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A B S T R A C T   

Due to energy’s global reliance on fossil fuels and population growth, Greenhouse gas (GHG) emissions and their 
repercussions have attracted attention. Due to their cheaper cost and cleaner environment, renewable energy 
modes of transportation like electric vehicles are highly sought after. Electric vehicles are beneficial, but they 
also emit emissions indirectly in power plants that generate their electricity, which could affect small and me
dium communities. Thus, it is crucial to assess such modes of transportation’s performance while considering key 
aspects and criteria. However, scholarly works in this field have not fully addressed the deployment of a 
comprehensive electric vehicle decision-making support system. This study addresses electric bus selection by 
introducing a novel approach to Multi Criteria Decision Making (MCDM) utilizing a developed integrated fuzzy 
set. We introduce an integrated approach that combines an Entropy weighting approach with a 2-tuple Linguistic 
T-Spherical Fuzzy Decision by Opinion Score Method (2TLTS-FDOSM). This approach is designed to tackle the 
challenges associated with evaluating the feasibility of electric bus models (EBMs) and addressing the theoretical 
challenge of MCDM in the context of the presented case study. These challenges include dealing with ambiguities 
and inconsistencies among decision-makers. The former method is utilized to ascertain the significance of 
assessment criteria, whereas the latter approach is applied to select the most favorable EBM by utilizing the 
weights obtained. As for the 2TLTS-FDOSM results, out of all the (n = 6) EBMs considered, A3 (11-E) EBM 
obtained the highest score value, while the A3 (9-E) EBM had the lowest score. The robustness of the results is 
confirmed through sensitivity analysis.   
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1. Introduction 

From a global perspective, increased awareness has been directed 
towards Greenhouse gas (GHG) emissions and their adverse effects. That 
comes with no surprise given the energy’s global reliance on fossil fuels 
and the increasing population demands, resulting in more green gas 
emissions like CO2, CH4, NO2, etc. (Kumar et al., 2022a). For this, or
ganizations and governmental authorities worldwide are producing 
GHG initiatives like the “net-zero” by the European Commission (Sacchi 
et al., 2022). Furthermore, immediate actions are needed to minimize 
the effect of GHG emissions into the atmosphere, and many organiza
tions and sectors are required to participate in such initiatives, especially 
those causing the hardest, that is, transportation and industry, which 
accounts for 16.2 % and 29.4 % respectively (Ritchie et al., 2020). At the 
same time, the development of renewable energy transportation options 
is greatly sought because it promises a cleaner environment at a lower 
cost, and that can be done through electrification solutions for 
transportation. 

Automotive and transportation industries are considered amongst 
the most important worldwide, and that can be seen economically and in 
research and development (Carayannis et al., 2023). With such impor
tance, extensive efforts have been put in place to advance such industries 
so that passengers and the environment are highly benefited and mini
mally affected. However, the issue with such efforts is that the former 
has benefitted from the latter’s expenses. GHG has seriously affected the 
environment, especially given the increasing number of vehicles put into 
operations daily. For that, alternatives such as new energy vehicles 
through electrification have been seen as more suitable alternatives 
owing to their less dependence on oil. Such electrified transportation 
offered consumers benefits, environmental and socioeconomic benefits 
(Melander & Wallström, 2023). More specifically, if compared with 
traditional vehicles, electric vehicles (EV) can offer less emissions, 
reliability, reduced cost, comfort, better accessibility in urban areas, and 
extended driving range. However, such types of transportation offer 
many of the benefits above where significant tailpipe emission is mini
mized but still produces emissions indirectly in power plants generating 
the electricity, which could have a notable effect on small and medium 
communities (Larsen et al., 2010). 

It is identified that electrical transportation mediums do not neces
sarily always discard emissions, and that could affect some communities 
more than others. It is therefore significantly essential to compare such 
electricity-based transportation from an objective standpoint to deter
mine their environmental impacts (Liserre et al., 2010), and this ought 
to be studied in a manner that considers (1) the whole cycle of energy 
generation, (2) transmission, (3) consumption, and (4) the resulted 
emissions hand in hand while also considering the urge to provide such 
equate transportation service in small and medium communities (Cha
turvedi & Kim, 2015). A significant reason for considering such com
munities is that people usually move to such areas to avoid the air 
pollution and smog of cities. Therefore, it is essential to maintain such 
advantages for such communities, and in that regard, a friendly vehicle 
with overall reduced emissions should be considered (Aminian et al., 
2023). In addition, in such communities, noise is another significant 
consideration, and people in such communities, while maintaining less 
emissions, also value a quiet atmosphere. In that capacity, electric so
lutions seem more appropriate. However, owing to these solutions’ wide 
range of alternatives, especially while implementing them in small and 
medium communities, it is pretty challenging to assess them adequately 
given that some of such transportation vary significantly in terms of 
costs and performance, making such assessments challenging. 

Towards addressing the former issue, a different number of academic 
works were investigated, but a work proposed by Wang and González 
(2013) stood out from the rest. The authors argued that implementing 
electric vehicles with a case study on buses is challenging, especially in 
small and medium communities, due to tighter budget constraints, 
higher noise, air quality control standards, and more robust needs for a 

sense of community. The authors presented an evaluation framework 
while defining assessment criteria, finalized after deep literature anal
ysis, in addition to other sources like research reports, manufacture 
consultation, and surveys. It can be clearly seen from the literature that a 
list of electrical bus performance measurements were considered. 
Nevertheless, despite these efforts, they only defined assessment 
criteria. However, at the same time, they did not initiate a proper 
decision-making support platform that recommends buses while 
considering the variety of assessment criteria, their levels of importance, 
and the conflict between their values should more than one electric bus 
model be considered. These issues present a unique assessment chal
lenge in standard settings for electrical buses that consider all the pre
vious issues, necessitating a more capable decision support platform to 
address such issues. This platform should be able to present a unique 
perspective where many criteria in various settings are considered in the 
decision-making context alongside the other assessment and evaluation 
challenges, which presents this research challenge as not a typical 
assessment problem but rather a multiple criteria decision making 
(MCDM) problem as presented in further details in Section 2. 

The proper evaluation and selection process for electrical bus models 
would facilitate more feasibility for these transportation’s utilization in 
various geographical areas and encourage their implementations 
amongst small and medium communities. Therefore, this study con
tributes to the body of knowledge of the given area by developing a 
novel MCDM-based evaluation/selection approach for electric bus 
models (EBMs) in small and medium communities, as follows:  

(1) To formulate a new evaluation decision matrix for assessing 
EBMs considering the crisscrossing of all their assessment criteria 
and alternatives list of EBMs.  

(2) To evaluate the significant levels of all EBM assessment criteria 
from the vehicle and other factors perspectives based on the 
Entropy MCDM weighting method.  

(3) To select the most optimum EBM model based on group MCDM 
contexts based on a novel MCDM ranking method called 2TLTS- 
FDOSM (‘2-Tuple Linguistic T-Spherical Fuzzy Decision by 
Opinion Score Method’).  

(4) To evaluate the robustness of the proposed MCDM approach 
using several scenario-based sensitivity analyses. 

This paper is divided into nine sections. Section 2 discusses the 
related works on the current state of EBM evaluation and assessment 
mechanisms and the MCDM integrated approach. Section 3 outlines the 
case study for the EBMs in this research and the benchmarking decision 
matrix. Section 4 describes the preliminaries and basic operations, fol
lowed by the research methodology applied in this research in Section 5. 
After that, Section 6 discusses the experimental results for the weighting 
and evaluation phases for the case study of this research. Section 7 de
tails the validation results of sensitivity analysis, and Section 8 presents 
this study’s implications from different aspects. Finally, Section 9 con
cludes the study. 

2. Related works 

This section presents a brief literature review covering topics related 
to electric vehicle evaluations and assessment case studies from previous 
academic works, followed by literature on the proposed MCDM 
approach and its theoretical background. 

