑟

(−1𝐽𝛩2, 𝐽𝛩2)𝐿2
𝑝𝑒𝑟

)

.

=

(

(−1
2 𝜑′, 𝜑′)𝐿2

𝑝𝑒𝑟
0

0 (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟

)

.

(1.18)

On the other hand, the equality

𝑘𝑟 + 𝑘𝑐 + 𝑘− = 𝑛() − 𝑛(𝑉 ), (1.19)

is given in [19] and the left-hand side of the equality (1.19) is called hamiltonian Krein index. Concerning operator  in (1.8), let 𝑘𝑟 be
the number of real-valued and positive eigenvalues (counting multiplicities). The number 𝑘𝑐 denotes the number of complex-valued
eigenvalues with a positive real part and 𝑘− is the number of pairs of purely imaginary eigenvalues with negative Krein signature
of . Since 𝑘𝑐 and 𝑘− are always even numbers, we obtain that if the right-hand side in (1.19) is an odd number, then 𝑘𝑟 ⩾ 1 and
we have automatically the spectral instability. Moreover, if the difference 𝑛() − 𝑛(𝑉 ) is zero, then 𝑘𝑐 = 𝑘− = 𝑘𝑟 = 0 which implies
the spectral stability.

Since 𝑛() = 3 and 𝑧() = 2, the case 𝑛(𝑉 ) = 3 cannot be considered according to the square matrix in (1.18). Now, if 𝑛(𝑉 ) = 0,
we obtain that 𝑛() − 𝑛(𝑉 ) = 3 which implies the spectral instability. When 𝑛(𝑉 ) = 1, we cannot conclude the spectral instability
since the difference 𝑛() − 𝑛(𝑉 ) = 2 is an even number. The spectral stability result is inconclusive since the values of 𝑘𝑐 and 𝑘−
are always even numbers (we can have zero or two eigenvalues with positive real part associated with the operator 𝐽). However,
if 𝑛(𝑉 ) = 2, then 𝑛() − 𝑛(𝑉 ) = 1 and this implies the spectral instability. To obtain a suitable conclusion for the spectral stability,
we need to calculate (−1

2 𝜑′, 𝜑′)𝐿2
𝑝𝑒𝑟

and (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
. In our approach, we shall consider the restrictions of the linearized operator

 in (1.8) to even and odd functions. These operators will be denoted as even and odd and we can conclude in our case that
𝑛(𝑒𝑣𝑒𝑛) = 2, 𝑛(𝑜𝑑𝑑 ) = 1, ker(𝑒𝑣𝑒𝑛) = [(𝜑′, 0)], and ker(𝑜𝑑𝑑 ) = [(0, 𝜑)]. Thus, for the matrix 𝑉 with these restrictions we have
𝑉𝑒𝑣𝑒𝑛 = (−1

2 𝜑′, 𝜑′)𝐿2
𝑝𝑒𝑟

and 𝑉𝑜𝑑𝑑 = (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
, where 𝑉𝑒𝑣𝑒𝑛 and 𝑉𝑜𝑑𝑑 are, respectively, the restriction of the matrix 𝑉 to the even

and odd periodic functions.
To calculate 𝑉𝑒𝑣𝑒𝑛 and 𝑉𝑜𝑑𝑑 we use a numerical approach. To the best of our knowledge, the exact solution of Eq. (1.1) is known

only for 𝑠 = 1. Therefore, we first generate the odd periodic two-lobe solution 𝜑 by using Newton’s iteration method for 𝑠 ∈ ( 14 , 1].
We then evaluate the necessary inner products numerically by using the trapezoidal rule. The numerical approach enables us to
conclude that 𝑉𝑒𝑣𝑒𝑛 = (−1

2 𝜑′, 𝜑′)𝐿2
𝑝𝑒𝑟

is positive while 𝑉𝑜𝑑𝑑 = (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
is negative. Since 𝑛() = 3 and 𝑛(𝑉 ) = 1, we see that the

difference 𝑛()−𝑛(𝑉 ) = 3−1 = 2 is even number and the spectral stability is inconclusive. However, if we restrict our analysis to the
space 𝐿2

𝑝𝑒𝑟,𝑜𝑑𝑑 ×𝐿
2
𝑝𝑒𝑟,𝑜𝑑𝑑 of odd periodic functions, we obtain 𝑛(𝑜𝑑𝑑 ) = 1 and 𝑉𝑜𝑑𝑑 > 0. Since the difference 𝑛(𝑜𝑑𝑑 )−𝑛(𝑉𝑜𝑑𝑑 ) = 1−0 = 1

is an odd number, we obtain that the wave 𝛷 is spectrally unstable. The same stability property occurs if one considers the operator
 in the space 𝐿2

𝑝𝑒𝑟,𝑒𝑣𝑒𝑛 × 𝐿
2
𝑝𝑒𝑟,𝑒𝑣𝑒𝑛 of even periodic functions. In this case, we have 𝑛(𝑒𝑣𝑒𝑛) = 2 and 𝑉𝑒𝑣𝑒𝑛 < 0. Since the difference

𝑛(𝑒𝑣𝑒𝑛) − 𝑛(𝑉𝑒𝑣𝑒𝑛) = 2 − 1 = 1 is also an odd number, we obtain that the wave 𝛷 is spectrally unstable.
In both cases, our main result is given by the following theorem:

heorem 1.2. Let 𝑠 ∈
(

1
4 , 1

]

and 𝜔 > 1 be fixed. Consider 𝜑 as the odd and periodic two-lobe solution for Eq. (1.6) obtained by the

inimization problem (1.15). The periodic wave is spectrally unstable.

emark 1.3. We can employ the abstract approach from [7] to establish the orbital instability of periodic waves within the
nergy space 𝐻𝑠

𝑝𝑒𝑟 ×𝐻
𝑠
𝑝𝑒𝑟. In fact, the proof of this assertion revolves around demonstrating the orbital instability within the space

𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 ×𝐻

𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 by exclusively taking into account the rotational symmetry. This is because the translational symmetry is not an

nvariant in this space. Since 𝑛(𝑜𝑑𝑑 ) = 1 and ker(𝑜𝑑𝑑 ) = [(0, 𝜑)], we can define a smooth function 𝖽 ∶ (1,+∞) ⟶ R as follows:
𝖽(𝜔) = 𝐸(𝜑, 0) − 𝜔𝐹 (𝜑, 0) = 𝐺(𝜑, 0). Utilyzing Eq. (4.3), we deduce from the fact that (𝜑, 0) is a critical point of 𝐺 in (1.7) that
𝖽′′(𝜔) = − 1

2
𝑑
𝑑𝜔 ∫ 𝜋−𝜋 𝜑(𝑥)

2𝑑𝑥 = − 1
2𝑉𝑜𝑑𝑑 < 0. By applying the instability theorem from [7], we conclude that the periodic wave 𝜑 is

orbitally unstable in both 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 ×𝐻

𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 and, consequently, in 𝐻𝑠

𝑝𝑒𝑟 ×𝐻
𝑠
𝑝𝑒𝑟.

