
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEEP LEARNING MODEL OPTIMIZATION FOR REAL-TIME SMALL 

OBJECT DETECTION ON EMBEDDED GPUS 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF 

ENGINEERING AND NATURAL SCIENCES 

OF ISTANBUL MEDIPOL UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR 

THE DEGREE OF 

MASTER OF SCIENCE 

IN 

ELECTRICAL, ELECTRONICS ENGINEERING AND CYBER SYSTEMS 

By 

Sharoze Ali 

December, 2021 



ii 

DEEP LEARNING MODEL OPTIMIZATIONS FOR REAL-TIME SMALL OBJECT 

DETECTION ON EMBEDDED GPUS 

By Sharoze Ali 

23 December 2021 

We certify that we have read this dissertation and that in our opinion it is fully adequate, 

in scope and in quality, as a dissertation for the degree of Master of Science. 

 

 

 

___________________________________ 

Prof. Dr. Hasan Fehmi Ateş (Advisor) 

 

 

 

___________________________________ 

Prof. Dr. Bahadır K. Güntürk 

 

 

 

___________________________________ 

Prof. Dr. Uluğ Bayazıt 

  

 

 

Approved by the Graduate School of Engineering and Natural Sciences: 

 

 

___________________________________ 

Prof. Dr. Yasemin Yüksel Durmaz 

Director of the Graduate School of Engineering and Natural Sciences  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and presented 

in accordance with the academic rules and ethical conduct. I also declare that, as 

required by these rules and conduct, I have fully cited and referenced all material and 

results that are not original to this work. 

 

 

Signature : 

Name, Surname: SHAROZE ALI  

  



iv 

ACKNOWLEDGEMENT 

I'd like to convey my heartfelt appreciation to my adviser, Prof. Dr Hasan Fehmi Ateş, for 

all the help he kindly gave me during the research, as well as for his patience and 

determination. This effort would not have been possible without his dedication, support, 

and advice. He taught me a lot and was a great mentor to me. I'm also grateful to my lab 

colleagues at Istanbul Medipol University for their assistance and fruitful talks. Finally, 

I'd want to thank my family and loved ones for their encouragement and genuine love in 

supporting me through the completion of my master’s degree and thesis. 

I also would like to thank TÜBİTAK for the MS scholarship provided during my 

graduate study. This thesis is funded by TÜBİTAK-1003 project no: 118E891, titled 

“Smart Camera System for Wide Area Surveillance”. 

 

 

 

 

Sharoze Ali 

December, 2021 

  



v 

CONTENTS 

Page 

ACKNOWLEDGEMENT ............................................................................................. iv 
CONTENTS .................................................................................................................... v 

LIST OF FIGURES ...................................................................................................... vii 
LIST OF TABLES ......................................................................................................... ix 
LIST OF SYMBOLS ...................................................................................................... x 
ABBREVIATIONS ........................................................................................................ xi 
ÖZET ............................................................................................................................. xii 

ABSTRACT .................................................................................................................. xiv 
1. INTRODUCTION ................................................................................................ 16 

1.1. Literature Review for Multi Object Trackers ................................................. 18 

1.1.1. Joint monocular 3d vehicle detection and tracking ................................ 18 
1.1.1.1. Datasets ............................................................................................... 19 
1.1.1.2. Experimental setup: ............................................................................ 19 
1.1.1.3. Results and conclusions ...................................................................... 19 

1.1.2. Multi object tracking in videos based on lstm and deep reinforcement 

learning.………………………………………………………………...20 

1.1.2.1. Datasets ............................................................................................... 20 
1.1.2.2. Experimental setup ............................................................................. 21 

1.1.2.3. Results and conclusions……………………………………………...21 
1.1.3. Aerial infrared target tracking in complex background based on 

combined tracking and detection ............................................................ 22 

1.1.3.1. Datasets ............................................................................................... 22 

1.1.3.2. Experimental setup……….. ............................................................... 23 
1.1.3.3. Results and conclusions ...................................................................... 23 

1.1.4. Spatially supervised recurrent convolutional neural networks for visual 

object tracking......................................................................................... 23 
1.1.4.1. Datasets ............................................................................................... 24 

1.1.4.2. Experimental setup: ............................................................................ 24 
1.1.4.3. Results and conclusions: ..................................................................... 25 

1.1.5. Real-time multi target tracking at 210 mega-pixels/second in wide area 

motion imagery ....................................................................................... 25 

1.1.6. Real time multi-object-tracking .............................................................. 27 

1.1.6.1. Datasets: .............................................................................................. 27 

1.1.6.2. Experimental setup ............................................................................. 28 
1.1.6.3. Results and conclusions ...................................................................... 28 

2. THEORETICAL PART ....................................................................................... 29 
2.1. Small Object Detection from Aerial Imagery ................................................. 29 

2.1.1.      YOLOv4 .................................................................................................. 31 

2.1.1.1. Feature aggregation ............................................................................. 32 
2.1.1.2. Spatial pyramid pooling (SPP) ........................................................... 33 
2.1.1.3. Freebies ............................................................................................... 35 
2.1.1.4. Specials ............................................................................................... 35 

2.1.2. Improved yolov4 for Aerial Object Detection ........................................ 37 

2.1.2.1. Architectural modification .................................................................. 38 

2.2. Deep Neural Network Optimization for Real-Time Execution ...................... 40 

2.2.1. Targeted embedded platform .................................................................. 40 
2.2.2. Multi-threading ....................................................................................... 40 



vi 

2.2.3. Tensor RT (TRT) .................................................................................... 42 
2.2.3.1. Tensorrt optimizations ........................................................................ 43 

2.2.3.2. Layer and tensor fusion: ..................................................................... 45 
2.2.3.3. Precısıon calıbratıon and reductıon ..................................................... 45 
2.2.3.4. Automatıc selectıon of best kernels .................................................... 46 
2.2.3.5. Statıc or dynamıc mode ...................................................................... 46 
2.2.3.6. Varıable batch sızes ............................................................................ 47 

2.2.3.7. Regulatıon of mınımum node numbers ın tensorrt subgraphs ............ 47 
2.2.3.8. Memory management ......................................................................... 48 
2.2.3.9. Quantızatıon-aware traınıng ............................................................... 48 

2.2.4. Deep model compression by parameters reduction ................................ 49 
2.2.4.1. Traınıng of base model ....................................................................... 50 

2.2.4.2. Sparse traınıng .................................................................................... 50 
2.2.4.3. Channel prunıng .................................................................................. 52 
2.2.4.4. Layer prunıng ...................................................................................... 53 

2.2.4.5. Network slımmıng .............................................................................. 53 
2.2.4.6. Normal prunıng ................................................................................... 55 
2.2.4.7. Optımızed normal prunıng .................................................................. 56 
2.2.4.8. Shortcut prunıng ................................................................................. 56 

2.2.4.9. Layer channel prunıng ........................................................................ 57 
2.3. Multi Object Tracker (MOT) Deployment ..................................................... 57 

2.3.1. The deep sort tracker ............................................................................... 57 
2.3.1.1. Assıgnment problem ........................................................................... 58 