2.1. Electric transportations evaluation and assessment 

Over the years, notable attention has been paid to the world of the 
electric vehicles industry for various reasons, including their utilization 
of renewable energy. Other significant reasons can be related to great 
opportunities in achieving energy security and reducing pollution 
(Navyasri et al., 2023). At the same time, many electrical electrified 
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transportation solutions are finding their way into the market, necessi
tating the need for accurately assessing and evaluating their capabilities 
to ensure better and more informed decision-making is taking place. 
Within the context of this research, it was necessary to identify some of 
the most significant contributions related to how different forms of 
electric transportation aspects were assessed over the years. Kumar et al. 
(2022b) examined the significance of diffusion models in understanding 
the diffusion of EVs. They have provided insights into the nature of these 
models and the difficulties involved in their development and have also 
conducted a comparative analysis of EV sales across 20 major countries. 
Furthermore, they have identified the clusters that exhibit the most 
accurate fit for each country based on various metrics. Wang et al. 
(2017) evaluated the primary elements and incentives that are taken 
into account by the Chinese government in order to facilitate the market 
adoption of EV sales. A component of the study was providing recom
mendations for designing and developing matching rules, considering 
factors such as location sensitivities and excluding time sensitivities 
within a five-year timeframe. The findings of their study indicated that 
the characteristics under consideration may be further sustained and 
enhanced to maintain a consistently strong performance in the electric 
vehicle industry. Ho and Huang (2022) argued the importance of eval
uating vehicle power technologies, including combustion engine, 
hybrid, or pure electric vehicles. Therefore, the authors developed an 
MCDM evaluation platform using the Analytical Hierarchy Process 
(AHP), which incorporates technological factors and market criteria to 
facilitate more suitable decision-making that can aid in allocating re
sources to various renewable power technologies for passenger vehicles. 
Their results suggest that Li-Ion technology performed better for pur
chasing cost, operating cost, and refuel facilities while Fuel Cells out
performed Li-Ion in terms of driving range, battery life, and refuel time. 
Pevec et al. (2020) examined EV purchasers’ preferences compared to 
internal combustion engine buyers. A comparison of the two target 
groups focused on the interaction between petrol station infrastructure 
and EV charging station infrastructure. The study found that EV and 
non-EV owners agree on the topology of the best petrol station and 
charging station. Wang et al. (2019) examined the impact of environ
mental and energy security incentives on EV promotion. The authors 
found that factors such as charger density, fuel price, and road priority 
positively correlate with electric vehicle market share, and fiscal in
centives no longer explain the significant differences in electric vehicle 
promotion across countries. Ashfaq et al. (2021) reviewed recent 
deployment, challenges in EV infrastructure installation, charging 
power levels, charging techniques, and EV influences on the electric 
grid. In Chen and Wang (2012), electric differentials (ED) were devel
oped and tested for four-wheel-drive over actuated electric ground ve
hicles. The authors suggest that the experimental and simulated results 
confirm the designs of the three EDs because they all achieve almost the 
same vehicle performances in terms of the EGV sideslip angle, yaw rate, 
and trajectory. Steen et al. (2012) presented a methodology for man
aging plug-in electric vehicle (PEV) charging, utilizing charging 
behavior predictions derived from demographical statistical data. This 
study examines three distinct charging strategies and evaluates the ef
fects of plug-in electric vehicle (PEV) charging on the distribution sys
tem by applying standard load flow calculations. By employing a case 
study to illustrate the proposed approach, the research findings 
demonstrate that the impacts of PEVs on the distribution system differ 
across various regions. Furthermore, the study reveals that these impacts 
can be mitigated; however, it emphasizes the importance of carefully 
selecting appropriate control methods to achieve this reduction. Ozda
goglu et al. (2022) compared three well-known Turkish bus brands for 
long-distance travel based on ten criteria, including technical specifi
cations, customer service, price, and overall reputation. Both bus 
drivers’ and owners’ preferences are considered in the study’s evalua
tion of the criteria, which is based on an integrated PIPRECIA and 
COPRAS-G MCDM approach. According to the findings, one brand 
stands out as the superior option for long-distance travel. Buran and 

Erçek (2023) presented a study to select the most suitable bus type for 
public transportation in the Istanbul metropolitan area; their work 
provides an MCDM that considers financial, operational, business, and 
strategic criteria. Since this problem is inherently vague and challenging 
to solve, the proposed technique employs the Spherical Fuzzy AHP 
methodology to tackle it. By providing a comprehensive overview of 
green transport options, this study addresses a critical gap in the liter
ature and offers valuable information to public transport decision- 
makers and practitioners alike. In the work by He (2022), which used 
examples of two distinct battery electric bus models produced by four 
different Chinese manufacturers, the authors developed an objective 
way of making a final decision. Reliability, cost, and security were the 
primary criteria used in their analysis. The entropy weight technique 
was used to consider all relevant factors in order to develop an evalu
ation system based on the bus’s performance during regular operation, 
and he concluded that high-scoring electric buses were, on average, top 
performers across all routes. Using entropy and a composite program
ming approach, Ardil (2023) provided an MCDM solution for selecting 
the best electric passenger car. The author considered a range of trans
port options and compared them with an optimal metric that established 
how distant each was from the ideal. They used essential factors that 
consumers should think about when shopping for a daily driver electric 
passenger car (driving range, battery life, engine power, top speed, ac
celeration). Hamurcu and Eren (2020) presented an AHP-TOPSIS MCDM 
selection methodology for choosing an electric bus in the central region 
of Ankara, with a particular focus on densely populated areas, aiming to 
improve air quality and create more habitable cities. The authors assess 
six viable electric bus alternatives based on seven criteria to address the 
growing need for sustainable public transport services in a developing 
country. The findings indicated that battery capacity and charging time 
were the primary factors influencing the results. Additionally, it was 
recommended that hydrogen vehicles and electric autonomous vehicles 
be considered as potential alternatives in the future. The evaluation and 
assessment of EVs have been examined in several studies, encompassing 
various situations, especially the work by Wang and González (2013). 
The existing research in this field has primarily concentrated on 
appraising specific designs, regulations, and the methodologies 
employed by various authors. Despite their commendable accomplish
ments, none of these individuals have evaluated EVs in a holistic 
transportation context. Moreover, there has been a noticeable oversight 
in evaluating EVs within the specific context of low and medium-income 
communities. Additionally, there is a pressing need for an assessment 
platform that encompasses a range of EV models, each showcasing 
diverse performance attributes across various criteria. This particular 
aspect underscores a pivotal differentiation that distinguishes our work 
from the existing body of literature. To the best of our knowledge, no 
prior studies have adopted our approach in the realm of EVs, especially 
the innovative fuzzy environment MCDM approach that we’ve 
employed for the evaluation and assessment of our work. The subse
quent section offers a thorough exploration of this novel approach. 

2.2. MCDM approach 

MCDM is an operational research concept that addresses selection 
problems for decision-makers for the most suitable option from a set of 
predetermined available alternatives (Alsalem, Mohammed, et al., 2022; 
Dağıstanlı, 2023). MCDM primarily functions by running these alter
natives against a set of different criteria (David, 2023), where each has 
its weight on the overall decision process (Vahidinia & Hasani, 2023). 
MCDM, like any research concept, has its own merits, which warrant it is 
suitable for addressing complex situations for research and industrial 
usages, which, in their way, presents a challenging decision-making 
scenario (Albahri et al., 2022; Rezazadeh et al., 2023; Alsalem, Ala
moodi, et al., 2022; Younis Al-Zibaree and Konur, 2023). MCDM has also 
found its way in various research directions, including health, energy, 
industry, technology, and many more (Alamoodi et al., 2020). MCDM 
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has significant potential in various areas (Hiba Mohammed et al., 2023). 
In order to fully understand its potential, it is essential to know about 
MCDM methods, which vary in their primary aim to either being used 
for weighting and assigning importance values for the criteria involved 
in the decisions or selecting the choices for decision makers (DMs), and 
other MCDM methods can perform both tasks simultaneously (Sharaf 
et al., 2024). Some of the most trending and well-known MCDM 
methods include “Fuzzy-Weighted with Zero-Inconsistency (FWZIC)” 
(Mohammed, Zaidan, et al., 2021), “Full Consistency Method” (Pamučar 
et al., 2018), Entropy (Banadkouki, 2023), and others. When it comes to 
MCDM ranking and selection methods, they include “Technique for Order 
of Preference by Similarity to Ideal Solution (TOPSIS)” (Mohammed, 
Albahri, et al., 2021), “Visekriterijumska Optimizacija i Kompromisno 
Resenje” (VIKOR) (Malik et al., 2022), “Multi-Attributive Border Approx
imation Area Comparison (MABAC)” (Pamučar & Ćirović, 2015), and 
others. The MCDM approaches, which can do both, include “Fuzzy De
cision by Opinion Score Method (FDOSM)” (Salih et al., 2020), “Analytic 
Hierarchy Process (AHP)” (Khatari et al., 2021), “Best Worst Method 
(BWM)” (Alsalem et al., 2019) and others. 