Our paper is organized as follows: In Section 2, we give some remarks on the orbital stability and the global well-posedness for the
auchy problem associated to Eq. (1.1). The existence of odd periodic minimizers with a two-lobe profile as well as the existence of
mall amplitude periodic waves are determined in Section 3. In Section 4, we present spectral properties for the linearized operator
elated to the dfNLS equation. Finally, our result about orbital instability associated with periodic waves is shown in Section 5.

otation. For 𝑠 ⩾ 0, the real Sobolev space 𝐻𝑠
𝑝𝑒𝑟 ∶= 𝐻𝑠

𝑝𝑒𝑟(T) consists of all real-valued periodic distributions 𝑓 such that

‖𝑓‖2𝐻𝑠
𝑝𝑒𝑟

∶= 2𝜋
∞
∑

𝑘=−∞
(1 + 𝑘2)𝑠|𝑓 (𝑘)|2 < ∞, (1.20)

where 𝑓 is the periodic Fourier transform of 𝑓 and T = [−𝜋, 𝜋]. The space 𝐻𝑠
𝑝𝑒𝑟 is a Hilbert space with the inner product denoted

by (⋅, ⋅) 𝑠 . When 𝑠 = 0, the space 𝐻𝑠 is isometrically isomorphic to the space 𝐿2 ∶= 𝐻0 (see, e.g., [20]). The norm and inner
4

𝐻𝑝𝑒𝑟 𝑝𝑒𝑟 𝑝𝑒𝑟 𝑝𝑒𝑟
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product in 𝐿2
𝑝𝑒𝑟 will be denoted by ‖ ⋅ ‖𝐿2

𝑝𝑒𝑟
and (⋅, ⋅)𝐿2

𝑝𝑒𝑟
, respectively. To avoid overloading of notation, we omit the interval [−𝜋, 𝜋]

f the space 𝐻𝑠
𝑝𝑒𝑟(T) and we denote it simply by 𝐻𝑠

𝑝𝑒𝑟. In addition, the norm given in (1.20) can be written as (see [21])

‖𝑓‖2𝐻𝑠
𝑝𝑒𝑟

= ‖(−𝛥)
𝑠
2 𝑓‖2

𝐿2
𝑝𝑒𝑟

+ ‖𝑓‖2
𝐿2
𝑝𝑒𝑟
. (1.21)

or 𝑠 ⩾ 0, we denote 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑(𝑒𝑣𝑒𝑛) ∶= {𝑓 ∈ 𝐻𝑠

𝑝𝑒𝑟 ; 𝑓 is an odd(even) function}, endowed with the norm and inner product in
𝑠
𝑝𝑒𝑟. Since C can be identified with R2, notations above can also be used in the complex/vectorial case in the following sense: For
∈ 𝐻𝑠

𝑝𝑒𝑟 ×𝐻
𝑠
𝑝𝑒𝑟 we have 𝑓 = 𝑓1 + 𝑖𝑓2 ≡ (𝑓1, 𝑓2), where 𝑓𝑖 ∈ 𝐻𝑠

𝑝𝑒𝑟, 𝑖 = 1, 2.

. Remarks on the orbital stability and global well-posedness

Our aim in this section is to give a brief remark concerning the orbital stability of periodic waves, local and global well-posedness
or the associated Cauchy problem associated to the dfNLS equation as

{

𝑖𝑈𝑡 − (−𝛥)𝑠𝑈 − |𝑈 |

2𝑈 = 0,
𝑈 (𝑥, 0) = 𝑈0(𝑥).

(2.1)

ndeed 𝑈 = 𝑈 (𝑥, 𝑡) is a solution of (1.1), so are 𝑒−𝑖𝜁𝑈 and 𝑈 (𝑥 − 𝑟, 𝑡) for any 𝜁, 𝑟 ∈ R. Considering 𝑈 = (𝑢, 𝑣), we obtain that (1.1) is
nvariant under the transformations

𝑆1(𝜁 )𝑈 ∶=
(

cos 𝜁 sin 𝜁
− sin 𝜁 cos 𝜁

)(

𝑢
𝑣

)

(2.2)

nd

𝑆2(𝑟)𝑈 ∶=
(

𝑢(⋅ − 𝑟, ⋅)
𝑣(⋅ − 𝑟, ⋅)

)

. (2.3)

he actions 𝑆1 and 𝑆2 define unitary groups in 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 with infinitesimal generators given by

𝑆′
1(0)𝑈 ∶=

(

0 1
−1 0

)(

𝑢
𝑣

)

= 𝐽
(

𝑢
𝑣

)

and 𝑆′
2(0)𝑈 ∶= 𝜕𝑥

(

𝑢
𝑣

)

.

Since Eq. (1.1) is invariant under the actions of 𝑆1 and 𝑆2, we define the orbit generated by 𝛷 = (𝜑, 0) as

𝛷 =
{

𝑆1(𝜁 )𝑆2(𝑟)𝛷; 𝜁, 𝑟 ∈ R
}

=
{(

cos 𝜁 sin 𝜁
− sin 𝜁 cos 𝜁

)(

𝜑(⋅ − 𝑟)
0

)

; 𝜁, 𝑟 ∈ R
}

.

he pseudometric 𝑑 in 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 is given by 𝑑(𝑈,𝑊 ) ∶= inf{‖𝑈 − 𝑆1(𝜁 )𝑆2(𝑟)𝑊 ‖𝐻𝑠

𝑝𝑒𝑟×𝐻𝑠
𝑝𝑒𝑟
; 𝜁, 𝑟 ∈ R}. The distance between 𝑈 and

is the distance between 𝑈 and the orbit generated by 𝑊 under the action of rotation and translation, so that 𝑑(𝑈,𝛷) = 𝑑(𝑈,𝛷).
We now present our notion of orbital stability.

efinition 2.1. We say that 𝛷 is orbitally stable in 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 provided that, given 𝜀 > 0, there exists 𝛿 > 0 with the following

roperty: if 𝑈0 ∈ 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 satisfies ‖𝑈0 − 𝛷‖𝐻𝑠

𝑝𝑒𝑟
< 𝛿, then the global solution 𝑈 (𝑡) defined in the semi-interval [0,+∞) satisfies

(𝑈 (𝑡),𝛷) < 𝜀, for all 𝑡 ⩾ 0. Otherwise, we say that 𝛷 is orbitally unstable in 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟.