2.3.2. Joınt object detectıon and embeddıng (jde) tracker: ............................... 59 

2.3.2.1. Detectıon pıpeline ............................................................................... 60 

2.3.2.2. Appearance embeddıng ....................................................................... 60 
2.3.3. Automatıc loss balancıng ........................................................................ 61 
2.3.4. Onlıne assocıatıon ................................................................................... 61 

2.3.5.       Multı–class joınt object detectıon and embeddıng (mc-jde) tracker ....... 61 

3. EXPERIMENTAL PART .................................................................................... 63 

3.1. Experimental Setup for Small Object Detection ............................................. 63 
3.2. Experimental Setup for TensorRT Optimizations .......................................... 66 

3.3. Experimental Setup for Model Compression and Parameters Reduction ....... 67 
3.4. Data Augmentation ......................................................................................... 68 

3.4.1. Experimental setup ................................................................................. 68 
4. RESULTS AND DISCUSSIONS ......................................................................... 70 

4.3. Ablation Study for Pruning Parameters .......................................................... 72 
4.4. Multi Object Tracker (MOT) Deployment ..................................................... 75 

5. CONCLUSIONS AND FUTURE WORK .......................................................... 79 

BIBLIOGRAPHY ......................................................................................................... 81 
CURRICULUM VITAE............................................................................................... 87 
 

 

  



vii 

LIST OF FIGURES 

Figure 1.1: Example of Small Object detection from Visdrone-19 DET dataset. ......... 17 

Figure 1.2:  Demonstration of Depth Order Matching and Occlusion-aware 

association. ...................................................................................................................... 19 
Figure 1.3: Overview of proposed MOT algorithm. ...................................................... 20 

Figure 1.4: Single Object detector pipeline. .................................................................. 21 
Figure 1.5: CTAD Pseudocode/ working flow. ............................................................. 22 

Figure 1.6: Learning two regression models for a single frame. ................................... 23 
Figure 1.7:  Overview of ROLO tracking procedure. .................................................... 24 
Figure 1.8: Propose architecture diagram. ..................................................................... 25 
Figure 1.9: WAMI dataset frame and corresponding patches ....................................... 26 
Figure 1.10: JDE block diagram. ................................................................................... 27 

Figure 1.11: a) JDE architecture diagram, b) JDE network predictions ....................... 28 
Figure 2.1: Inference speed performance comparison, measured in frames per 

second (FPS) for YOLOv3, YOLOv4 and Faster R-CNN ............................................. 30 

Figure 2.2: RCNN Architectural flow diagram. ............................................................ 31 
Figure 2.3: Objector Detector Anatomy ........................................................................ 31 
Figure 2.4: Function network architecture – (a) FPN [52] introduces a top-down 

direction to fuse multi-scale features from level 3 to level 7 (P3-P7); (b) the PANet 

[51] adds an extra bottom-up direction to the top of the FPN……………………… .... 34 
Figure 2.5: Typical spatial pyramid pooling layer in the network where 256 is the 

filter number of the conv5 layer, and conv5 is the last convolutional layer ................... 34 
Figure 2.6: SPP block (Separate) and SSP block embedded in YOLO ......................... 34 

Figure 2.7: Mish activation function. ............................................................................ 36 
Figure 2.8: An example case (Drop block regularization. ............................................. 37 

Figure 2.9: Block diagram of YOLOv4 [11] and Modified YOLOv4 [60], where 

component details in (a) further describes CBM, CBL, SSP [54] etc. blocks used in 

architectures. ................................................................................................................... 39 

Figure 2.10: Single Threaded pipeline workflow. ......................................................... 41 
Figure 2.11: Multi - Threaded pipeline workflow (Aero head shows the flow of data 

between 3 independent working threads) ....................................................................... 41 
Figure 2.12: Tensor RT Pipeline [1]. ............................................................................. 43 

Figure 2.13: Vertical fusion Input – Un Optimized Graph [1]. ..................................... 44 
Figure 2.14: Vertical Fusion graph. ............................................................................... 44 
Figure 2.15: Vertical + Horizontal Fusion Optimized graph ......................................... 45 

Figure 2.16: Block diagram of model conversion pipeline to TRT format. .................. 47 
Figure 2.17:  x is the input, r is the tensor floating point range, s is the INT8 scaling 

factor of the number of values. The above equation takes the x input and returns a 

quantized value of INT8. ................................................................................................ 49 

Figure 2.18: The effect after sparsifying the given tensor, resulting 2 times faster 

execution. ........................................................................................................................ 51 
Figure 2.19: Accuracy restoration while sparse training.. ............................................. 52 
Figure 2.20: Network Slimming flow chart ................................................................... 54 
Figure 2.21: mAP VS FPS plots of object detection models; FP16 and FP32 

represents corresponding TensorRT models. FP-16 models are more directed towards 

real-time. ......................................................................................................................... 59 
Figure 2.22: Plot shows accuracy improvement after including Augmented data 

(Tiles + Zooms) in Visdrone DET dataset ...................................................................... 62 
Figure 3.1: mAP results of original and modified YOLOv4 [60] for all object classes 

at 832x832 image resolution ........................................................................................... 64 



viii 

Figure 3.2: mAP calculated on original and modified YOLOv4 for different image 

resolutions at test stage [60]. ........................................................................................... 65 

Figure 3.3: FPS results of original and modified YOLOv4 [60] for different image 

resolutions at test stage ................................................................................................... 65 
Figure 3.4: Plot shows accuracy improvement after including Augmented data (Tiles 

+ Zooms) in Visdrone DET dataset. ............................................................................... 69 

Figure 4.1: Comparison of original and modified YOLOv4 in terms of mAP and 

FPS for different image resolutions on Jetson Xavier [60]. ........................................... 71 
Figure 4.2: mAP VS FPS plots of object detection models; FP16 and FP32 

represents corresponding TensorRT models. FP-16 models are more directed towards 

real-time. ......................................................................................................................... 72 
Figure 4.3: Plotting trainable parameters in millions (Red color) reduced after 

applying pruning techniques and corresponding highest FPS (Orange color) as 

compared to base models. ............................................................................................... 75 
Figure 4.4: Results evaluated on VisDrone-MOT2021 Challenge's (MOT) data. 