In the context of this research, before determining which MCDM 
approach is suitable, it is essential to understand that the criteria iden
tified by Wang and González (2013) concerning either “Vehicle Factors” 
or “External Factors” were used in this research. All these factors have 
two to three levels of their related sub-criteria, which all are in pressing 
need of a proper weighting approach based on the study case at hand; 
most of the criteria values, which are discussed in detail in Section 3.1 
are objectively measured, rendering Entropy weighting a suitable option 
for utilization in this research. The notion of Entropy was initially 
brought to the field of information theory by C.E. Shannon, who referred 
to it as information entropy (Banadkouki, 2023). The entropy weight 
method can be classified as an objective weight approach. In the context 
of a particular use, it is possible to determine the relative weight of 
objective attributes by employing a two-step process. Firstly, the en
tropy weight of each attribute is calculated using information entropy. 
Secondly, the weight of each attribute is adjusted based on the degree of 
variation exhibited by that attribute, utilizing the entropy weight (Yang 
et al., 2023). 

Moreover, the entropy method is beneficial for analyzing discrep
ancies among sets of information. If distinct alternatives have the same 
values for some criteria, it is necessary to delete such attributes. This 
approach has found widespread application in engineering technology 
and social economics (Zhang et al., 2023). One notable benefit of 
employing the entropy technique is its capacity to mitigate decision- 
makers’ subjective influence, enhancing objectivity in the decision- 
making process (Sitorus & Brito-Parada, 2022). Based on all these de
tails above, Entropy was found suitable for utilization. Additionally, 
another MCDM method is required to consider the output weight and 
utilize it in the decision-making context for selecting the suitable EV bus 
mode of transportation. Towards that end, there is a need to consider 
robust and suitable MCDM ranking techniques based on having different 
ones available and widely utilized in decision-making challenges; some 
of their implementation problems should be considered, especially given 
that some are more significant than others, and in that regard, MCDM 
methods have been generally classified into conventional and fuzzy-set 
based methods (Ghoushchi et al., 2021). 

In MCDM research, uncertainty is among the most challenging 
problems, which refers to the lack of complete or accurate information 
about the criteria, alternatives, preferences, or outcomes involved in the 
decision-making process. In that regard, traditional MCDM approaches 
are deemed inadequate to be used in complex decision-making problems 
(Pradhan et al., 2022), and that gave rise to the notion of fuzzy set (FS) 
by Zadeh (1965). The FS concept relies on membership degree to indi
cate the level of element inclusion to a (fuzzy set) which can establish a 
more informed and improved decision-making outcome. Inspired by 
this, FS has attracted many scholars to utilize it in their respective 
research areas, including but not limited to areas like medicine (Liu 

et al., 2021), engineering (Lin et al., 2022), and many more. Owing to 
this popularity, MCDM research did not fall behind in the race and 
utilized various FS environments with MCDM techniques for solving 
real-world decision-making problems. Nevertheless, as FS is continu
ously used, a typical FS could not effectively address uncertainty. To
wards that end, several FS environments were continuously developed 
to determine which is suitable for an MCDM problem. This includes 
“Bipolar Soft Sets” (Mahmood, 2020), “Picture Fuzzy Sets” (Ganie et al., 
2020), “Spherical Fuzzy Sets (SFSs)” (Kutlu Gündoğdu & Kahraman, 
2019), “Intuitionistic Fuzzy Sets (IFSs)” (Alcantud et al., 2020), and “In
terval-valued Intuitionistic Fuzzy Sets (IVIFSs)” (Liu & Jiang, 2020), “Py
thagorean Fuzzy Sets (PFSs)” (Yager, 2013), “Hesitant Fuzzy Sets (HFSs)” 
(Torra, 2010), “Fermatean Fuzzy Sets” (Akram & Niaz, 2022), and 
“Neutrosophic Fuzzy Sets (NFSs)” (Broumi et al., 2019). All these types of 
FSs still exhibit their issues when addressing concrete inaccuracies 
where maximum choice is often characterized by vagueness and fuzzi
ness in decision-making. Besides the previously mentioned FSs, the 
notion of linguistic variables (LVs) introduced by Zadeh (1975) was also 
utilized. To overcome the deficiencies in implementing LVs, the 2-tuple 
linguistic representation model (2TLRM) by Herrera and Martinez 
(2000a, 2000b) was developed, resulting in the proposal of various 
methodologies for decision-making and linguistic assessment objects 
based on 2TLRM. Motivated by this concept, the notion of a 2-tuple 
linguistic complex-rung orthopair fuzzy set (2TLCq-ROFS) (Naz et al., 
2022) was presented where the fusion of q-rung orthopair fuzzy set with 
2-tuple linguistic is established resulting in operational guidelines, 
scoring mechanisms, and accuracy functions, but still suffer in exclu
sively covering two dimensions of human perception: favorability and 
disfavor. 

While it is true that human opinions often incorporate elements of 
restraint and dismissal, according to Cuong and Kreinovich (2014), the 
representation of an IFS or its generalized form as a pair captures the 
human opinion in terms of MD (membership degree) and NMD (non- 
membership degree) while disregarding the abstinence degree (AD) and 
refusal degree (RD). This oversight results in a loss of knowledge. 
Consequently, the introduction of the picture fuzzy set (PFS) was 
motivated by the need to incorporate the triplets of membership degrees 
(MD), abstinence degrees (AD), and non-membership degrees (NMD) in 
a manner that ensures their cumulative sum does not exceed one. Sub
sequently, the research conducted by Kutlu Gündoğdu and Kahraman 
(2019) enhanced the structure of PFSs, resulting in the development of 
SFSs. This was achieved through the introduction of certain aggregation 
operators (AOs). In a further study by Mahmood et al. (2019), the 
concept of T-spherical fuzzy sets (T-SFSs) was proposed as an additional 
extension that combines the principles of both SFSs and PFSs. The 
capability of T-SFSs in representing the evaluation values of decision- 
makers with MCDM techniques has been demonstrated in several cases. 

On the other hand, the 2TLRM possesses an enhanced capacity for 
describing linguistic information and can mitigate the loss of informa
tion distortion when addressing linguistic choice problems. Neverthe
less, the current theories of T-SFSs and the 2TLRM, each on its own, are 
not fully efficient in representing uncertain information. Combining the 
advantages of both models and using the 2-tuple Linguistic T-spherical 
fuzzy sets (2TLT-SFSs) is a more efficient approach for expressing the 
evaluation values of the decision makers in the MCDM problems. 

It can be seen that the 2TLT-SFS, as a novel integration of fuzzy 
approaches, has many benefits that can be utilized in this research for 
the ranking method to be used after the entropy weighting approach. 
Amongst the most recent ranking approaches comes FDOSM, which has 
been proven robust in addressing many MCDM case study challenges. 
FDOSM has been developed by Salih et al. (2020) to address various 
issues, including the inconsistent ratio resulting from pairwise com
parisons. This discrepancy has been found to consume a significant 
amount of time and give rise to a related problem known as abnormal 
comparisons. Furthermore, the FDOSM addresses the issue of measuring 
distances between ideal and alternate solutions. FDOSM has garnered 
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significant interest from scholars in recent studies. However, there has 
been a lack of effort in expanding the application of FDOSM to the 2TLT- 
SFS domain. To sum up the above discussions, this study’s main in
novations can be seen through its integration of the Entropy weighting 
approach for assessing the evaluation criteria for EVs, along with a new 
formulation of 2TLTS-FDOSM for selecting the EV models as an effective 
tool to address better ambiguities and inconsistencies with decision- 
makers appreciation over the EV models to assess their feasibility in 
small and medium-sized communities. 

3. Electric buses in small and medium-sized communities 

This section discusses three main points, starting with the electric 
buses assessment and evaluation factors, followed by EBM alternatives 
(i.e., models) for assessment, and a benchmarking decision matrix 
comprising the two against each other. Both criteria and EBM alterna
tives were adopted from the work by Wang and González (2013) and 
were used as alternatives and proof of concept in the current study. 

3.1. EB evaluation factors 

Several evaluation criteria were included to assess the EBM alter
natives in small and medium-sized communities related to (1) Vehicle or 
(2) External factors, as discussed below. 

C1: Vehicle Factors: In the context of this research, this main cri
terion refers to all EV aspects from passenger, speed, range, and gradability 
points of view, which are to be used in the evaluation and assessment. 

C1-1: Passenger Capacity (Persons): This criterion refers to the 
number of passengers involved in an EB ride; the number of passengers 
determined is based on seated and standee passengers. This benefit 
criterion indicates that the more passengers involved, the better the EB 
model is. 

C1-2: Maximum Speed (km/hr.): This criterion refers to the 
maximum kilometre EB speed that an EB model can reach per hour; 
given the variety of models, their performance might differ, and there
fore max speed in this research is deemed a benefit criterion. 