Now, we present a global well-posedness result in 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟.

roposition 2.2. Let 𝑠 ∈
(

1
4 , 1

]

be fixed. The Cauchy problem in (2.1) is globally well-posed in 𝐻𝑠
𝑝𝑒𝑟 × 𝐻

𝑠
𝑝𝑒𝑟. More precisely, for any

0 ∈ 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 there exists a unique global solution 𝑈 ∈ 𝐶([0,+∞),𝐻𝑠

𝑝𝑒𝑟 ×𝐻
𝑠
𝑝𝑒𝑟) such that 𝑈 (0) = 𝑈0 and it satisfies (1.1). Moreover,

or each 𝑇 > 0 the mapping

𝑈0 ∈ 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 ⟼ 𝑈 ∈ 𝐶([0, 𝑇 ],𝐻𝑠

𝑝𝑒𝑟 ×𝐻
𝑠
𝑝𝑒𝑟)

s continuous.

roof. The existence of local solutions can be established from the arguments in [22] where the authors have used Galerkin’s
ethod and the fact that 𝐸(𝑈 ) is a non-negative conserved quantity. ■

emark 2.3. We see from Definition 2.1 that one of the requirements to establish the orbital instability in the energy space
𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 is the existence of a convenient initial-data 𝑈0 and a finite time 𝑇 ∗ > 0 such that lim𝑡⟶𝑇 ∗ ‖𝑈 (𝑡)‖𝐻𝑠

𝑝𝑒𝑟×𝐻𝑠
𝑝𝑒𝑟

= +∞. Since
(𝑈 ) in (1.3) is non-negative, we can obtain global solutions in time in 𝐻𝑠

𝑝𝑒𝑟 ×𝐻
𝑠
𝑝𝑒𝑟 by a simple a priori estimate argument and the

ime 𝑇 ∗ > 0 above does not exist. Thus, the results obtained in Remark 1.3 give us that 𝛷 is orbitally unstable in 𝐻𝑠
𝑝𝑒𝑟 ×𝐻

𝑠
𝑝𝑒𝑟 even

hough the evolution 𝑈 is global in time.

. Existence of periodic waves

This section is devoted to prove the existence of odd periodic waves for Eq. (1.6) using two approaches. First, we use a variational
haracterization by minimizing a suitable constrained functional to obtain the existence of odd periodic waves with a two-lobe
5

rofile. Second, we present some tools concerning the existence of small amplitude periodic waves using bifurcation theory.
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3.1. Existence of periodic waves via variational approach

In this subsection, we prove the existence of odd periodic solutions for (1.6) by considering the variational problem given by
1.15). Before that, we define the concept of solution with two-lobe profile.

Definition 3.1. We say that a periodic wave satisfying Eq. (1.6) has a two-lobe profile if there exists only one maximum and
minimum on [−𝜋, 𝜋]. Without loss of generality, we assume that the maximum point occurs at 𝑥 = 𝜋

2 and the minimum point at
𝑥 = − 𝜋

2 .

Let 𝜏 > 0 be fixed. Consider the set

𝜏 ∶=
{

𝑢 ∈ 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 ; ‖𝑢‖2

𝐿2
𝑝𝑒𝑟

= 𝜏
}

. (3.1)

t is clear that

(𝑢) ∶= 𝐸(𝑢, 0) ⩾ 0. (3.2)

One can establish the result of existence as follows:

roposition 3.2. Let 𝑠 ∈
(

1
4 , 1

]

and 𝜏 > 0 be fixed. The minimization problem

𝛤 ∶= inf
𝑢∈𝜏

(𝑢) (3.3)

as at least one solution, that is, there exists a real-valued function 𝜑 ∈ 𝜏 such that (𝜑) = 𝛤 . Moreover, there exists 𝜔 > 0 such that 𝜑
satisfies

(−𝛥)𝑠𝜑 − 𝜔𝜑 + 𝜑3 = 0.

Proof. Using the smoothness of the functional  , we may consider a sequence of minimizers (𝑢𝑛)𝑛∈N ⊂ 𝑌𝜏 such that

(𝑢𝑛) ⟶ 𝛤 , 𝑛⟶ ∞. (3.4)

ince ‖(−𝛥)
𝑠
2 𝑢𝑛‖2𝐿2

𝑝𝑒𝑟
+ ‖𝑢𝑛‖2𝐿2

𝑝𝑒𝑟
⩽ 2(𝑢𝑛) + 𝜏, we obtain by (3.4) that the sequence (𝑢𝑛)𝑛∈N ⊂ R is bounded in 𝐻𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 . For 𝑠 ∈
(

1
4 , 1

]

,

e see that the Sobolev space 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 is reflexive. Thus, there exists 𝜑 ∈ 𝐻𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 such that (modulus a subsequence),

𝑢𝑛 ⇀ 𝜑 weakly in 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 . (3.5)

gain, for 𝑠 ∈
(

1
4 , 1

]

we obtain that the embedding

𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 ↪ 𝐿4

𝑝𝑒𝑟,𝑜𝑑𝑑 ↪ 𝐿2
𝑝𝑒𝑟,𝑜𝑑𝑑 (3.6)

s compact (see [23, Theorem 5.1] or [24, Theorem 2.8]). Thus, modulus a subsequence we also have

𝑢𝑛 ⟶ 𝜑 in 𝐿4
𝑝𝑒𝑟,𝑜𝑑𝑑 ↪ 𝐿2

𝑝𝑒𝑟,𝑜𝑑𝑑 . (3.7)

Moreover, using the estimate
|

|

|

|

∫

𝐿

0

(

𝑢4𝑛 − 𝜑
4) 𝑑𝑥

|

|

|

|

⩽ ∫

𝐿

0

|

|

|

𝑢4𝑛 − 𝜑
4|
|

|

𝑑𝑥

⩽
(

‖𝜑3
‖𝐿4

𝑝𝑒𝑟
+ ‖𝜑‖2

𝐿4
𝑝𝑒𝑟

‖𝑢𝑛‖𝐿4
𝑝𝑒𝑟

+ ‖𝜑‖𝐿4
𝑝𝑒𝑟

‖𝑢𝑛‖
2
𝐿4
𝑝𝑒𝑟

+ ‖𝑢𝑛‖
3
𝐿4
𝑝𝑒𝑟

)

‖𝑢𝑛 − 𝜑‖𝐿4
𝑝𝑒𝑟

and (3.7), it follows that ‖𝜑‖2
𝐿2
𝑝𝑒𝑟

= 𝜏. Furthermore, since  is lower semi-continuous, we have

(𝜑) ⩽ lim inf
𝑛→∞

(𝑢𝑛)

that is,

(𝜑) ⩽ 𝛤 . (3.8)

On the other hand, once 𝜑 satisfies ‖𝜑‖2
𝐿2
𝑝𝑒𝑟

= 𝜏, we obtain

(𝜑) ⩾ 𝛤 . (3.9)

Using (3.8) and (3.9), we conclude

(𝜑) = 𝛤 = inf
𝑢∈𝜏

(𝑢).

n other words, the function 𝜑 ∈ 𝜏 ⊂ 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 is a minimizer of the problem (3.3). Notice that since 𝜏 > 0, we see that 𝜑 is a
6

real-valued function such that 𝜑 ≢ 0.
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By the Lagrange multiplier theorem, there exists a constant 𝑐1 ∈ R such that

(−𝛥)𝑠𝜑 + 𝜑3 = 𝑐1𝜑.

Denoting 𝑐1 ∶= 𝜔, we see that

∫

𝜋

−𝜋
((−𝛥)

𝑠
2 𝜑)2 + 𝜑4𝑑𝑥 = 𝜔∫

𝜋

−𝜋
𝜑2𝑑𝑥.

Thus, 𝜔 > 0 and 𝜑 is a periodic minimizer of the problem (1.15) satisfying the equation

(−𝛥)𝑠𝜑 − 𝜔𝜑 + 𝜑3 = 0. ■ (3.10)

roposition 3.3 (Existence of Odd Solutions). Let 𝑠 ∈
(

1
4 , 1

]

be fixed. Let 𝜑 ∈ 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 be the real-valued periodic minimizer given

by Proposition 3.2. If 𝜔 ∈ (0, 1], then 𝜑 is the zero solution of Eq. (1.6). If 𝜔 > 1, then 𝜑 is the odd periodic two-lobe solution for Eq. (1.6).