Each assessment mode's top three findings are bolded and highlighted. Red, green, 

and blue are used as accent colors.[74]. .......................................................................... 76 
 

 

 

  



ix 

LIST OF TABLES 

Table 2.1: Table FPS Comparison among Single-Threaded VS Multithreaded 

pipeline on RTX 2080TI.………………………… ........................................................ 42 
Table 2.2: FPS Comparison among Single-Threaded VS Multithreaded Pipeline on 

AGX Xavier. Here FPS didn’t increase due to a smaller number of CPUs cores in 

Jetson AGX Xavier (8 CPU Cores) as compared to previous table for RTX 2080TI 

Server (32 CPU Cores). . ................................................................................................ 42 

Table 3.1: T Table contain hardware specifications of machine being used for 

experiment …..………………………… ....................................................................... 63 
Table 3.2: mAP VS FPS of original (YOLOV3, YOLOV4 and Improved YOLOv4) 

Original models before serializing to TRT format evaluated on Visdrone Test-Dev 

Dataset on Jetson AGX Xavier.………………………… .............................................. 66 

Table 3.3: mAP VS FPS on Visdrone Test-Dev Dataset with TensorRT FP32 

models on Jetson AGX Xavier.………………………… .............................................. 66 
Table 3.4: mAP VS FPS on Visdrone Test-Dev Dataset with TensorRT with FP16 

on Jetson AGX Xavier.………………………… ........................................................... 67 
Table 3.5: Table shows the results against applied pruning techniques on YOLOv3 

detection network. A higher reduction in model size and number of network layers 

and Increase in FPS and mAP indicates a better mode.………………………… .......... 68 

Table 4.1: FPS of pruned model (Normal Pruning) on prune ratio 40. More than 

40% mAP reduce to zero……………… ........................................................................ 73 

Table 4.2: . FPS of pruned model (Slim Pruning) on different prune ratios………… .. 74 
Table 4.3: Table FPS Comparison among Single-Threaded VS Multithreaded 

pipeline on RTX 2080TI.……………………………………………………………….74 
Table 4.4: T FPS of pruned model (Layer Shortcut Pruning) on different prune ratios.75 

Table 4.5: FPS and accuracy comparison among Deep Sort and MC-JDE tracker 

obtained from VisDrone 2018 MOT toolkit evaluated on VisDrone MOT Test-dev 

dataset…………………...………………………… ...................................................... 77 

Table 4.6: Comparison among other tracker on VisDrone MOT Test-Dev data. 

(Note: The Deep Sort and MC-JDE tracker are not trained on MOT dataset). Bold 

figures shows better results of our trackers without training on MOT dataI.………… . 78 
 

  



x 

LIST OF SYMBOLS 

ɑ : Learning Rate 

ɣ : Channel Cutting Threshold 

ß : Channel 

> : Is Greater Then 

𝛌 : Scaling Factor 

≈ : Approximately Equal  



xi 

ABBREVIATIONS 

WAS  : Wide Area Surveillance 

MOT  : Multi Object Tracking 

CNN  : Convolutional Neural Network 

UAV  : Unmanned Aerial Vehicles 

CPU  : Central Processing Unit 

GPU  : Graphics Processing Unit 

LSTM  : Long Short-Term Memory 

SVM  : Support Vector Machine 

RNN  : Recurrent Neural Network 

SAT  : Self Adversarial Training 

CTAD  : Combine Tracking and Detection 

VGG  : Visual Geometry Group 

JDE  : Joint Detection and Embeddings 

WAMI : Wide Area Motion Imagery 

YOLO  : You Only Look Only Once 

COCO : Common Object in Context 

R-CNN : Region Based Convolutional Neural Network 

CSP  : Cross Stage Partial Network 

CMBN : Cross Mini-Batch Normalization 

CBL  : Convolution - Batch Normalization - Leaky Relu 

SPP  : Spatial Pyramid Pooling 

PAN  : Path Aggregation Network 

FPN  : Feature Pyramid Network 

FPS  : Frames Per Second 

MAP  : Mean Average Precision 

FP  : Fixed Precision 

AP   : Average Precision 

IOU  : Intersection Over Union 

NMS  : Non-Max Suppression 

RAM  : Random Access Memory 

 

 

 

 



xii 

GÖMÜLÜ GPU'LARDA GERÇEK ZAMANLI KÜÇÜK NESNE TESPİTİ İÇİN 

DERİN ÖĞRENME MODEL OPTİMİZASYONU 

                                                                ÖZET 

Sharoze Ali 

Elektrik-Elektronik Mühendisliği, Yüksek Lisans 

Tez Danışmanı: Prof. Dr. Hasan Fehmi Ateş 

Aralık, 2021 

Kameralı hava araçları genellikle gözetleme alanında kullanılmaktadır. Bu gözetleme 

sistemlerinin birçoğu objeleri iki adımda izler; ilk olarak, hedeflerini tespit eder ve tanır, 

daha sonra bu hedefleri canlı video akışında takip eder. Fakat, günümüzde obje tespit 

algoritmaları genellikle yüksek hesap gücü olan ve GPU ile desteklenen sistemlerde, 

geniş görüntü veri seti ile eğitilen derin öğrenme modelleri kullanmaktadır. Dahası, obje 

takibinde öznitelik eşleştirme ve ilişkilendirme yönetimleri sisteme daha fazla iş yükü 

bindirmekte ve bu gerçek zaman performansını etkilmektedir.  

Geniş Alan Gözetleme (GAG) uygulamalarında, yer hedeflerini bulmak ve takip etmek 

için görüş tabanlı nesne algılama ve hedef takibi gereklidir. Fakat, bu insansız hava 

uçakları (İHA) yerden çok yüksekte çalışır ve bu sebeple yerdeki objeler çok küçük 

görünür. Bu sebeple, özellikleri derinlemesine tarayabilen ve bu küçük yer nesnelerini 

tanıyabilen hassas bir obje dedektörü gereklidir. Ayrıca, derin öğrenme yaklaşımını 

kullanan CNN tabanlı obje dedektörleri, kapsamlı hesaplamaları ve karmaşık 

matematiksel modelleri nedeniyle gömülü veya uç cihazlarda çalışmak için ağırdır.  

Bu tezde, Çoklu Nesne Takibi (ÇNT) sisteminin performansını etkileyebilecek yukarıda 

belirtilen sorunları araştırdık. Bu tezin amacı, Nvidia Jetson AGX Xavier gibi uç 

gömülü cihazlarda etkin bir şekilde çalışabilen, gürbüz ve gerçek zamanlı bir takip 

sistemi tasarlamaktır. İlk olarak, tek aşamalı bir dedektör seçtik ve küçük objeler için 

daha rafine ve ince tanecikli öznitelikler elde etmek adına yukarı örnekleme 

katmanlarını bağlayarak ve yukarı örneklenen öznitelikleri orijinal özniteliklerle 

birleştirerek mimari tabanlı öznitelik iyileştirme üzerinde çalıştık. Bu da daha kesin obje 

algılamaya yardımcı oldu. Daha sonra, karmaşık obje tespit modellerini hafif sistemlere 

dönüştürmekle ilgili, olası (CPU ve GPU tabanlı) model optimizasyon yaklaşımlarını 

keşfettik. Bu yaklaşımlar, TensorRT [1] boru hattı kullanılarak yapılan karışık 

hassasiyet optimizasyonu ve katman füzyonu, çok-izlekli programlama ve çeşitli 

budama tekniklerini içermektedir. Bu tekniklerin kullanılması obje tespit modelimizin 

doğruluk ve verimlilik hedeflerinden ödün vermeden gerçek zamanlı sonuçlar almamızı 

sağlamıştır. Ayrıca, Visdrone [2] tespit veri seti üzerinde veri artırma teknikleri 

uyguladık ve bu da test veri setinde daha yüksek ortalama kesinliğe yol açtı. Benzetim 

sonuçları, farklı tespit/takip modelleri ile bunların optimize edilmiş sürümleri arasındaki 

performans açısından kapsamlı karşılaştırmaları göstermektedir. 
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Camera mounted drones are mostly used in surveillance applications. Most of these 

surveillance systems track objects in two steps; firstly, they detect and recognize targets 

in a scene and then track those targets in the upcoming live video feed. However, 

current object detection algorithms mostly use deep learning models that are trained on 

large image datasets that require high computing power and GPU supported systems. 