C1-3: Range (km): This main criterion is meant to measure distance 
in a kilometre, and it has two sub-criteria: (C1-3-1) “Distance in KM” and 
(C1-3-2) “Hours of continuous operation”. The former (C1-3-1) refers to the 
kilometre range a bus can achieve on one full charge, while the latter 
(C1-3-2) refers to the hours a bus can continuously operate while main
taining the same speed of 16.41 km/hr. All the (C1-3) sub-criteria are 
considered benefit criteria. 

C1-4: Gradeability: This criterion refers to the highest incline a bus 
can travel up while maintaining a minimum speed of 1 mph (equivalent 
to 1.61 km/h). This criterion is also a benefit criterion. 

C2: External Factors: In this research context, this main criterion 
refers to all EV aspects from (C2-1) Financial Impact and (C2-2) Envi
ronmental Impact aspects. Each aspect has its sub-criterion with details 
as follows. 

C2-1: Financial Impact: This main criterion exhibits several subs and 
sub-sub criteria, which all revolve around the financial and cost aspects 
to be considered in evaluating the EB model. The first sub-criterion is 
(C2-1-1) “Energy Cost” (per year), which refers to the energy cost required 
for operating an EB model in a year in USD currency. The next sub- 
criterion is the “Capital Initial Cost” (C2-1-2) criterion, which refers to 
the expenses associated with purchasing a bus, excluding supplementary 
accessories, facility alterations, charging infrastructure, or additional 
battery units. The following sub-criterion (C2-1-3), “Capital Initial Costs 
Per Passenger ($= Passenger)”, refers to the exact previous criterion cost 
but per passenger. Following criteria (C2-1-4), “Maintenance Cost $=year” 
refers to costs for regularly servicing or repairing buses. The following 
sub-criteria (C2-1-5) “Battery Charge Cost $=year” is divided into two: the 
first is (C2-1-5-1) “Battery Cost” for one “average cost” for a battery, and 
the second is (C2-1-5-2) “Charger Cost” for the cost required for purchasing 
a new charger. The following sub-criteria (C2-1-6), “Emissions Cost 

$=year”, refers to the average annual expenditures associated with the 
damage caused by pollutants. The last three sub-criteria involved within 
the financial impact include (C2-1-7) “Noise Cost $=year”, (C2-1-8) 
“Average Discount on Property Values (%)”, and finally (C2-1-9) “Equiva
lent Uniform Annual Cost (EUAC)”. All the sub-criteria, details, and 
financial impact aspects are deemed cost criteria, indicating that the 
more they increase, the less desirable they become. This applies to all the 
criteria except the (C2-1-8), which is determined as the only benefit 
criteria in this aspect. 

C2-2: Environmental Impact: This main criterion refers to all the 
aspects that can impact the environment in small and medium-sized 
communities, and it exhibits several subs to be considered in evalu
ating the EB model. The first sub-criterion is (C2-2-1) “Emissions Quan
tity”, which includes three sub-aspects associated, starting with (C2-2-1-1) 
“Total SOX emissions (kg = year)”, (C2-2-1-2) “Total NOX emissions (kg =
year)”, and (C2-2-1-3) “Total CO2 Emissions (kg = year)”. The last sub- 
criteria in the environmental impact aspect (C2-2-2) is “Noise Quantity 
Noise above ambient level (dBA)”, which refers to measuring the ambient 
noise in addition to noise emitted on the left and right sides of buses 
undergoing full acceleration from standstill. 

3.2. Benchmarking decision matrix 

In the decision-making process, the decision matrix is one crucial and 
essential component needed to make a reliable decision. This research 
refers to this decision matrix as a benchmarking decision matrix. It re
quires two elements for construction: a list of alternatives (i.e., EB 
models) and evaluation criteria (i.e., evaluation factors with all their subs in 
this study). Both elements have been mentioned and discussed in this 
section. Therefore, the benchmarking decision matrix for EBMs, aimed 
at assessing the feasibility of EBMs in small and medium-sized com
munities, is presented in Table 1. 

Table 1 displays the decision matrix employed to evaluate the 
viability of EBMs in small and medium-sized communities across several 
evaluation criteria, encompassing both primary and secondary levels. 
All the values in the table are expressed in objective values, encom
passing a range of costs and numerical quantities, as presented in the 
base work by Wang and González (2013). In brief, Table 1 illustrates the 
obstacles encountered in human-driven decision-making when striving 
to achieve dependable outcomes without employing the MCDM meth
odology. The results indicate that various EBMs demonstrate varying 
levels of effectiveness when evaluated against specific criteria related to 
their characteristics. 

4. Preliminaries 

In this section, the basic concepts and operations of 2TLTS are pre
sented as follows. 

Definition 1 (Herrera & Martínez, 2000a, 2000b): A linguistic term 
set (LTS) of an odd cardinality (Γ + 1)

S =
{

s0,s1, s2⋯, sΓ
}

Is a set of ordered linguistic descriptors, e.g., S = {s0 = not likely, s1 =

somewhat likely, s2 = very likely}, each linguistic term covers a range of 
numerical values. 

Definition 2 (Herrera & Martínez, 2000a, 2000b): Aggregating some 
labels in (S) by a symbolic method might result in a numerical value β ∈

[0,Γ] which is not an integer. The non-integer value β can be divided to a 
2-tuple (sl ,L ), l is an integer value denoting the linguistic label center 
of information and L ∈ [ − 0.5, 0.5) denoting the translation from β to 
the nearest index l in S. 

Definition 3 (Herrera & Martínez, 2000a, 2000b): To find the 2- 
tuple that expresses the non-integer value β, the following function is 
used 
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Δ : [0,Γ]→S × [− 0.5, 0.5)

Δ(β) = (sl ,L ), with
{

sl , l = round(β),
L = β − l ,L ∈ [ − 0.5, 0.5).

Conversely, the inverse function Δ− 1 transforms a 2-tuple to the non- 
integer value β ∈ [0,Γ]: 

Δ− 1 : S × [− 0.5, 0.5)→[0,Γ]

Δ− 1(sl ,L ) = l +L = β  

Definition 4 (Akram et al., 2023): On a universal set X, a 2 tuple lin
guistic T-spherical fuzzy set (2TLT-SFS) is a T-spherical fuzzy set whose 

grades are expressed by a 2TRM. Hence, it has the form 

T =
{
〈x,
(
Sϕ(x),Φ(x)

)
, (Sψ(x),Ψ(x) ),

(
Sγ(x),Y(x)

)
〉|x ∈ X

}
,

where 
(
Sϕ(x),Φ(x)

)
, (Sψ (x),Ψ(x) ), and

(
Sγ(x),Y(x)

)
are the positive 

membership degree, the neutral membership degree, and the negative 
membership degree, respectively. These degrees satisfy 

− 0.5 ≤ Φ(x),Ψ(x), and Y(x) < 0.5  

0 ≤ Δ− 1( Sϕ(x),Φ(x)
)
≤ Γ,0 ≤ Δ− 1(Sψ (x),Ψ(x) ) ≤ Γ,0 ≤ Δ− 1( Sγ(x),

Y(x)
)
≤ Γ, and 

0 ≤
(
Δ− 1( Sϕ(x),Φ(x)

) )q
+
(
Δ− 1(Sψ (x),Ψ(x) )

)q
+
(
Δ− 1( Sγ(x),Y(x)

) )q

≤ Γq.

Definition 5: The score function of a 2TLT-SFS is calculated by. 

Score(T) = 1+
(

Δ− 1( Sϕ,Φ
)

Γ

)q

−

(
Δ− 1(Sψ ,Ψ)

Γ

)q

−

(
Δ− 1( Sγ,Y

)

Γ

)q

.

Definition 6: To aggregate 2TLT-SFSs {T1,T2,⋯,Tr} by means of a 
weighting vector w = (w1,w2,⋯,wr), wi ∈ [0, 1], and 

∑r
i=1wi = 1, the 2- 

tuple linguistic T- spherical weighting averaging operator (2TLT-SFWA) 
is defined as   

5. Study methodology 

This study’s integrated Entropy-2TLTS-FDOSM MCDM model com
prises two main methodological phases. Both are working in sequence 
after one another to fulfill the requirements of this study. The first phase 
(Entropy) will explain the utilized approach’s steps to assess the 
importance of all the factors/criteria considered in this study (i.e., all the 
vehicle and external factors), followed by phase two, where 2TLTS- 
FDOSM steps are discussed to evaluate and assess the feasibility of the 
EBMs adopted in this study using the extracted weights of the evaluation 
factors. 

Table 1 
Benchmarking Decision Matrix.  