Proof. First, by a bootstrapping argument we infer that 𝜑 ∈ 𝐻∞
𝑝𝑒𝑟,𝑜𝑑𝑑 (see [25, Propostion 3.1] and [16, Proposition 2.4]). Second,

the solution can be zero and we need to avoid this case in order to guarantee that the minimizer has a two-lobe profile. Indeed, if
𝜑 ≡ 0, the operator 1 in (1.9) is then given by

1 = (−𝛥)𝑠 − 𝜔. (3.11)

Using the Poincaré-Wirtinger inequality, we have that

(1𝑢, 𝑢)𝐿2
𝑝𝑒𝑟

= ((−𝛥)
𝑠
2 𝑢, (−𝛥)

𝑠
2 𝑢)𝐿2

𝑝𝑒𝑟
− 𝜔‖𝑢‖2

𝐿2
𝑝𝑒𝑟

⩾ (1 − 𝜔)‖𝑢‖2
𝐿2
𝑝𝑒𝑟
, (3.12)

for all 𝑢 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 . Thus, operator 1 in (3.11) is non-negative when 𝜔 ∈ (0, 1], so that 𝑛(1) = 0 when 1 is defined over the space

𝐿2
𝑝𝑒𝑟,𝑜𝑑𝑑 . On the other hand, we see that 𝜑 is also a periodic minimizer of 𝐺 restricted only to one constraint and it is expected

that 𝑛(1) ⩽ 1. In addition, we will see in Section 4 that if 𝜑 is a nonconstant minimizer then 1𝜑′ = 0 which implies, by Sturm’s
oscillation theorem for fractional linear operators, in fact that n(1) = 1. Thus, we conclude that the zero solution 𝜑 ≡ 0 is a
minimizer of (3.3) only for 𝜔 ∈ (0, 1] and for 𝜔 ∈ (1,+∞), solution 𝜑 is a non-constant minimizer.

Second, let us consider 𝜓 ∶= 𝜑
(

⋅ − 𝜋
2

)

a translation of 𝜑 by a quarter of the period 2𝜋. Since 𝜑 is odd, we see that 𝜓 is even
and it is easy to see that (𝜓) = 𝛤 . Using this new minimizer 𝜓 , we can consider the even symmetric rearrangements 𝜓⋆ associated
with 𝜓 and it is well known that such rearrangements are invariant under our constraint ∫ 𝜋−𝜋 𝑢

2 = 𝜏 and under the norm in 𝐿4
𝑝𝑒𝑟 by

using [13, Appendix A]. Moreover, due to the fractional Polya-Szegö Inequality in [13, Lemma A.1] (see also [26, Theorem 1.1]),
we obtain the following inequality

∫

𝜋

−𝜋

(

(−𝛥)
𝑠
2 𝜓⋆

)2 𝑑𝑥 ⩽ ∫

𝜋

−𝜋

(

(−𝛥)
𝑠
2 𝜓

)2 𝑑𝑥.

Thus, by (3.3), we also obtain (𝜓⋆) = 𝛤 in the Sobolev 𝐻𝑠
𝑝𝑒𝑟,𝑒𝑣𝑒𝑛 with 𝜓⋆ being symmetrically decreasing away from the maximum

point 𝑥 = 0. To simplify the notation, we assume 𝜓 = 𝜓⋆, so that 𝜑 has an odd two-lobe profile according to Definition 3.1. ■

3.2. Small-amplitude periodic waves

The existence and convenient formulas for the odd small amplitude periodic waves associated to Eq. (1.6) will be presented in
this section. We show that the local bifurcation theory used to determine the existence of odd small amplitude waves can be extended
and the local solutions can be considered as global solutions and they are unique. This fact is very important in our context since
it can be used as an alternative form to prove the existence of periodic even solutions (not necessarily having a two-lobe profile)
for Eq. (1.6) when 𝑠 ∈ (0, 1] and to do so, we use the theory contained in [15, Chapters 8 and 9]. In addition, the existence of small
amplitude periodic waves helps us in the numeric experiments contained in Section 4.

We will give some steps to prove the existence of small amplitude periodic waves. For 𝑠 ∈ (0, 1], let 𝐹 ∶ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 × (0,+∞) ⟶

𝐿2
𝑝𝑒𝑟,𝑜𝑑𝑑 be the smooth map defined by

𝐹 (𝑔, 𝜔) = (−𝛥)𝑠𝑔 − 𝜔𝑔 + 𝑔3. (3.13)

We see that 𝐹 (𝑔, 𝜔) = 0 if and only if 𝑔 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 satisfies (1.6) with correspondent frequency of the wave 𝜔 ∈ (0,+∞). The Fréchet

derivative of the function 𝐹 with respect to the first variable is then given by

𝐷𝑔𝐹 (𝑔, 𝜔)𝑓 =
(

(−𝛥)𝑠 − 𝜔 + 3𝑔2
)

𝑓. (3.14)

Let 𝜔0 > 0 be fixed. At the point (0, 𝜔0) ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 × (0,+∞), we have that

𝐷𝑔𝐹 (0, 𝜔0) = (−𝛥)𝑠 − 𝜔0. (3.15)

As far as we can see, the nontrivial kernel of 𝐷𝑔𝐹 (0, 𝜔0) is determined by odd periodic functions ℎ ∈ 𝐻2𝑠
𝑝𝑒𝑟 such that

ℎ̂(𝑘)(−𝜔 + |𝑘|2𝑠) = 0, 𝑘 ∈ Z. (3.16)
7
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It follows that 𝐷𝑔𝐹 (0, 𝜔0) has the one-dimensional kernel if and only if 𝜔0 = |𝑘|2𝑠 for some 𝑘 ∈ Z. In other words, we have

Ker𝐷𝑔𝐹 (0, 𝜔0) = [𝜑̃𝑘], (3.17)

where 𝜑̃𝑘(𝑥) = sin(𝑘𝑥).
We are enabled to apply the local bifurcation theory contained in [15, Chapter 8.4] to obtain the existence of an open interval

𝐼 containing 𝜔0 > 0, an open ball 𝐵(0, 𝑟) ⊂ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 for some 𝑟 > 0 and a unique smooth mapping

𝜔 ∈ 𝐼 ⟼ 𝜑 ∶= 𝜑𝜔 ∈ 𝐵(0, 𝑟) ⊂ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑

such that 𝐹 (𝜑,𝜔) = 0 for all 𝜔 ∈ 𝐼 and 𝜑 ∈ 𝐵(0, 𝑟).
Next, for each 𝑘 ∈ N, the point (0, 𝜔̃𝑘) where 𝜔̃𝑘 ∶= |𝑘|2𝑠 is a bifurcation point. Moreover, there exists 𝑎0 > 0 and a local

bifurcation curve

𝑎 ∈ (0, 𝑎0) ⟼ (𝜑𝑘,𝑎, 𝜔𝑘,𝑎) ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 × (0,+∞) (3.18)

hich emanates from the point (0, 𝜔̃𝑘) to obtain odd small amplitude 2𝜋
𝑘 -periodic solutions for Eq. (1.6). In addition, we have

𝜔𝑘,0 = 𝜔̃𝑘, 𝐷𝑎𝜑𝑘,0 = 𝜑̃𝑘 and all solutions of 𝐹 (𝑔, 𝜔) = 0 in a neighbourhood of (0, 𝜔̃𝑘) belongs to the curve in (3.18) depending on
𝑎 ∈ (0, 𝑎0).