Moreover, feature matching and association handling in object tracking also create more 

payload on a system that affects performance in real-time.  

For Wide Area Surveillance (WAS) applications vision-based object detection and 

target tracking is necessary to locate and follow ground targets. However, these UAVs 

operate at very high altitude above the ground, due to which ground objects look very 

small and less visible. Hence an accurate object detector is needed which can deeply 

scan the features and recognize these small ground objects respectively. Meanwhile, 

using the deep learning approach, CNN based object detectors are heavy to operate on 

embedded or edge devices because of their extensive computation and complex 

mathematical models.  

In this thesis we investigate both above stated problems that can affect the performance 

of Multi Object Tracking (MOT) system. The motivation of this thesis is to design a 

robust and real-time tracking system that can operate effectively on edge embedded 

devices like Nvidia Jetson AGX Xavier. First we choose one-stage detectors and work 

on architectural based feature enhancement by connecting Up-sampling layers and 

concatenating the up-sampled features with the original features to obtain more refined 

and grained features for small objects, which leads to more accurate small object 

detection, and Second we explore possible (CPU and GPU based) model optimization 

approaches involved in transforming the complex object detection models to 

lightweight systems, which include mix precision and layers fusion using TensorRT [1]  

pipeline, multi-threading, and several pruning techniques to work our object detection 

models for real-time performance, without sacrificing accuracy and efficiency goals. 

Moreover, we apply data augmentation techniques on Visdrone detection dataset [2] 

which also lead to improved mean Average Precision (mAP) [3] on the test dataset. 

Simulation results show extensive comparisons in performance between different 

detection/tracking models and their optimized versions. 
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Keywords: Deep Learning, Object Detection, Object Tracking, Surveillance, Tracklets, 
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CHAPTER 1 

1. INTRODUCTION 

Unlike traditional approaches, deep learning has provided highly accurate results and is 

verified method in Machine Vision field. Hence state-of-the-art object recognition 

methods like SSD [4], Faster-RCNN [5][15], Mask-RCNN [6], and YOLO [7] all are 

based on deep learning architectures, which are involved in several applications such as 

surveillance, robotics, and other dominant fields like natural language processing (NLP) 

and drug discovery. In this thesis we discuss different deep learning based Multiple 

Object Tracking approaches and try to figure out the issues in way towards robust real-

time solutions.  

In recent literature, Deep Learning (DL) approach is widely used in Object detection, 

Tracking by Detection and online Multiple Object Tracking (MOT), and this is because 

Convolutional neural Networks (CNNs) have ability to extract deep spatial patterns 

from input data. Thus, their ability of learning complex and rich features from their 

input results in accurate and reliable output. There are also other forms of architectures 

like recurrent neural networks (RNNs) [8] and Long Short-Term Memory (LSTM) [9] 

used to process consecutive video frames to track objects with their IDs. Multiple 

Object Tracking (MOT) process is further divided into the following sub problems:  

• Acquiring targets using robust detection algorithm. 

• Simultaneous focusing on all the tracklets while handling partial 

occlusions. 

• Object deformation. 

• Motion blur. 

• Illumination and scale variations. 

In literature review we will discuss the list of different applied algorithms that help us in 

understanding; how deep learning works in Multiple Object tracking either by the 

online simultaneous tracking or with tracking by detection approach.  
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Accurate detection of small objects is another well-known issue in drone surveillance 

systems. Conventional methods rely on hand-crafted image characteristics and 

background reduction methods. However, these techniques suffer from a lack of 

robustness in the context of variations in lighting, weather, position, and so on. Deep 

learning-based object detection models were developed with the launch of 

Convolutional Neural Networks. The YOLO [7][10][11] family is made up of single 

stage object detection models, which we have largely used in our investigations on 

UAV images. 

Meanwhile, simultaneous Visual Object detection and tracking is also vastly studied 

topic in Computer-Vision and Robotics. Most of the surveillance systems work on this 

technique in which the system firstly recognizes objects in a scene and then tracks the 

target in frames of live video feed. However, object detection mainly uses a deep 

learning approach by training on a large image dataset that requires high computing 

power and GPU supported systems. Moreover, object tracking in parallel creates more 

payload that affects performance in real-time. To run these surveillance applications on 

UAVs having compact on-board processors, it is necessary to design robust and real-

time systems. In this work, we discuss an in-depth comparison of Object detection and 

tracking algorithms and figure out the most applicable ones that are accurate as well as 

real-time. Later we also show modifications for optimization of these algorithms and 

network models.  

Figure 1.1 shows small object detection in UAV captured outdoor imagery. 

 

Figure 1.1: Example of Small Object detection from Visdrone-19 DET dataset [2]. 
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1.1. Literature Review for Multi Object Trackers 

Literature review includes detailed discussion of different object detectors as well as 

multi object trackers. This chapter discusses the list of different applied algorithms that 

help us in understanding how deep learning works in Multiple Object tracking either by 

joint detection and tracking solution or with tracking by detection approach. 

For the most part, tracking by detection approach is used to differentiate between all 

tracklets. This approach mainly works sequentially; A video frame is fed into the 

system by external camera or webcam, and further proceeded by deep neural nets like 

(CNN) that finally detect and classify the objects present in the video frames by 

localizing them with bounding boxes. Here, tracker is initialized, which takes Region of 

Interests (ROIs) of each detected object and passes them to another network to create 

embeddings to differentiate between each detected object present in the scene, where 

ROIs are the bounding box locations returned by object detector. 

The second approach works by taking input data in the form of video frames from live 

camera feed. The main difference is that the same detection network that recognizes 

objects is also used to generate corresponding embeddings as well. Some MOT datasets, 

like Visdrone, provide additional information, like learning partial occlusions, custom 

occlusion ratio (1% ~ 50%), heavy occlusions (50% ~ 100%), which informs targets 

covering with each other and truncation ratio which indicates the degree of object parts 

appearing outside a frame. Such parameters are also learned additionally with detection 

losses and embedding learning tasks. 

1.1.1. Joint monocular 3d vehicle detection and tracking 

This strategy [12] claims a novel online framework for 3D vehicle detection and 

tracking on monocular video frames. It detects 2D as well as 3D bounding box 

information from 2D images. Moreover, for robust instance associations, the depth of 

3D bounding boxes is calculated, for handling occlusions, it predicts 3D trajectory for 

re-identification of occluded vehicles and finally, for long-term and accurate motion 

extrapolation, LSTM motion learning module is also designed. 
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1.1.1.1.  Datasets 

All simulations for the 3D tracking pipeline are drove on KITTI [13] and Argoverse 

[14] dataset. Besides these two, the authors also report some of the game datasets like 

FSV, GTA5, Cityscapes in their manuscript. 