Criteria/Alternative EBM-1 
(A1) 

EBM-2 
(A2) 

EBM-3 
(A3) 

EBM-4 
(A4) 

EBM-5 
(A5) 

EBM-6 
(A6) 

Vehicle Factors 
(C1) 

Passenger Capacity (Persons) (C1-1) 77 61 61 85 28 26 
Maximum Speed (km = hr.) (C1-2) 48.3 80 80 104.6 64.4 64.4 
Range (C1-3) (Distance) (C1-3-1) 6 500 500 80 86 65 

(Hours of cont. operation) (C1-3-2) 0 30 30 5 5 4 
Gradeability (C1-4) 12 11.3 11.3 9.1 8.6 6.7  

External Factors 
(C2) 

Financial Impact (C2-1) Energy Costs (C2-1-1) $1,742 $1,345 $860 $1,719 $1,848 $1,824 
Capital Initial Cost (C2-1-2) $500,000 $490,190 $490,190 $1,000,000 $305,000 $217,498 
Capital Initial Costs Per Passenger 
(C2-1-3) 

$6,494 $8,036 $8,036 $11,765 $10,893 $8,365 

Maintenance Cost (C2-1-4) $19,036 $19,036 $19,036 $19,036 $19,036 $19,036 
Battery and Charging Cost 
(C2-1-5) 

Battery (C2-1-5-1) $65,000 $437,760 $279,680 $89,984 $12,920 $9,576 
Charger (C2-1-5-2) $120,000 $60,000 $60,000 $60,000 $60,000 $60,000 

Emissions Cost (C2-1-6) $10,641 $8,220 $5,252 $10,500 $6,587 $6,501 
Noise Cost (C2-1-7) $962 $962 $962 $962 $962 $962 
Discount on Property Values (C2-1-8) N/A N/A N/A N/A 3.32 % 6.04 % 
EUAC (C2-1-9) $264,696 $298,883 $271,619 $345,187 $470,598 $419,295 

Environmental Impact 
(C2-2) 

Emissions 
Quantity 
(C2-2-1) 

Total SOX emissions 
(C2-2-1-1) 

162.4 125.5 80.2 160.3 172.4 170.1 

Total NOX emissions 
(C2-2-1-2) 

71.1 55 35.1 70.2 75.5 74.5 

Total CO2 emissions 
(C2-2-1-3) 

38271.4 29564.1 18888.2 37764.6 40612.7 40084.8 

Noise Quantity above ambient level 
(C2-2-2) 

N/A N/A N/A N/A 8.4 15.3 

EBM = Electric Bus Model, C = Criterion, A = Alternative. 

2TLT − SFWA{T1,T2,⋯,Tr} =

⎛

⎝Δ

⎛

⎝Γ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
∏r

i=1

(

1 −

(
Δ− 1( Sϕ,Φ

)

Γ

)q)wi
q

√
√
√
√

⎞

⎠,Δ

(

Γ
∏r

i=1

(
Δ− 1(Sψ ,Ψ)

Γ

)wi
)

,Δ

(

Γ
∏r

i=1

(
Δ− 1( Sγ,Y

)

Γ

)wi
)⎞

⎠.
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5.1. Entropy weight method 

The objective of this section is to provide a detailed explanation of 
the steps involved in assigning the importance weights for the assess
ment criteria (Table 1) using the Entropy weighting method. Entropy 
weighting, as previously discussed, works by considering the assessment 
of uncertainty in a continuous probability distribution, which becomes 
more evident when there is a higher degree of dispersion in the values of 
an index, highlighting the significance of said index (Ullah et al., 2020). 
Using Entropy includes five consequent steps, which are discussed as 
follows. 

1st Step. Decision Matrix Formulation: This Step begins the Entropy 
process, which includes the matrix that contains m alternatives (EBMs) 
and n criteria, and all the m alternatives are evaluated against the n 
criteria. 

2nd Step. Decision Matrix Normalization: This Step involves 
normalizing the decision matrix values. First, the evaluations are 
normalized due to the difference in measurement units based on Eqs. (1) 
and (2). Then, it is normalized once again based on Eq. (3) to be suitable 
for processing by the Entropy method. 

Xij =
aij

max
j

aij
, for the benefit criteria, (1)  

Xij =

min
j

aij

aij
, for the cost criteria. (2)  

pij =
Xij

∑m
j=1Xij

, for normalization (3)  

3rd Step. Entropy Measurement: In this Step, the entropy value for each 
criterion is measured using Eq. (4) based on the data expressed for each 
of the m alternatives (EBMs). 

Ei = − K
∑m

j=1
pijLn

(
pij
)
,whereK =

1
Ln(m)

. (4)  

4th Step. Entropy Uncertainty Degree: In this Step, after the measurement 
of each criterion entropy, their uncertainty or degree of deviation (di) is 
measured using Eq. (5) 

di = 1 − Ei (5)  

5th Step. Final Weight Determination: In the last Entropy step, the weight 
of each criterion (Wi) is determined using Eq. (6). 

Wi =
di

∑n
i=1di

(6)  

Upon the completion of all these entropy steps and equations, the weight 
for the final criteria weight is used to convey their level of importance, 
which will be used in the decision-making process. 

5.2. 2-Tuple linguistic T-spherical fuzzy decision by opinion score method 
(2TLTS-FDOSM) 

Upon completing the Entropy weighting phase, the weights are 
passed to another MCDM method, known for its robustness in addressing 
and ranking EBMs, to assess their feasibility for usage in small and 
medium-sized communities. The method used in this research for such 
purpose is FDOSM, which was first developed by Salih et al. (2020). The 
initial design of FDOSM showed sufficient capability in addressing a 
range of MCDM concerns, including handling inconsistent ratios 
resulting from pairwise comparisons, abnormal comparisons, and other 
related challenges. Nevertheless, FDOSM encountered several issues 
stemming from data representations that yielded ambiguous and 
imprecise information, and towards that end, it has been extended over 

different fuzzy environments such as “Interval Type 2 Trapezoidal Fuzzy 
Sets” (IT2TFS) (Krishnan et al., 2021), “Interval-Valued Pythagorean 
Fuzzy Sets” (Al-Samarraay et al., 2021), NFSs (Alamoodi et al., 2022) and 
others. However, FDOSM has garnered significant interest from scholars 
in recent studies, and formulating such a superior method has not been 
achieved by taking advantage of 2TLT-SFS, which are presented based 
on single and group decision-making processes in the present study. The 
2TLT-FDOSM stages and their steps are formulated as follows: 

First Stage: This section outlines the data entry procedure to construct 
the MCDM approach’s primary element, namely a selection decision 
matrix (SDM). The SDM is used to rank and select EBMs, as shown in 
Table 1 above. In this scenario, six EBMs, serving as alternatives, are 
evaluated against a set of nineteen criteria (n = 19). The summarised 
process is presented in Eq. (7) as follows. 

SDM =

A1
⋮

Am

⎡

⎣
c11 ⋯ c1n
⋮ ⋱ ⋮

cm1 ⋯ cmn

⎤

⎦ (7)  

This formulation is achieved by intersecting the list of all alternatives 
(EBMs) (i.e., Electric Bus Models) and their evaluation and assessment 
criteria (Cn). 

Second Stage: During the second stage, the transformational process 
is implemented using the (2TLTS-FDOSM) approach, following the 
generation of the SDM in the previous phase. This is achieved by 
selecting an optimal solution based on the performance of each 
evidence-based model against each criterion. The subsequent section 
provides an exposition and elucidation of the requisite procedures to be 
undertaken at that point. 

Step 1: Selecting the most suitable alternative based on the expertise 
of decision-making specialists. Given these considerations, a compre
hensive response can be described using Eq. (8) as follows: 

A* =

{[(

mx
i

vij|j ∈ J
)

,

(

mn
i

vij|j ∈ J
)

, (cvij ∈ I.J)|i = 1.2.3.⋯.m
]}

(8)  

where 

mx is the most optimal for the maximum selection criteria, mn is the 
most optimal for the minimum selection criteria, and cvij Is the most 
optimal for the critical selection criteria (neither mx nor mn), which a 
decision-maker specialist can choose. 

Step 2: A comparison was made between the optimal solution and 
alternative values per criterion utilized in the selection procedure. The 
language factors are compared using a set of five scales, namely)“no 
difference,” “slight difference,” “difference,” “big difference,” and “huge 
difference.”(. Once the ideal solution has been chosen, the subsequent 
Step involves comparing the value of the optimal solution with the al
ternatives, using the precise selection criterion outlined in Eq. (9). 

LOM =

{((

r̃
ij
⊗rij|j ∈ J

)

.|i = 1, 2, 3,⋯,m
)}

(9)  

where 

Table 2 
Linguistic Variables and their Corresponding 2TLT-SFS for Evaluating the 
Alternatives.  