Proposition 3.4. Let 𝑠 ∈ (0, 1] be fixed. There exists 𝑎0 > 0 such that for all 𝑎 ∈ (0, 𝑎0) there is a unique even local periodic solution 𝜑
for the problem (1.6) given by the following expansion:

𝜑(𝑥) = 𝑎 sin(𝑥) + 1
4(32𝑠 − 1)

𝑎3 sin(3𝑥) + (𝑎5), (3.19)

and

𝜔 = 1 + 3
4
𝑎2 + (𝑎4), (3.20)

For 𝑠 ∈ ( 14 , 1], the pair (𝜑,𝜔) ∈ 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 × (1,+∞) is global in terms of the parameter 𝜔 > 1 and it satisfies (1.6).

Proof. The first part of the proposition has been determined in (3.18) by considering 𝑘 = 1. The expression in (3.19) can be
established similarly to [27, Proposition 3.1].

To obtain that the local curve (3.18) extends to a global one for the case 𝑠 ∈ ( 14 , 1], we need to prove first that 𝐷𝑔𝐹 (𝑔, 𝜔) given by
(3.14) is a Fredholm operator of index zero. Let us define the set 𝑆 = {(𝑔, 𝜔) ∈ 𝐷(𝐹 ) ∶ 𝐹 (𝑔, 𝜔) = 0}. Consider (𝑔, 𝜔) ∈ 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑×(1,+∞)
as a solution of 𝐹 (𝑔, 𝜔) = 0. We have, for 𝑌 ∶= 𝐿2

𝑝𝑒𝑟,𝑜𝑑𝑑 that

1|𝑌 𝜓 ≡ 𝐷𝑔𝐹 (𝑔, 𝜔)𝜓 =
(

(−𝛥)𝑠 + 3𝑔2
)

𝜓 − 𝜔𝜓 = 0, (3.21)

has two linearly independent solutions and at most one belongs to 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 (see [13, Theorem 3.12]). If there are no solutions

in 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑∖{0}, then the equation

(

(−𝛥)𝑠 − 𝜔 + 3𝑔2
)

𝜓 = 𝑓 has a unique non-trivial solution 𝜓 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 for all 𝑓 ∈ 𝑌 since

Ker(1|𝑌 )
⊥ = Range(1|𝑌 ) = 𝑌 .

On the other hand, if there is a solution 𝜃 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 we can use the standard Fredholm Alternative to obtain that (3.21) has a

solution if, and only if,

∫

𝜋

−𝜋
𝜃(𝑥)𝑓 (𝑥)𝑑𝑥 = 0,

for all 𝑓 ∈ 𝑌 . We then conclude in both cases that the Fréchet derivative of 𝐹 in terms of 𝑔 given by (3.14) is a Fredholm operator
of index zero.

Let us prove that every bounded and closed subset of 𝑆 is a compact set on 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 × (1,+∞). For 𝑔 ∈ 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 and 𝜔 > 1, we
define 𝐹 (𝑔, 𝜔) = ((−𝛥)𝑠 − 𝜔)−1𝑔3. Since 𝑠 ∈ ( 14 , 1], we see that 𝐹 is well defined since 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 is a Banach algebra, (𝑔, 𝜔) ∈ 𝑆 if
and only if 𝐹 (𝑔, 𝜔) = 𝑔 and 𝐹 maps 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 × (1,+∞) into 𝐻4𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 . The compact embedding 𝐻4𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 ↪ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 shows that 𝐹 maps

bounded and closed sets in 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 ×(1,+∞) into 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 . Thus, if 𝑅 ⊂ 𝑆 ⊂ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 ×(1,+∞) is a bounded and closed set, we obtain

that 𝐹 (𝑅) is relatively compact in 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 . Since 𝑅 is closed, any sequence {(𝜑𝑛, 𝜔𝑛)}𝑛∈N has a convergent sub-sequence in 𝑅, so

that 𝑅 is compact in 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 × (1,+∞) as desired.

Finally, the frequency of the wave given by (3.20) is not constant and we are enabled to apply [15, Theorem 9.1.1] to extend
globally the local bifurcation curve given in (3.18). More precisely, there is a continuous mapping

(1,+∞) ∋ 𝜔⟼ 𝜑(⋅, 𝜔) = 𝜑𝜔 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 (3.22)

where 𝜑𝜔 solves Eq. (1.6). ■

Remark 3.5. It is important to mention that 𝜑 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 given by (3.19) is a solution of the minimization problem (3.3) by using
8

similar arguments as in [27, Remark 3.2].
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4. Spectral analysis

Using the variational characterization determined in the last section, we obtain useful spectral properties for the linearized
perator  in (1.8) around the periodic wave 𝜑 obtained in Proposition 3.3. Let 𝑠 ∈

(

1
4 , 1

]

and 𝜔 > 1 be fixed. Consider 𝜑 ∈ 𝐻∞
𝑝𝑒𝑟,𝑜𝑑𝑑

s the periodic minimizer obtained by Proposition 3.3. Our intention is to study the spectral properties of the matrix operator

 =
(

1 0
0 2

)

∶ 𝐻2𝑠
𝑝𝑒𝑟 ×𝐻

2𝑠
𝑝𝑒𝑟 ⊂ 𝐿

2
𝑝𝑒𝑟 × 𝐿

2
𝑝𝑒𝑟 ⟶ 𝐿2

𝑝𝑒𝑟 × 𝐿
2
𝑝𝑒𝑟,

here 1,2 are defined by

1 = (−𝛥)𝑠 − 𝜔 + 3𝜑2 and 2 = (−𝛥)𝑠 − 𝜔 + 𝜑2. (4.1)

We see that operators 1 and 2 are the real and imaginary parts of the main operator . Using (3.2), we obtain the inequality

(𝑢) ∶= 𝐺(𝑢, 0) ⩽ (𝑢).

emma 4.1. Both linear operators 1 and 2 in (4.1) are defined in 𝐿2
𝑝𝑒𝑟 with dense domain 𝐻2𝑠

𝑝𝑒𝑟. In addition, they are self-adjoint
operators with respect to the inner product of 𝐿2

𝑝𝑒𝑟.