1.1.1.2.  Experimental setup 

Phrasing 3D tracking as a supervised learning problem, it was the aim to find N 

trajectories against N detected objects in a video, and these trajectories link a sequence 

of detected states starting from first visible frame 'a' to the last visible frame 'b'. In the 

paper, authors employed Faster R-CNN [5] trained on their custom dataset to grab 

object proposals as bounding boxes. These b-Boxes correspond as 2D as well as an 

estimated projection as 3D bounding box center which is further used in prediction of 

the whole 3D box with other necessary function. The loss function used while 

predicting is L1 loss. Finally, robust linking across frames in addition to occlusion 

aware association and depth-order matching is produced by LSTM [9] based tracker.  

 
Figure 1.2: Demonstration of Depth Order Matching and Occlusion-aware association. 

[12]. 

Training procedure involves 4 GPUs working parallel, with batch size 20 and resolution 

up to 1920 x 1080 for GTA. 1920 x 1216 for Argoverse and 1248 x 1216 for KITTI 

dataset [13] train on Faster- RCNN RPN. Tracking policy involves keeping all tractlets 

until they disappear from certain range (10m to 100m) distance from camera. 

1.1.1.3.  Results and conclusions 

Current work provides the problem of detection and tracking with sub problems, their 

in-depth scanning and organized solution, however the system requires numerous high-
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power computing devices to run in production. For embedded on-board units, a 

lightweight solution is required. 

1.1.2. Multi object tracking in videos based on LSTM and deep reinforcement 

learning 

This study reports on the tracking of several objects on video using LSTMs and deep 

reinforcement learning. They employ the YOLOv2 architecture for detection, and the 

Single Object Tracking problem as a Markov decision process for tracking [16]. The 

network configuration of the single object tracker includes a CNN unit followed by an 

LSTM unit. Deep reinforcement learning agents are used to train each tracker. Here 

LSTMs are used in conducting data associations for each frame among result returned 

from object detector and single object tracker. 

Figure 1.3:  Overview of proposed MOT using LSTM and deep reinforcement learning 

[17]. 

1.1.2.1.  Datasets 

The system is trained on pedestrian datasets which contains mixture of other pedestrian 

benchmarks like PETS09-S2L2 [18] consists of 436 samples with (768 * 576) pixels 

with handling several occlusions and scale changes.  Other dataset sequences like ADL-

Rundle-3 consists of 625 samples of (1920 *1080) dimensions, AVG-Town Centre and 

TUD [19] which consists of side view of people crossing a road with 201 samples and 

(649 * 480) frame size also been considered for performance evaluation. 
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1.1.2.2.  Experimental setup 

As previously stated, the YOLOv2 [7] architecture was utilized to detect items passed 

on each frame. Second, the single object tracker is made up of LSTM, which marks the 

SOT as a Markov decision problem (MDP) by making a series of decisions. MDP 

provides a set of actions that are applied to the bounding box and one action that 

finishes the process. Action is stored as a seven-dimensional vector and is divided into 

three subsets: horizontal moves right and left, vertical travels up and down, and scale 

changes scale up and scale down. 

 
Figure 1.4 Proposed Single Object detector pipeline with LSTM state predictor [17]. 

Deep CNN consist of VGG-16 [20] network. The data association module based 

on LSTM [8] has two layers and 512 hidden units, which trains SOT in 40 hours. The 

current work is MATLAB [21] based and simulated on a system having Core i7 CPU 

and Nvidia Titan X GPU with 12 GB RAM. 

1.1.2.3.  Results and conclusions 

The existing system can be made real-time replacing other light detection network or 

slimming the architecture and then retrained it again. To implement we must reproduce 

algorithm and rewrite the code as all experimental work and dataset was not provided, 

and the system was built on MATLAB [21]. 
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1.1.3. Aerial infrared target tracking in complex background based on combined 

tracking and detection 

Aerial infrared target tracking is normally used in weapon system that especially the air-

to-air missile. This paper focus on developing an algorithm that could track the aircraft 

fast and accurately based on infrared image dataset. This framework propose tracker 

based on correlation filter and deep learning-based detector, which it mentions as 

combine tracking and detection (CTAD) [22]. It claims high efficiency provided by 

correlation filter and can track the infrared targets reliably. One mentioned in their work 

that beside there CNNs are highly feature extractors but it’s not able to use them in real-

time as computationally, it is even more then whole working pipeline of their target 

tracking bird. Hence, they choose CTAD which use two regression models based on 

correlation tracking. They choose LCT tracker [23] as a base which is common for long 

time tracking, further based on DSST [24], so they could fit the need of Infrared (IR) 

image guidance missile. Tracking performance is continuously maintained by checking 

the confidence score, so when it drops the certain limit, again the target is detected and 

vice versa. 

 

Figure 1.5: CTAD Pseudocode demonstrating CTAD tracker workflow in steps [22]. 

1.1.3.1. Datasets 

All experiments are performed on three different infrared image sequences from VOT-

TIR2016 [25] datasets, however for evaluation two sequences are taken from AMCOM 

FLIR [26] dataset. 
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1.1.3.2. Experimental setup: 

This work pattern is again very similar to previous approaches as discussed earlier like 

using CNN feature extractors as detection but for tracking they used CTAD [22] that 

out-performed other with comparable speed of about 18.1 fps. They used correlation 

filters approach which measures the similarity among two different signals. The 

algorithm contains two main parts, first CTAD tracker and YOLOv3 [10] as verification 

for detector. This tracker is implemented in MATLAB with TensorFlow [27] 

framework on Nvidia GTX1080 GPU with 4GB memory. Trained data consist of 2200 

IR images with 5000 epochs on YOLOv3 [10]. 

 

Figure 1.6: Learning two regression models for a single frame to predict future position 

in next frame [22]. 

1.1.3.3. Results and conclusions 

To the best of our knowledge YOLOv3 is more sensitive in detection for small objects, 

as it uses multi scale feature fusion, and predict bounding boxes at different scales and 

fast and accurate. CTAD claims superior performance for real-time scenarios but in 

short, its single object tracker and implemented on MATLAB [21] so it conflicts to ours 

approach in data, which is IR data, and non-provided opensource help. 

1.1.4. Spatially supervised recurrent convolutional neural networks for visual 

object tracking 

This strategy [28] consists of recurrent convolutional network that utilize tractlets 

location history with visual features learned by deep neural net. The work also discusses 

regression capabilities of LSTMs (Long Short-Term Memory) in temporal domain and 
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tried to concatenate high level visual features from CNN with region information to 

keep track on obtained targets. Unlike other deep learning-based trackers, this approach 

use regression for prediction of tracking locations at both conv layer and recurrent unit 

which results in accuracy as well as robustness as compared to other tracking systems. 