Linguistic Variable Abbreviated Term 2TLT-SFS 

No Difference ND 〈(S9,0), (S1, 0), (S1,0)〉
Slight Difference SD 〈(S7,0), (S3, 0), (S3,0)〉
Difference D 〈(S5,0), (S5, 0), (S5,0)〉
Big Difference BD 〈(S3,0), (S3, 0), (S7,0)〉
Huge Difference HD 〈(S1,0), (S1, 0), (S9,0)〉
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⊗ refers to the process of the comparison between the optimal so
lution (̃r ij) and other alternatives’ values per exact selection criterion 
(rij), and LOM represents the linguistic opinion matrix for the selec
tion approach, as shown in Eq. (10). 

LOM =

A1
⋮

Am

⎡

⎣
lom11 ⋯ lom1n

⋮ ⋱ ⋮
lomm1 ⋯ lommn

⎤

⎦ (10)  

Third Stage: In the third stage, three steps were included as follows. 
Step 1: Initially, the fuzzification formulation was executed by con

verting LOM representations provided in the work of (Akram et al., 
2023) into a fuzzy LOM using a 2TLT-SFS basis. The processing of the 
LOM was successfully achieved. In this procedure, the linguistic vari
ables were replaced by 2TLT-SFS, which were determined based on their 
corresponding membership functions using an LTS = {S0, S1,⋯, S10} is 
outlined in Table 2. 

It is essential to understand that two decision-making processes were 
used in this study: single and group decision-making. Three specialist 
decision-makers were involved in evaluating the alternatives. 

Step 2: After the completion of the fuzzy LOM, the aggregation 
technique is employed to compute a fuzzy performance score for each 
alternative in the selection strategy. This is achieved by utilizing the 2- 
tuple linguistic T-spherical weighting averaging operator (2TLT-SFWA), 
as shown in Eq. (11).  

Step 3: To calculate the crisp performance score for each potential 
alternative, the defuzzification procedure was determined using Eq. 
(13). 

Score(T) = Δ

(
Γ
2

(

1 +

(
Δ− 1( Sϕ,Φ

)

Γ

)q

−

(
Δ− 1( Sγ,Y

)

Γ

)q))

. (12)  

Step 4: The prioritization of all alternatives can be determined following 
the equation determination discussed earlier in the selection procedure. 
Each alternative is assigned precise and definitive performance values, 
which are subsequently ranked in descending order from the most 
favorable to the least favorable. Priority will be given to the alternative 
that has achieved the greatest rating score in the selection procedure. 

6. Experimental results 

In this section, two main results are presented and discussed. The 
first is the Entropy weighting result for the evaluating criteria used in 
assessing EBMs in the context of small and medium-sized communities, 
followed by evaluating results by 2TLTS-FDOSM. 

6.1. Weighting determination results using Entropy 

This sub-section presents and discusses the weighting Entropy results 
for the criteria included in the assessment of EBMs. Different sets of 
processes were executed to generate these results, which have been 
discussed in detail in Section 4.1. The process begins with the decision 
matrix formulation, established in Table 1; this was followed by the 
normalization of its values and then measuring their Entropy to see the 
degree of variation exhibited by each attribute achievement against its 
alternative. Next, the uncertainty degree was measured, leading to the 
final weighting determination, presented in Table 3. 

Table 3 shows the weighting results for all the criteria are estab
lished. It should be noted that a total of (n = 19) final set criteria have 
been assessed in both C1 (Vehicle Factors) and C2 (External Factors) as
pects. Out of all the criteria, the “Battery Cost” (C2-1-5-1) with a value 
(0.258035378) has been designated as the most crucial criterion for 
assessing EBM models, and that does not come as a surprise given that 
EBM models are primarily functions on electricity, and consumers have 
always given it through consideration in their purchase decisions. The 
following most crucial criterion have been attributed to none other than 
“Hours of continuous Operation” (C1-3-2) with value (0.225969138), 
which also, in reality, shows that intention purchase for EBM considers 
how much a bus can go without stopping to get as many customers and 
more profit. This significance can be seen in that the following most 
crucial criterion, “Range/Km” (C1-3-1), was also linked to the distance 
range a bus can go full charge with value (0.217). All the remaining 
criteria have been assigned with different importance levels based on 
EBMs performance recorded. 

Notwithstanding, some interesting facts have come to light. To start 
with, the worst two performing criteria have been attributed to “Main
tenance Cost $=year” (C2-1-4) and “Noise Cost $=year” (C2-1-7), where 
each of their importance value has been recorded as (0), indicating 
lowest levels of importance. Such findings are not surprising given that 
each EBM considered in the assessment process against these criteria has 

Table 3 
Criteria Final Weight by Entropy.  

Criteria/Alternative Final 
Weight 

Vehicle 
Factors 
(C1) 

Passenger Capacity (Persons) (C1-1) 0.036 
Maximum Speed (km = hr.) (C1-2) 0.012 
Range (C1-3) (Distance) (C1-3-1) 0.217 

(Hours of cont. operation) (C1-3-2) 0.226 
Gradeability (C1-4) 0.0078  

External 
Factors 
(C2) 

Financial Impact 
(C2-1) 

Energy Costs (C2-1-1) 0.019 
Capital Initial Cost (C2-1-2) 0.043 
Capital Initial Costs Per Passenger 
(C2-1-3) 

0.0081 

Maintenance Cost (C2-1-4) 0 
Battery and 
Charging Cost 
(C2-1-5) 

Battery (C2-1-5- 

1) 
0.258 

Charger (C2-1-5- 

2) 
0.01 

Emissions Cost (C2-1-6) 0.014 
Noise Cost (C2-1-7) 0 
Discount on Property Values (C2-1-8) 0.052 
EUAC (C2-1-9) 0.0091 

Environmental 
Impact 
(C2-2) 

Emissions 
Quantity (C2-2-1) 

Total SOX 

emissions (C2-2- 

1-1) 

0.019 

Total NOX 

emissions (C2-2- 

1-2) 

0.019 

Total CO2 
emissions (C2-2- 

1-3) 

0.019 

Noise Quantity above ambient level 
(C2-2-2) 

0.0301  

2TLT − SFWA{T1,T2,⋯,Tr} =

⎛

⎝Δ

⎛

⎝Γ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
∏r

i=1

(

1 −

(
Δ− 1( Sϕ,Φ

)

Γ

)q)wi
q

√
√
√
√

⎞

⎠,Δ

(

Γ
∏r

i=1

(
Δ− 1(Sψ ,Ψ)

Γ

)wi
)

,Δ

(

Γ
∏r

i=1

(
Δ− 1( Sγ,Y

)

Γ

)wi
)⎞

⎠. (11)   
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achieved the same results and that, according to the Entropy concept, 
shows no variation degree and is thus deemed less significant compared 
with others. This can change in other circumstances should more EBM 
models be considered in the future, but for the current case at hand, 
these were the findings. Finally, the criteria that acquired the least 
measured weight was attributed to “Gradeability” (C1-4), which was 
recorded with a value (0.0078). It cannot be surprising that in small and 
medium-sized communities, most bus operations are not within 
inclining distance like those on the mountains, and should EBMs be 
utilized in different residential settings, this criterion might have been 
given more priority. All the remaining criteria have been assigned 
importance values between the best and worst criteria value, and as the 
value of a criterion gets higher, the most it reflects its importance in 
purchase decisions for any of the EBMs models included. All these 
weighting results now clearly indicate what each criterion’s importance 
represents in the decision-making context, and the following results will 
show the assessment of all the EBMs considered in this study in light of 
the weights generated. 

6.2. EBMs evaluation using 2-tuple linguistic T-spherical fuzzy decision by 
opinion score method 

This sub-section presents the EBM evaluation results using 2TLTS- 
FDOSM. The evaluation procedure began once the Entropy-based 
weighting was finalized. Three experts have provided feedback on the 
EBMs’ effectiveness in this study. These professionals have more than 
seven years of experience conducting computer science research focused 
on energy applications and decision support systems, and their findings 
have been presented at international conferences and published in high- 

impact academic journals, which made them suitable candidates for the 
evaluation process in the context of this research. Consequently, this 
process resulted in three distinct opinion matrices in line with FDOSM’s 
original philosophy, as seen in Table 4. 

As shown in Table 4, three opinion matrices were represented using a 
5-point Likert scale; each presents a unique expert perspective regarding 
their overall assessment of the EBMs included in this work. The assess
ment process was established by allowing each expert to express his/her 
point of view for each EBM against its peers while considering its criteria 
for performance achievement. The process was applied for each expert 
individually across the (n = 19) final criteria. After this Step, each lin
guistic term was transformed into its fuzzy equivalence. After that, these 
fuzzy equivalence results were computed for each expert to obtain the 
final evaluation results, which in this MCDM analysis represent group 
decision-making (GDM) contexts, as seen in Table 5. 