Proof. In fact, the first part of the lemma is easy to check and because of this, we omit the details. To prove that 1 and 2 are
self-adjoint operators, we need to use the definition of (−𝛥)𝑠 in terms of the Fourier transform in (1.2) and some additional facts
concerning the perturbation theory in [28]. Indeed, since 𝜉 ∈ Z ↦ |𝜉|2𝑠 is a real valued function and −𝜔+ 3𝜑2 and −𝜔+𝜑2 are real
even potentials, we see clearly that 1 and 2 are both symmetric operators in terms of the inner product in 𝐿2

𝑝𝑒𝑟. Next, 𝑇 = (−𝛥)𝑠+1
s also symmetric and clearly we obtain that range(𝑇 ) = 𝐿2

𝑝𝑒𝑟. Both facts enable us to deduce that 𝑇 is a self-adjoint operator defined
n 𝐿2

𝑝𝑒𝑟 with dense domain 𝐻2𝑠
𝑝𝑒𝑟. The operator 𝐴 = −𝜔− 1 + 3𝜑2 is clearly a bounded operator defined in 𝐿2

𝑝𝑒𝑟 and by [28, Theorem
.3, Chapter 5], we obtain that 1 = 𝑇 + 𝐴 is a self-adjoint operator defined in 𝐿2

𝑝𝑒𝑟 with dense domain 𝐻2𝑠
𝑝𝑒𝑟. A similar procedure

can be used to prove that 2 is also a self-adjoint operator. ■

Lemma 4.2. Let 𝑠 ∈
(

1
4 , 1

]

and 𝜔 > 1 be fixed. If 𝜑 ∈ 𝐻∞
𝑝𝑒𝑟,𝑜𝑑𝑑 is the periodic minimizer given in Proposition 3.3, then 𝑛(1) = 1 and

𝑧(1) = 1. In particular, we have 𝑛(1,𝑒𝑣𝑒𝑛) = 1, 𝑧(1,𝑒𝑣𝑒𝑛) = 1, 𝑛(1,𝑜𝑑𝑑 ) = 0, and 𝑧(1,𝑜𝑑𝑑 ) = 0

Proof. The fact that 𝜑 is a minimizer of  defined in 𝐻1
𝑝𝑒𝑟,𝑜𝑑𝑑 , enables us to deduce that 𝜑 also is a minimizer of  defined in

𝐻1
𝑝𝑒𝑟,𝑜𝑑𝑑 . By [29, Theorem 30.2.2], we infer


1,𝑜𝑑𝑑

|

|

|{𝜑}⟂

⩾ 0,

where 1,𝑜𝑑𝑑 is the restriction of 1 in 𝐿2
𝑝𝑒𝑟,𝑜𝑑𝑑 (the subspace of 𝐿2

𝑝𝑒𝑟 constituted by odd periodic functions). Since 𝜑 is a minimizer
of the constrained variational problem (3.3) with only one constraint, we have 𝑛(1,𝑜𝑑𝑑 ) ⩽ 1. In addition, 𝜑′ is even and it has two
symmetric zeros, namely ±𝑥0, in the interval [−𝜋, 𝜋]. By Krein Rutman’s theorem, we see that the first eigenvalue of 1 needs to be
associated to an even periodic function and by oscillation theorem, we have 𝑛(1) = 𝑛(1,𝑜𝑑𝑑 ) + 𝑛(1,𝑒𝑣𝑒𝑛) ⩽ 2. On the other hand, let
us consider 𝜓 = 𝜑(⋅ − 𝜋∕2). Function 𝜓 is an even minimizer of the problem

𝛤 ∶= inf
𝑢∈̃𝜏

(𝑢), (4.2)

where ̃𝜏 = {𝑢 ∈ 𝐻𝑠
𝑝𝑒𝑟,𝑒𝑣𝑒𝑛 ; ‖𝑢‖2

𝐿2
𝑝𝑒𝑟

= 𝜏}. Using similar arguments as above, it follows that ̃1,𝑒𝑣𝑒𝑛 = −𝜕2𝑥 − 𝜔 + 3𝜓2 satisfies

𝑛(̃1,𝑒𝑣𝑒𝑛) ⩽ 1. Again, by Krein Rutman’s theorem, it follows that the first eigenvalue of ̃1 needs to be associated with an even
periodic function, and thus 𝑛(̃1,𝑒𝑣𝑒𝑛) = 1. Next, by [30, Lemma 3.3 - (L1)], we have that 𝜓 ′ corresponds to the lowest eigenvalue
of ̃1,𝑜𝑑𝑑 and it results to be simple. Therefore 𝑛(̃1,𝑜𝑑𝑑 ) = 0, so that 𝑛(1) = 1 and the eigenfunction associated with the negative
eigenvalue results to be positive (or negative) and even by an application of the Krein–Rutman theorem.

We prove that 𝑧(1) = 1. First, again by [30, Lemma 3.3 - (L1)], we see that 0 is the first eigenvalue of ̃1,𝑜𝑑𝑑 and it results to be
simple. Using the implicit function theorem and similar arguments as in [27, Lemma 2.8], we obtain that for a fixed value 𝜔0 > 1
the existence of a open interval  containing 𝜔0 and a smooth function

 ∋ 𝜔⟼ 𝜓(⋅, 𝜔) ∶= 𝜓𝜔 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑒𝑣𝑒𝑛 (4.3)

that solves Eq. (1.6). Deriving this equation with respect to 𝜔 ∈ , it follows that 1(𝜕𝜔𝜓) = 𝜓 and since 𝜑 = 𝜓(⋅ + 𝜋∕2), we
automatically obtain 1(𝜕𝜔𝜑) = 𝜑, so that 𝜑 ∈ range().

Suppose the existence of 𝜔0 > 1 such that {𝜑′, 𝑦̄} is an orthogonal basis for ker(1). Since 𝜑 is odd and 𝜑′ ∈ ker(1) is even, we
see that 𝑦̄ is odd and defined in the symmetric interval [−𝜋, 𝜋]. The oscillation theorem implies that 𝑦̄ has exactly two zeros over the
interval [−𝜋, 𝜋) since 𝜑′ has two symmetric zeros ±𝑥0 in the interval (−𝜋, 𝜋). We can suppose, without loss of generality that 𝑦̄ < 0
in (−𝜋, 0) and 𝑦̄ > 0 in (0, 𝜋) and this behaviour is also satisfied by our solution 𝜑 since we have considered that 𝜑 has a two-lobe

2 2𝑠
9

profile by Proposition 3.3,. The fact that 1 is a self-adjoint operator defined in 𝐿𝑝𝑒𝑟 with domain 𝐻𝑝𝑒𝑟, enables us to conclude that
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range(1) = [ker(1)]⊥, and thus (𝜑, 𝑦̄)𝐿2
𝑝𝑒𝑟

= (1(𝜕𝜔𝜑), 𝑦̄)𝐿2
𝑝𝑒𝑟

= 0. This leads to a contradiction since we have also 𝜑 < 0 in (−𝜋, 0)
and 𝜑 > 0 in (0, 𝜋). ■

Lemma 4.3. Let 𝑠 ∈
(

1
4 , 1

]

and 𝜔 > 1 be fixed. If 𝜑 ∈ 𝐻∞
𝑝𝑒𝑟,𝑜𝑑𝑑 is the periodic minimizer given by Proposition 3.3, then 𝑛(2) = 2 and

𝑧(2) = 1. In particular, we have 𝑛(2,𝑒𝑣𝑒𝑛) = 1, 𝑧(2,𝑒𝑣𝑒𝑛) = 0, 𝑛(2,𝑜𝑑𝑑 ) = 1, and 𝑧(2,𝑜𝑑𝑑 ) = 1

Proof. First, we see that 𝜑 is an odd eigenfunction of 2 associated to the eigenvalue 0 having two zeros in the interval [0, 𝐿). From
the oscillation theorem for fractional linear operators, we obtain that 0 needs to be the second or the third eigenvalue of 2.