Choosing YOLOv2 [7] at first stage for collecting visual features and location inference 

as B-Box, they also use LSTM in the 2nd stage which is spatially deep and appropriate 

for sequence processing. They named this approach as ROLO: Recurrent-YOLO [29] 

 

Figure 1.7: Overview of ROLO tracking procedure: YOLO detection + LSTM [29]. 

1.1.4.1. Datasets 

The convolutional weights are learned with ImageNet [30] data of 1000 classes such 

that network can understand arbitrarily objects in general. While training, the feature 

vector is fed into SVM [31] (Support Vector Machine) classifier to get good 

classification results. Further the model is also fine-tuned at PASCAL VOC [32] 

dataset. 

1.1.4.2. Experimental setup 

While training network at detection stage, a mid-level resolution feature vector of size 

4096 is fed into classifier. Once the network is trained and able to generate visual 
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features, YOLOv2 architecture is adopted as detection module. At last LSTM-RNNs is 

added for the training of tracking module. LSTMs is taking two stream data flow into it, 

such as feature representation and detection information (0, x, y, w, h, 0). In addition, 

another input is also taken by LSTM [8]. 

  Figure 1.8.  Proposed architecture flow diagram of ROLO MOT [28]. 

which is the output of states from the last time-step. Mean Square Error is used for 

training purpose. Current system is implemented in Python on TensorFlow framework 

[27] with 8 cores CPU and NVIDIA TITAN-X GPU system. The work is opensource 

and is available on GitHub. 

1.1.4.3. Results and conclusions 

Using LSTMs with object detector solution was already sort out in my future work. 

Meanwhile while studying the case, we prepared a power-point presentation and 

implement the solution on the CPU base system. I observed that occlusions on the 

validation dataset were handled very finely. On CPU the system was not looking much 

robust, but again to test, retrained, or fine-tune the whole architecture computational 

resources are required. Taking one further step, one developer tried to convert the whole 

system on multiple objects tracking and named as MOLO (Multi Object-YOLO), but it 

is still under development in solving issues. 

1.1.5. Real-time multi target tracking at 210 mega-pixels/second in wide area 

motion imagery 

Though this working approach [33] was old, but we studied it as their environment 

resembles with our working environment. The system takes the big size aerial images 

which can cover about (6 – 50) km of the total area and many small objects moving in 

the scene., so the task is to track all these objects.  
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The dataset they used is WAMI [34][35] (Wide Area Motion Imagery), from Airforce 

Research Lab (AFRL’s) also called AFRL/WPAFB 2009 datasets [35]. The huge size 

images from this dataset are not such an easy to process and apply tracking algorithm. 

To solve the problem, the whole frame is divided into small tiles and are maintained by 

postgre SQL database [36]. Each tile is processed independently and are linked finally 

with inter-tile linker module. 

 

  Figure 1.9: WAMI dataset frame and corresponding patches [33]. 

According to the claims, the suggested system has a real-time data throughput of at least 

210 megapixels per second. This tracking system is multi-threaded based and operates 

by decoding pixels, stabilizing the image with frame differencing, and detecting motion 

with frame-to-frame homographies. On each frame, they take as assignment problem by 

Hungarian algorithm to optimally assign new detections to existing tracks. The 

complexity of the algorithm is O(n)3 and runs on the cluster on which 12 super Micro 

blades are configured with high-performance database fast disk array and InfiniBand 

high-speed network for fast access of images. Beside these reviews there were other 

manuscript which we go through and mark them in secondary category. 
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• KWIVER framework [37] (Video exploitation application for wide area 

surveillance) 

• KTH Master’s thesis: Tracking humans in video using LSTM Recurrent Neural 

Network [38]. 

• Cross Input Neighborhood Difference for Re-identification of humans [39]. 

• Deep Sort [40]. 

1.1.6. Real time multi-object-tracking  

Being focused to make real-time solution, this work adopts tracking-by-detection 

method and proposes real-time MOT system that enables for the learning of target 

detection and appearance embedding in a shared model; hence called Joint Detection 

Embeddings [41] (JDE). This detection model not only return detection but also 

embeddings associated with each detected object. Thus, this approach is better than the 

other tracking by detection models in which detection model another embedding model 

work separately to generate detections and then embeddings respectively, to 

differentiate to generate final tracklets. 

 

Figure 1.10: JDE block diagram with sub modules. 

Normally, process of detection and tracking and their associations results in efficiency 

problems so the feasible idea of joining detecting and embedding model into a single 

network might reduce the computations because here these two tasks share the same set 

of low-level features. 

1.1.6.1. Datasets 

This work has been done after collecting, six different datasets on pedestrian detection 

and person search and then refined labelled with bounding boxes and portion of their 
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identities. Their results performance compares with other known benchmarks like 

MOTA and MOT-16. 

1.1.6.2. Experimental setup: 

The current work approaches Feature Pyramid Network [42] (FPN) as its base 

architecture which makes prediction from multiple scales, which is a general approach 

to gain accuracy especially when target scale varies a lot. For loss calculation, 

embedding learning, triplet loss is used. Finally, in addition, the work also introduced 

online association strategy to work with JDE [41] in which affinity matrix among all 

observed and previous embeddings are calculated, then with the help of Kalman 

filtering [45] the new places of tractlets are predicted. Hence if predicted location is too 

far then assignment is rejected and tractlets are updated. 

 

 Figure 1.11: a) JDE architecture diagram, b) JDE network predictions [41]. 

1.1.6.3. Results and conclusions 

On comparison, this work performed well compared with its predecessor MOT 

algorithms. This approach claims (18 to 24) FPS on Nvidia Titan X. To use it for 

embedded platform, one must put more efforts to make it more computationally 

effective.
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CHAPTER 2 

2. THEORETICAL PART 

2.1.  Small Object Detection from Aerial Imagery 

Most surveillance systems normally follow two steps to operate: first, they identify and 

recognize targets in a scene, and then they track those targets in subsequent video 

frames. However, deep learning-based object detection needs high performance GPU-

enabled systems. On the other hand, feature matching and association in object tracking 

also add more payload on a system, affecting real-time performance. So simultaneous 

target identification and tracking on the UAV's onboard processors requires a real-time 

tracking system that can operate effectively on edge embedded devices like the Nvidia 

Jetson Xavier. 

We divide this problem into two subparts to improve the performance of the real-time 

embedded platform: the detector part and the tracking part. From the literature review, 

Joint Detection and Embedding (JDE) [41] approach stand better from others in which 

the same deep network is used for detection as well as to generate embeddings 

accordingly. This increases FPS, and it is suitable for real-time operation. 

We review the performance of several state-of-the-art object detectors, bottle necks and 

their execution times. However, we only consider the task of small object detection 

because in our case video feed is taken from cameras mounted on drones, so object size 

relative to image size is very low in frames captured by drone cameras. Due to high 

altitude of drones, objects on the ground look small. Recently one research article is 

published which compare the performance of existing object detectors on vehicle 

datasets based on aerial images. This comparative study helps us in choosing best 

detector according to our problem sets. Figure 2.1 shows performance comparison of 

latest object detection algorithms. 
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 Figure 2.1: Inference speed performance comparison, measured in frames per second 

(FPS) for YOLOv3, YOLOv4 and Faster R-CNN. [46]. 