Table 5 represents the final evaluation results for the EBMs consid
ered in this study based on group decision-making (GDM) context. The 
importance levels of the three experts expressed earlier resulted in 
having three sets of ranking scenarios, each representing its designated 
expert. However, during the evaluation process, it turned out that each 
expert’s preferences computation after using the weights and later using 
2TLT-FDOSM for the evaluation resulted in the same rank for each 
expert despite having slightly different scores. In such a scenario, the 
presentation of expert final evaluation results is not needed. The GDM 
context is a much more unified approach given that no evaluation 
ranking differences were observed, and thus, representing EBMs evalu
ation from the GDM context is more suitable. The table demonstrates the 
“Fuzzy Performance Score,” “Crisp Performance Score,” and the final rank. 
The higher the score, the better evaluation an EBM got, making it better 

Table 4 
Expert Opinion Matrix.  

Criteria/Alternatives 9-E (A1) 10-E (A2) 11-E (A3) 12-E (A4) 13-E (A5) 14-E (A6) 

E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 

C1-1 S.D S.D D D D D D D D N.D N.D N.D H.D B.D B.D H.D B.D B.D 
C1-2 H.D H.D B.D D S.D S.D D S.D S.D N.D N.D N.D B.D H.D B.D B.D H.D B.D 
C1-3-1 H.D H.D H.D N.D N.D N.D N.D N.D N.D B.D H.D H.D B.D H.D H.D B.D H.D H.D 
C1-3-2 H.D H.D H.D N.D N.D N.D N.D N.D N.D D H.D B.D D H.D B.D D H.D B.D 
C1-4 N.D N.D N.D S.D N.D N.D S.D N.D N.D D S.D D D S.D D B.D S.D B.D 
C2-1-1 H.D H.D H.D B.D H.D H.D N.D N.D N.D H.D H.D H.D H.D H.D H.D H.D H.D H.D 
C2-1-2 B.D H.D H.D B.D H.D H.D B.D H.D H.D H.D H.D H.D S.D D D N.D N.D N.D 
C2-1-3 N.D N.D N.D B.D H.D D B.D H.D D H.D H.D D H.D H.D D B.D H.D D 
C2-1-4 N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 
C2-1-5-1 B.D D H.D H.D H.D H.D H.D H.D H.D B.D D H.D B.D D D N.D N.D N.D 
C2-1-5-2 D H.D B.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 
C2-1-6 H.D H.D B.D B.D H.D B.D N.D N.D N.D H.D H.D H.D B.D D B.D B.D D B.D 
C2-1-7 N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 
C2-1-8 D B.D B.D D B.D B.D D B.D B.D D B.D B.D S.D D D N.D N.D N.D 
C2-1-9 N.D N.D N.D D B.D N.D D B.D N.D H.D B.D B.D H.D B.D H.D H.D B.D H.D 
C2-2-1-1 H.D H.D B.D B.D H.D B.D N.D N.D N.D H.D H.D B.D H.D H.D B.D H.D H.D B.D 
C2-2-1-2 H.D B.D H.D D B.D H.D N.D N.D N.D H.D H.D H.D H.D H.D H.D H.D H.D H.D 
C2-2-1-3 H.D H.D B.D B.D H.D B.D N.D N.D N.D H.D H.D B.D H.D H.D B.D H.D H.D B.D 
C2-2-1 B.D H.D B.D B.D H.D B.D B.D H.D B.D B.D H.D B.D N.D N.D N.D B.D B.D S.D 

E = Expert. 
H.D = Huge Difference, B.D = Big Difference, D = Difference, S.D = Slight Difference, N.D = No Difference. 

Table 5 
GDM Results.  

Expert Alternative EBMs Fuzzy score Crisp Score 

GDM A1 9-E 〈(S3, 0.3110)(S2, − 0.4741)(S7 ,0.3814)〉 0.542 
A2 10-E 〈(S7, 0.4449)(S1,0.2947)(S3,0.0057)〉 1.447 
A3 11-E 〈(S8, − 0.1661)(S1,0.2164)(S3 , − 0.4957)〉 1.536 
A4 12-E 〈(S4, 0.1129)(S2, − 0.1014)(S7 , − 0.4476)〉 0.704 
A5 13-E 〈(S4, 0.3866)(S2,0.4058)(S6,0.0960)〉 0.763 
A6 14-E 〈(S7, − 0.0440)(S1,0.4955)(S4 , − 0.4137)〉 1.333  

A3 > A2 > A6 > A5 > A4 > A1  
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in ranking than its peers. A total of (n = 6) EBMs were considered, and 
the best ranking one was attributed to 11-E (A3) which acquired the 
highest score (1.536), followed by 10-E (A2) as the second best with 
score (1.448). The third-best EBM was achieved by 14-E (A6) with score 
(1.333). The last three EBMs performed lowest in the evaluation process 
rank as follows 13-E (A5) ranked 4th with score (0.763), followed by 12- 
E (A4) with score (0.704), and finally the last ranked and worst per
forming one 9-E (A1) with lowest score (0.542). 

It should be noted that when implementing the entropy method, a 
major obstacle was faced. The data of two criteria was incomplete, “the 
average discount on property values” criterion and “the noise quantity above 
ambient level” criterion. Herein, to estimate these missing values, we had 
to rely on the experts’ evaluations used in the 2TLTS-FDOSM technique. 
From the first expert’s opinion, the performance of 14-E (A6) for “the 
average discount on property values” does not differ from the optimal 
performance, and that of the 13-E (A5) differs slightly. Since “the average 
discount on property values” is a benefit criterion, the maximum value is 
the best. Hence, from Table 4, “ND” corresponds to the value 6.04 %, 
and “SD” corresponds to the value 3.32 %. Making a reduction with the 
same decrement pattern, we get the equivalent value of his “D” evalu
ation as 1.83 %. The third expert also evaluated the performance of 14-E 
(A6) as the best, and his “ND” also corresponds to the value of 6.04 %. 

Meanwhile, his evaluation of 13-E (A5) differs significantly from the 
best, giving a “D” evaluation. Therefore, his “D” corresponds to the value 
3.32 %. Tracking the decrement pattern, we get 1.96 % as the equivalent 
value for his “BD”. Then, “the average discount on property values” crite
rion is given an equivalent evaluation of 1.83 % and 1.96 % for the first 
four alternatives by the first expert and the third expert, respectively. 
Consequently, we assign the first four alternatives the mean value of 
these two experts, which is 1.9 % for this criterion. For the criterion “the 
noise quantity above ambient level”, from Table 4, the three experts agreed 
on the 13-E (A5) to have the best performance. As this criterion is a cost 
criterion, the best value is the minimum. From Table 4, “ND” corre
sponds to the value 8.4 for the three experts. We also have “BD” 
equivalent to 15.3 from the first and second experts’ opinions, and “SD” 
corresponds to 15.3 from the third expert’s opinion. Following the 
increment pattern of each expert, “BD” for the first expert is 15.3, “HD” 
for the second expert is 17.6, and “BD” for the third expert is 29.1. 
Taking the average of these three values, the first four alternatives are 
assigned the value 20.67 for this criterion. After completing these 
ranking results, and in order to ensure the reliability and validity of the 
findings, it is imperative to conduct robustness checks. Additionally, a 
thorough assessment procedure should be implemented to assess the 
outcomes of the ranking and criteria weights, as elaborated on in the 

subsequent section. 

7. Sensitivity analysis 

Validation and verification of the EBMs to assess their feasibility for 
utilization in small and medium-sized communities have been con
ducted. Such assessment means MCDM research can be applied through 
sensitivity analysis (Talal et al., 2023). It is a method applied to change 
the criteria weight to assess their impact on the overall final ranking/ 
evaluation for the EBMs in this study. There are various ways in which 
sensitivity analysis can be conducted through different application set
tings and weighting scenarios. When different scenarios are used, it 
becomes possible to assess the effectiveness of the criteria in contrib
uting to the overall results. This method is particularly useful in un
derstanding how sensitive the outcomes are to changes in the weights 
assigned to the criteria (Basil et al., 2023). As indicated earlier, there are 
different ways in which sensitivity analysis can be conducted; in the 
context of this research, sensitivity analysis has been applied through 4 
main scenarios. In each scenario, weighting settings are adjusted to 
generate a new set of weights. In the first three scenarios, quarter of the 
original weight of each of the highest three criteria “Battery Cost” (C2-1-5- 

1), “Range Distance/KM” (C1-3-1), and “Hours of cont. operation” (C1-3-2) 
has been replaced (according to each scenario) with their original values, 
and the remaining weighting values have been equally divided over the 
remaining (n = 16) criteria (without considering the two criteria which 
achieved 0 value). As for the fourth scenario, the same concept was 
applied while considering all three main criteria together, as shown in 
Table 6. 