On the other hand, let 2,𝑒𝑣𝑒𝑛 be the restriction of 2 in the even sector of 𝐿2
𝑝𝑒𝑟. Thus, by Krein–Rutman’s theorem we see that

the first eigenvalue of 2 is always simple and it associated to a positive (negative) even eigenfunction, so that 𝑛(2,𝑒𝑣𝑒𝑛) ⩾ 1. We
obtain by Courant’s min–max characterization of the first eigenvalue that

𝜆1 = inf{(2,𝑜𝑑𝑑𝑢, 𝑢)𝐿2
𝑝𝑒𝑟
, ‖𝑢‖𝐿2

𝑝𝑒𝑟
= 1} = inf{(1,𝑜𝑑𝑑𝑢, 𝑢)𝐿2

𝑝𝑒𝑟
− 2(𝜑2𝑢, 𝑢)𝐿2

𝑝𝑒𝑟
, ‖𝑢‖𝐿2

𝑝𝑒𝑟
= 1}. (4.4)

Next, 𝑛(1) = 1 and the first negative eigenvalue of 1 is associated to a even eigenfunction. In addition, we see that 0 is
associated to the eigenfunction 𝜑′ which is also even and thus, for 𝑢 ∈ 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 such that ‖𝑢‖𝐿2
𝑝𝑒𝑟

= 1, we obtain (1,𝑜𝑑𝑑𝑢, 𝑢)𝐿2
𝑝𝑒𝑟
> 0

and by (4.4), we get

𝜆1 = inf{(1,𝑜𝑑𝑑𝑢, 𝑢)𝐿2
𝑝𝑒𝑟
, ‖𝑢‖𝐿2

𝑝𝑒𝑟
= 1} − 2 sup{(𝜑2𝑢, 𝑢)𝐿2

𝑝𝑒𝑟
, ‖𝑢‖𝐿2

𝑝𝑒𝑟
= 1}

< −2

(

𝜑2 𝜑
‖𝜑‖𝐿2

𝑝𝑒𝑟

,
𝜑

‖𝜑‖𝐿2
𝑝𝑒𝑟

)

𝐿2
𝑝𝑒𝑟

< 0.
(4.5)

Since 𝜆1 < 0, we obtain by (4.5) that 𝑛(2,𝑜𝑑𝑑 ) ⩾ 1. The fact 𝑛(2) = 𝑛(2,𝑜𝑑𝑑 ) + 𝑛(2,𝑒𝑣𝑒𝑛) and the oscillation theorem for fractional
inear operators give us that 𝑛(2) = 2 as requested.

We prove that 𝑧(2) = 1. Indeed, since 𝑛(2,𝑜𝑑𝑑 ) = 1, we see that the corresponding eigenfunction 𝑝 associated to the first
eigenvalue of 2,𝑜𝑑𝑑 is odd and consequently, 𝑞 = 𝑝

(

⋅ − 𝜋
2

)

is an even function that changes its sign. Consider ̃2 = (−𝛥)𝑠 − 𝜔 + 𝜓2

linear operator where 𝜓 = 𝜑
(

⋅ − 𝜋
2

)

is even. By Krein–Rutman’s theorem, we have that the first eigenfunction of 2 is simple
and it is associated with a positive (negative) even periodic function and thus, 0 cannot be an eigenvalue associated with ̃2,𝑜𝑑𝑑 .
Since 𝑧(̃2) = 𝑧(̃2,𝑜𝑑𝑑 ) + 𝑧(̃2,𝑒𝑣𝑒𝑛), we obtain from the fact 𝜓 is even that 𝑧(̃2) = 𝑧(̃2,𝑒𝑣𝑒𝑛) = 1. Therefore, using the translation
transformation 𝑓 = 𝑔

(

⋅ − 𝜋
2

)

, we obtain 𝑧(2) = 𝑧(2,𝑜𝑑𝑑 ) = 1 as requested. ■

As a consequence of Lemma 4.2, we obtain the existence of a smooth curve of positive and periodic solutions 𝜑𝜔 depending on
the wave frequency 𝜔 > 1 all of the with the same period 2𝜋.

roposition 4.4. Let 𝑠 ∈
(

1
4 , 1

]

and 𝜑0 ∈ 𝐻∞
𝑝𝑒𝑟,𝑜𝑑𝑑 be the solution obtained in Proposition 3.3 which is associated to the fixed value

𝜔0 > 1. Then, there exists a 𝐶1 mapping 𝜔 ∈  ⟼ 𝜑𝜔 ∈ 𝐻𝑠
𝑝𝑒𝑟,𝑜𝑑𝑑 defined in an open neighbourhood  ⊂ (1,+∞) of 𝜔0 > 0 such that

𝜑𝜔0 = 𝜑0.

Proof. The proof follows from the implicit function theorem. The fact has already been used in the proof of Lemma 4.2. ■

Remark 4.5. We cannot guarantee that for each 𝜔 ∈ 𝜔0 given by Proposition 4.4 that 𝜑𝜔 solves the minimization problem (3.3)
except at 𝜔 = 𝜔0.

The results determined in this subsection can be summarized in the following proposition:

Proposition 4.6. Let 𝜑 be the two-lobe profile obtained in Proposition 3.3. We have that 𝑛() = 3 and Ker() = [(𝜑′, 0), (0, 𝜑)]. ■

5. Numerical experiments - Proof of Theorem 1.2

In this section, we generate the periodic standing wave solutions of the dfNLS equation by using Newton’s iteration method.
The method is used to construct the standing wave solutions for the focusing fractional NLS equation [31], the fractional KdV
equation [16] and the fractional modified KdV equation [27]. We then calculate sign of the inner products 𝑉𝑒𝑣𝑒𝑛 = (−1

2 𝜑′, 𝜑′)𝐿2
𝑝𝑒𝑟

and 𝑉𝑜𝑑𝑑 = (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
for 𝑠 ∈ ( 14 , 1], numerically.

5.1. Numerical generation of odd periodic waves

Applying the Fourier transform to Eq. (1.6), we obtain
( 2𝑠 )

3̂

10

𝐹 (𝜑̂) = |𝜉| − 𝜔 𝜑̂ + 𝜑 = 0. (5.1)
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Fig. 5.1. The exact and the numerical solutions of the dfNLS equation (left) and the 𝐿∞-error between the exact and numerical solutions (right) where the
wave frequency 𝜔 = 1.5 and 𝑠 = 1.