In chapter 2, we have seen that the detector used in the pipeline of Joint Detection and 

Embedding (JDE) [41] is Faster R-CNN [5] which is the updated version of R-CNN 

[43] detector. RCNN is a two-stage detector. It first extracts a predefined number of 

areas (i.e., 2000 region proposals) via a selective search and then applies a greedy 

approach to combine comparable regions to provide candidate regions for object 

detection. Later another version named Faster R-CNN [5] was suggested, which 

includes a Region Proposal Network (RPN) that is trained end-to-end to extract feature 

vector and to predict both bounding box values and class scores for objects. The 

selective search technique, which was computationally costly and a bottleneck in the 

prior object detection pipeline, was replaced with this change. After being trained 

individually with the same loss function as in FAST-RCNN [15], the RPN finally shares 

convolutional features with the Fast R-CNN detector as an additional optimization. We 

can see the working pipeline of R-CNN based detectors in Figure 2.2. 

On the other hand, YOLOv3 [10] and YOLOv4 [11] are single-stage detectors. YOLO 

does not extract region proposals but uses a Fully Convolutional Neural Network to 

process the full input image just once, based on the overall photographic context, which 

predicts bounding boxes and their respective class probabilities. Figure 2.3 describes 

the workflow of one stage and two-stage detectors. The most current and effective 

variation of a family of one-stage detectors that process the full image in a single pass is 

YOLOv4. As in Figure 2.1 YOLOv4 performs best in the term of inference speed when 

compared to YOLOv3 and Faster R-CNN [5], so we select YOLOv4 model architecture 

to train our dataset. 

Here we will first describe YOLOv4 architecture, and then list our modifications made 

in improving YOLOv4 against our problem, i.e., small object detection. 
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Figure 2.2: Architectural flow diagram of RCNN (two stage network) [46]. 

 

 

 Figure 2.3: Objector Detector Anatomy with several organ parts [11]. 

2.1.1.  YOLOv4 

YOLOv4 [11] outperforms other object detectors in the terms of speed and accuracy. 

Here we will discuss some research contributions about YOLOv4 [11]. Detection 

pipeline of a CNN contains three main blocks called head, neck, and backbone. 

Object detector starts by taking the image as an input and then compresses the image 

through the network backbone to generate a feature representation for the whole image. 

After passing the features out of the backbone, final predictions are made off. As 
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multiple bounding boxes with different scales and sizes are predicted with classification, 

so feature layers are needed to be mixed up. The process of backbone generated feature 

combination happens in the neck. Finally, precise object detection happens in the head 

part of the network. 

Object detectors, as previously said, are classified into two types: one-stage detectors 

and two-stage detectors. Two-stage detectors separate the tasks of object classification 

and localization for each object. One-stage detectors, on the other hand, make 

predictions for object localization and classification at the same time in a single pass. 

YOLO is a one-stage detector that is faster as compared to two-stage detectors. 

Previous version of YOLO, i.e., YOLOv3 enhanced accuracy over prior models by 

adding an objectness score to the bounding box prediction, increasing connections to the 

backbone network layers, and making predictions at three distinct granularity levels to 

improve performance on tiny objects. 

The following YOLOv4 object detector backbones are considered in the official 

YOLOv4 paper: CSPResNext50 [47] [48], CSPDarknet53 [47][49] and EfficientNet-B3 

[50]. DenseNet [53] has been improved in CSPResNext50 and CSPDarknet53 to divide 

the feature map of the base layer by replicating it and transmitting one copy via the 

dense block as well as direct to the next point. CSPResNext50 and CSPDarknet53 are 

designed to eliminate computational constraints in DenseNet and boost learning on an 

unmodified version of the function map where DenseNet was designed to connect layers 

in CNNs to minimize the loss of gradient problem (as it is difficult to back propagate 

loss signals across a very deep network), improve feature propagation, enable the 

network to reuse features, and decrease the number of network parameters. Finally, 

YOLOv4 network implements CSP-Darknet53 [47][49] for the backbone network, 

based on intuition and a lot of experimental results. 

2.1.1.1. Feature aggregation 

To prepare for the detection step, the next task in the object detection procedure is to 

mix and match the features generated in the network. Here we will discuss about the 

neck part of YOLOv4. Typically, the neck components flow up and down between 

layers, with only a few layers attached at the convolutional network's end. YOLOv4 has 

investigated a few potential alternatives, the most notable of which is the Feature 
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Pyramid Network (FPN). [52] and PanNet [51] (Path Aggregation Network, designed 

for pan-sharping) 

 
Figure 2.4: Network flow architecture – (a) FPN [52] employs a top-down approach to 

fusing multi-scale features ranging from level 3 to level 7. (P3-P7); (b) the PANet [51] 

adds an extra bottom-up direction to the top of the FPN [52]. 

2.1.1.2. Spatial pyramid pooling (SPP) 

In addition, YOLOv4 [11] attaches an SPP [54] block after CSPDarknet53 to expand 

the receptive field and isolate the most significant features from the backbone. SPP [54] 

has a significantly different approach for identifying items at different sizes. In the end 

of the last convolutional layer, it substitutes the last pooling layer with SPP layer. The 

function maps are spatially broken into m × m bins of m, say, equal to 1, 2, and 4, 

respectively. After that, a maximum pool is added to each bin for each channel. This is a 

fixed-length form that can be investigated further using FC-layers. 
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Figure 2.5: Typical spatial pyramid pooling layer in the network. In the figure conv5 

layer's filter number is 256, and conv5 is the final convolutional layer.[54]. 

In YOLO neck, the SPP block [54] is adjusted to maintain the spatial dimension of the 

output. Maxpool is applied to the sliding kernel of dimension 1×1, 5×5, 9×9, 13×13 

kernels to retain spatial dimension and features maps of varying kernel sizes, which are 

joined together as outputs. 

 

Figure 2.6:  SPP block (Separate) and SSP block embedded in YOLO. [11]. 
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2.1.1.3. Freebies 

YOLOv4 [11] employs the so-called "Bag of Freebies" because it improves network 

efficiency without increasing output inference time. A large portion of the Freebies Bag 

is due to an increase in data. In YOLOv4, there are many sorts of Data Augmentation, 

and employing data increase in computer vision is quite significant, and it's highly 

suggested to get correct values out of these models. The authors employ data 

augmentation to increase the size of their training set and expose the model to semantic 

contexts that they would not have encountered otherwise. 

The most recent contribution is to increase data via mosaicking, which combines four 

images and teaches the model to locate smaller objects while paying little attention to 

surrounding scenes that are not located around the object. Self-adversarial training is 

another unique contribution that authors contribute to data growth. SAT attempts to 

identify the region of the image on which the network relies the most during training, 

then modifies the image to hide this dependency, forcing the network to generalize to 

other features that can aid in detection. 