Table 6 presents the new set of weights for the new evaluation pro
cess. These weighting scenarios are based on the explanation mentioned 
above, and their main aim is to show how much of a difference the 
change in weights can affect the evaluation/ranking process. These new 
weights have been again introduced to the 2TLT-FDOSM method to re- 
evaluate the EBMs, as shown in Table 7. 

As seen in Table 7, 4 sensitivity analysis scenarios were applied, and 
their scores and new ranks were presented and compared with the 
original weight-based rank. It is seen that only the best (A3), and the 
worst alternatives (A1) only maintained their ranking consistently with 
the original across all four scenarios. This shows that their dominance 
and weight introduction did not affect their overall rank. On the other 
hand, new weight sets have shown some effect on overall rank, espe
cially between the 2nd best (A2) original which became the 3rd best in 
scenarios (S1, S2, and S4) respectively. Other differences are seen in 
Table 7, but for a more precise visual representation, the following Fig. 1 

Table 6 
Sensitivity Analysis Results.  

Criteria Original Weight S1 S2 S3 S4 

C1-1 0.036130975 0.046299868 0.046723278 0.048226 0.068988 
C1-2 0.01181784 0.021986733 0.022410143 0.023913 0.044674 
C1-3-1 0.216936394 0.054234099 0.227528698 0.229031 0.054234 
C1-3-2 0.225969138 0.236138032 0.056492285 0.238064 0.056492 
C1-4 0.007828378 0.017997271 0.018420681 0.019923 0.040685 
C2-1-1 0.019044035 0.029212928 0.029636338 0.031139 0.051901 
C2-1-2 0.043281897 0.05345079 0.0538742 0.055377 0.076139 
C2-1-3 0.008129469 0.018298363 0.018721773 0.020224 0.040986 
C2-1-4 0 0 0 0 0 
C2-1-5-1 0.258035378 0.268204272 0.268627682 0.064509 0.064509 
C2-1-5-2 0.010086564 0.020255457 0.020678867 0.022182 0.042943 
C2-1-6 0.013774934 0.023943828 0.024367237 0.02587 0.046632 
C2-1-7 0 0 0 0 0 
C2-1-8 0.052314641 0.062483534 0.062906944 0.06441 0.085171 
C2-1-9 0.009108017 0.01927691 0.01970032 0.021203 0.041965 
C2-2-1-1 0.019044035 0.029212928 0.029636338 0.031139 0.051901 
C2-2-1-2 0.01919458 0.029363474 0.029786884 0.03129 0.052051 
C2-2-1-3 0.019119307 0.029288201 0.029711611 0.031214 0.051976 
C2-2-1 0.030184419 0.040353312 0.040776722 0.042279 0.063041 

S = Scenario. 
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is presented. 
As seen in Fig. 1, the sensitivity analysis visualization is presented; 

while considering the four scenarios mentioned, it is clear that there are 
some similarities and differences. Only A1, and A3 maintained consis
tent ranking when compared with the original. On the other hand, none 
of the remaining alternatives maintained a 100 % consistent ranking 
with the original, and there were some slight differences. Such findings 
emphasize the importance of thoughtful weight allocation in decision- 
making processes to ensure well-informed choices in EBMs for small 
and medium-sized communities. 

8. Study implications 

Assessing the viability of implementing electric bus models in small 
and medium-sized communities carries substantial implications across 
multiple dimensions. Firstly, this approach offers a means to measure 
and assess the potential environmental advantages, such as mitigating 
greenhouse gas emissions, air pollution, and noise pollution. These 
quantifiable benefits are crucial in pushing for sustainable transport 
policy and getting financial support. Furthermore, through the imple
mentation of cost-benefit analyses, this study has the potential to pro
vide valuable insights into the enduring economic benefits, specifically 
for smaller communities that face financial limitations. These benefits 
involve reductions in energy consumption and maintenance expenses. 

Furthermore, it guides infrastructure planning, explicitly addressing 
the distinctive obstacles these towns may have in developing essential 
charging infrastructure suitable for electric buses and other trans
portation modes. Furthermore, assessing the public health implications, 
such as the enhancement of air quality achieved by appropriately 
choosing evidence-based interventions, can contribute to the cultivation 
of community backing and attract the notice of municipal authorities. 
Moreover, this raises concerns regarding the capacity and moderniza
tion of the energy grid to ensure that the integration of electric buses is 
in line with the energy resources and capabilities of the region. This 
research has the potential to yield technological breakthroughs 

specifically designed to cater to the requirements of these communities, 
hence stimulating innovation in the development of electric bus models. 
Furthermore, it plays a role in developing laws and regulatory frame
works that promote and streamline the implementation of electric buses 
in smaller communities. Gaining knowledge from successful case studies 
and implementing best practices offers significant insights for other 
communities contemplating the deployment of electric buses. 

9. Conclusion 

From a global perspective, an increased awareness has been directed 
towards GHG emissions and their adverse effects, which can be observed 
in light of energy’s global reliance on fossil fuels and the increasing 
population demands. Governmental authorities and organizations 
worldwide are producing various GHG countermeasure initiatives in 
many fields, especially transportation. For that, the development of 
renewable energy transportation options like electric vehicles is greatly 
sought after since they bring a cleaner environment at a lower cost. 
Nevertheless, despite electrical vehicles benefits, they still produce 
emissions indirectly in power plants generating the electricity in which 
they operate, which could have a notable effect on small and medium 
communities. Toward that end, it was necessary to evaluate the per
formance of such modes of transportation while considering the signif
icant factors and criteria that could affect the evaluation process. 

However, previous academic works in this domain have not thor
oughly addressed the implementation of a comprehensive decision- 
making support system that provides recommendations for electric ve
hicles. These recommendations should take into account various 
assessment criteria, their respective levels of significance, and the po
tential conflicts between their values, particularly when evaluating 
multiple electric vehicle models. The objective of this study was to tackle 
the concerns above by presenting a comprehensive MCDM methodology 
that was deemed suitable for the specific case study in question. This 
methodology involved the utilization of two MCDM approaches, namely 
Entropy and FDOSM, to assess and evaluate the EBM models. These 
approaches were employed for the purpose of weighting the assessment 
criteria of the EBMs and evaluating the existing EBMs. The research 
introduces the FDOSM approach, which is developed within a unique 
2TLTS environment. This method aims to tackle the theoretical chal
lenge of improving assessments when there are uncertainties and in
consistencies among decision-makers. The main contributions of this 
study include the development of a novel decision matrix for evaluating 
electrical bus models, the implementation of an objective assessment 
method using Entropy to determine the importance of assessment 
criteria for the electrical bus models, and the identification of the most 
suitable electrical bus model for small and medium-sized communities 
using the 2TLTS-FDOSM approach. The robustness of the proposed 
approach was confirmed using a sensitivity analysis. 

However, a limitation of this study was the failure to consider the 
relative contribution or importance of each expert’s knowledge or 
viewpoints. This oversight might potentially impact the final determi
nation of criteria weights and the selection of alternatives in the case 
study under investigation, as well as any prospective future cases. One of 
our forthcoming endeavors involves addressing this issue through the 

Table 7 
Sensitivity Analysis-based EBM Evaluation.  

Alternative/Scenario Original S1 S2 S3 S4 

Score Rank Score Rank Score Rank Score Rank Score Rank 

A1 0.542 6 0.684 6 0.689 6 0.643 6 0.872 6 
A2 1.447 2 1.286 3 1.278 3 1.509 2 1.073 3 
A3 1.536 1 1.464 1 1.460 1 1.629 1 1.450 1 
A4 0.704 5 0.810 5 0.781 5 0.791 5 0.931 4 
A5 0.763 4 0.846 4 0.825 4 0.800 4 0.908 5 
A6 1.333 3 1.393 2 1.384 2 1.072 3 1.178 2  

Fig. 1. Sensitivity Analysis-Based New EBMs Evaluation’s Visualization.  
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proposition of a novel mechanism for assigning distinct weights to in
dividual experts, which can subsequently be utilized in the determina
tion of criteria weights. An alternate evaluation process will follow this. 
In conclusion, the integration of novel fuzzy sets and precise fuzzy op
erators with the suggested MCDM techniques holds promise as a po
tential avenue for future scholarly contributions. 
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