We choose the space interval as [−𝜋, 𝜋] and 𝑁 = 212 Fourier modes. Numerically, 𝜑̂ is approximated by a discrete Fourier transform.
Since 𝜑̂ is a vector with size 𝑁 × 1 we need to solve a nonlinear system (5.1). Therefore, we employ a Newton iteration method as

𝜑̂𝑛+1 = 𝜑̂𝑛 −  −1𝐹 (𝜑̂𝑛). (5.2)

Here, the Jacobian  is defined by

 𝑄̂ =
(

|𝜉|2𝑠 − 𝜔
)

𝑄̂ + 3𝜑2𝑄 (5.3)

for some vector 𝑄. To avoid the calculation of the inverse of Jacobian directly we use Newton–Krylov method. Therefore, the inverse
of the Jacobian is computed by the generalized minimal residual (GMRES) algorithm [32]. The iteration is stopped when the residual
norm of the numerical solution is of order 10−6.

The periodic standing wave solution of the dfNLS equation with 𝑠 = 1 is given in [33] as

𝜑(𝑥) = 𝜂 sn
(

2
K(k)
𝜋

𝑥, 𝑘
)

, (5.4)

here 𝜂 = 2
√

2𝑘
K(k)
𝜋

. Here K(𝑘) is the complete elliptic integral of first kind and 𝜔 = 4(1 + 𝑘2)
K2(𝑘)
𝜋2

.
In order to test the accuracy of our scheme, we compare the exact solution (5.4) with the numerical solution obtained by using

(3.19) as the initial guess. In the left panel of Fig. 5.1, we present the exact and numerical solutions for the frequency 𝜔 = 1.5. In
he right panel, we illustrate 𝐿∞-error between the exact and numerical solutions. These results show that our numerical scheme
aptures the solution remarkably well.

The exact solutions of the dfNLS equation are not known for 𝑠 ∈ (0, 1). The left panel of Fig. 5.2 shows the numerically generated
periodic wave profiles for several values of 𝑠 with 𝜔 = 1.5. We do not observe any significant change in the wave profiles for different
values of 𝑠. In the right panel of Fig. 5.2 we present numerical wave profiles for various values of 𝜔, with fixed 𝑠 = 0.5. The results
indicate that the amplitude of the wave increases with the increasing values of 𝜔.

5.2. Numerical results for stability

In this section, we numerically determine the behaviour of the inner products (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
and (−1

2 𝜑′, 𝜑′)𝐿2
𝑝𝑒𝑟

in order to conclude
he spectral instability. In fact, since 𝑧(1) = 1 and ker(1) = [𝜑′], we obtain that 𝜑 ∈ range(1) = ker(1)⊥. Therefore, there exist a
nique 𝜒 ∈ 𝐻2𝑠

𝑝𝑒𝑟,𝑜𝑑𝑑 such that 1𝜒 = 𝜑. On the other hand, by deriving Eq. (1.6) with respect to 𝜔 we have

( (−𝛥)𝑠 − 𝜔 + 3𝜑2)
𝑑𝜑
𝑑𝑤

= 𝜑

hich yields 𝑑𝜑
𝑑𝑤

= −1
1 𝜑 = 𝜒 by uniqueness. Taking the inner product with 𝜑 gives

(−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
= 1

2
𝑑
𝑑𝑤

‖𝜑‖2
𝐿2
𝑝𝑒𝑟
.

To determine the behaviour of the inner products (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
and (−1

2 𝜑′, 𝜑′)𝐿2
𝑝𝑒𝑟

we first obtain the wave profile 𝜑 numerically
when 𝜔 > 1. For small values of 𝜔, we use (3.19) as the starting iteration. As it is seen from Fig. 5.2, the amplitude of the periodic

ave is increasing for increasing values of 𝜔. Therefore, the small amplitude solution (3.19) cannot be used as an initial iteration
11
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o

Fig. 5.2. Numerical wave profiles for various values of 𝑠, with fixed wave frequency 𝜔 = 1.5 (left) and numerical wave profiles for various values of 𝜔 with
fixed 𝑠 = 0.5 (right).

Fig. 5.3. The variation of ‖𝜑‖2𝐿2
𝑝𝑒𝑟

by 𝜔 for 𝑠 = 1 evaluated by using exact and numerical solutions (left) and the variation of ‖𝜑‖2𝐿2
𝑝𝑒𝑟

by 𝜔 for several values of
(right).

or larger values of 𝜔. For this reason, we use a continuation method, i.e., we use the numerical solution for the previous 𝜔 as an
initial iteration and then the solutions are uniquely continued in 𝜔. Next, we use the trapezoidal rule to approximate the integral
‖𝜑‖2

𝐿2
𝑝𝑒𝑟

for each 𝜔 > 1. The value of the inner products obtained by using the numerical wave profile and the exact solution (5.4)
are compared in the left panel of Fig. 5.3. We observe that the results coincide very well. The right panel of the figure shows the
inner product ‖𝜑‖2

𝐿2
𝑝𝑒𝑟

for several values of 𝑠. The numerical results indicate that ‖𝜑‖2
𝐿2
𝑝𝑒𝑟

is an increasing function of 𝜔 > 1 therefore

the sign of the inner product (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
is positive of 𝑠 ∈ ( 14 , 1]. By Lemmas 4.2 and 4.3, we see that 𝑛(𝑜𝑑𝑑 ) = 1 and since

𝑜𝑑𝑑 = (−1
1 𝜑,𝜑)𝐿2

𝑝𝑒𝑟
is positive, the difference 𝑛(𝑜𝑑𝑑 )−𝑛(𝑉𝑜𝑑𝑑 ) = 1−0 = 1 is an odd number. Thus, the wave 𝛷 is spectrally unstable.

Now, we compute the sign of (−1
2 𝜑′, 𝜑′)𝐿2

𝑝𝑒𝑟
for different values of 𝑠. In fact, since 𝑧(2) = 1 and ker(2) = [𝜑], we obtain that

𝜑′ ∈ range(2) = ker(2)⊥. Therefore, there exist a unique 𝛽 ∈ 𝐻2𝑠
𝑝𝑒𝑟,𝑒𝑣𝑒𝑛 such that 2𝛽 = 𝜑′. Hence, we need to solve

(−𝛥)𝑠𝛽 − 𝜔𝛽 + 𝜑2𝛽 = 𝜑′. (5.5)

Applying the Fourier transform to (5.5) we obtain,
(

|𝜉|2𝑠 − 𝜔
)

𝛽 + 𝜑2𝛽 − 𝑖𝜉𝜑̂ = 0. (5.6)

o solve (5.6) we use a Newton iteration method as described above. Fig. 5.4 presents the sign of (−1
2 𝜑′, 𝜑′)𝐿2

𝑝𝑒𝑟
for several values

f 𝑠. Numerical results show that the inner product is negative for all 𝑠 ∈ ( 14 , 1]. By Lemmas 4.2 and 4.3, we see that 𝑛(𝑒𝑣𝑒𝑛) = 2
and since 𝑉𝑒𝑣𝑒𝑛 = (−1

2 𝜑′, 𝜑′)𝐿2
𝑝𝑒𝑟

is negative, the difference 𝑛(𝑒𝑣𝑒𝑛) − 𝑛(𝑉𝑒𝑣𝑒𝑛) = 2 − 1 = 1 is an odd number. Therefore, the wave 𝛷
12

is spectrally unstable.
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Fig. 5.4. The variation of (−1
2 𝜑

′ , 𝜑′)𝐿2
𝑝𝑒𝑟

with 𝜔 for 𝑠 = 0.5, 0.7, 0.9, and 1.
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