Complete Intersection-Over-Union (C-IOU) loss is also used to update loss function by 

YOLOv4 [11] developers. In comparison to the normal IOU loss, the C-IOU loss 

introduces two new ideas. The first idea is to calculate the distance between the actual 

and predicted bounding box center points, which is called central point distance. The 

second is a comparison between aspect ratios of the genuine bounding box and the 

predicted bounding box, hence we can measure the quality of the predicted bounding 

box using these three metrics. 

2.1.1.4. Specials 

YOLOv4 [11] employs so-called "Bag of Specials" techniques, because they bring 

dramatic improvements to inference time but a large boost in efficiency, making them 

worthwhile. The Activation function, which transforms features as they pass through the 

network, was one of the specialties. With traditional activation mechanisms like Relu 

[55], it can be hard to get the network to push feature development to their full potential. 

Research has therefore been done to build functions that slightly enhance this method. A 

new activation function is proposed, Mish [56], which can be identified as:  

𝑓(𝑥) = 𝑥 tanh(softplus(𝑥))                                         (2.1) 
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Where soft plus is another activation function and is given by ln(1 + 𝑒𝑥). Many studies 

involving performance comparison concludes MISH among best activation and the 

reason behind is the smooth soft plus function that returns MISH as better performer 

among others. 

 

Figure 2.7: Mish activation function graph. 

Experiments have shown that Mish appears to perform better than both Relu and Swish 

[57], along with other typical activation functions in many deep networks across 

demanding datasets. The non-monotonic function property of Mish [56] also helps to 

retain small negative values, thus stabilizing the gradient flow of the network. The most 

widely used activation functions, such as RELU [55]: 

                  𝑓(𝑥) = {
0,          if 𝑥 < 0
𝑥,     otherwise

                                               (2.2) 

    and Leaky Relu: 

                 𝑓(𝑥) = {
0.01 𝑥,   if x < 0
𝑥,         otherwise

                                             (2.3) 

fail to retain negative values since they provide little or no output for negative inputs, 

and thus most neurons die out. Besides its good performance, one drawback of Mish 

activation is its high computational cost as compared to the RELU activation function. 

The authors additionally employ the Distance Intersection-Over-Union (D-IOU) in 

Non-Max-Suppression (NMS) to identify the estimated bounding boxes. The network 

can predict numerous bounding boxes around single object, and it would be ideal to 
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efficiently find the optimal one for batch normalization. The authors additionally utilize 

Cross Mini-Batch Normalization (CMBN) because conventional Batch Normalization 

cannot operate if the batch-size is set to tiny, with the premise that it can be operated on 

GPUs with lower relative processing capacity. Many batch standardization techniques 

require multiple combined GPUs to be executed. 

Finally, YOLOv4 also uses the Drop-Block regularization [58] in which different 

portions of the picture are hidden from the first layer. It has proven to be a powerful 

regularization method for object recognition. Drop-Block is a strategy that forces the 

network to learn features that it cannot learn otherwise. It removes contiguous regions 

from a layer's feature map rather than independent random units. For example, in 

Figure 2.8 below, a contagious block of (n x n) size is dropped from the feature map. 

The algorithm takes two inputs as parameters the n x n block-size and the γ, which 

means number of activations to be dropped. The motivation behind this is that the 

network should be able to distinguish either the front or the back of the car and correctly 

label it as a car. 

 
Figure 2.8: An example case (Drop block regularization), half object is appeared [58]. 

2.1.2. Improved yolov4 for Aerial Object Detection 

YOLOv4 [11] outperforms its ancestor object detectors (YOLO 9000, v1, v2, v3) and 

other detection algorithms like RCNN and Faster RCNN. However, Yolo authors and 

related research articles have chosen and evaluated their work performance on COCO 

benchmark [59] which is a rich dataset in both qualitative and quantitative aspects. 

More than 200,000 images and 80 object categories are included in the COCO trainset, 
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validation, and test sets. However, if we consider object detection in aerial images then 

there is lack of such dataset in comparison with COCO. Hence small object detection is 

a challenging task for which state-of-the-art object detectors are yet to prove their 

applicability and high level of accuracy.  

Analyzing the available datasets, we discover Visdrone to be a cutting-edge dataset in 

the field of UAV object detection and tracking. This dataset comprises four separate 

tasks: object detection, single object tracking (SOT), multi object tracking (MOT), and 

crowd computing. However, we solely consider the object detection task. In dataset the 

object dimension to image size ratio is quite low, due to which many object detectors 

fail while featuring out small objects. Furthermore, because drones lack high-end GPU 

infrastructure, so visual object detection is extremely slow. As a result, those object 

detection algorithms are required which can provide real-time and accurate results on 

existing embedded devices for drones. We intend to sort out this problem by proposing 

changes to the YOLOv4 [11] architecture that increase mean average precision (mAP) 

while maintaining real-time inference speed. Our goal is to set up object detection 

models that are accurate and real-time for embedded devices mounted on unmanned 

aerial vehicles UAVs. 

The CSPDarknet53 backbone, the Mish activation function, and the FPN-PAN network 

are all used by the YOLOv4 network. CSPDarkNet53 [47][49] is a hybrid of YOLOv3 

[10], Darknet53, and Cross Stage Partial Network (CSPNet). The CSP [47] connection 

is very basic and may be used with any neural network. The concept is that half of the 

output signal follows the main path (which provides more semantic information due to 

the huge receiving field) and the other half follows the bypass path (preserves more 

spatial information with a small perceiving field). As a result, these CSP blocks in the 

Darknet-53 backbone increase CNN learning while consuming less memory and 

performing fewer calculations. Each of these CSP modules shrink the image size by its 

half. Therefore, if input image dimension is 608x608 then at the final layer of backbone, 

feature map size will be 416/32 = 13x13. 

2.1.2.1. Architectural modification 

While sorting out the problem of accurate small object detection, we did modifications 

in the neck part of the model, where we pass the output of the fourth CBM block into an 

up-sampling layer while setting the up-sampling factor to 4 and pass this obtained up-
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sampled feature vector through a CBM and CSP block. This refined and fine-grained 

feature of small objects leads to increased accuracy. In terms of implementation, the up-

sampling layer comes before the 54th convolutional layer, and up-sampled features are 

re-routed in the configuration file towards the 23rd convolutional layer of the CBM 

block. This is an equivalent concept to skip connection, in which the output of one layer 

is not only sent to the next one, but also certain other layers as well. This idea comes 

from DenseNet, which uses short connections and skip connections to create a deep 

network by connecting each layer to every other layer. 

In the backbone stage, every CBM block performs a down-sampling of a given image.  

One of these three feature maps that are utilized for prediction has size 52x52. We 

refine the feature size in the CBM block, after the CSP block. After up-sampling, the 

resulting output is 104x104, which is then sent to convolutional block 23 for a more 

refined and robust feature for final prediction. So, the reason behind this technique is to 

improve feature quality in the final prediction layer where losses are computed. 

The experiments related to improved YOLOv4 are provided in Chapter 3, Section 3.1. 

  

(a)                                                          (b) 

Figure 2.9: Block diagram of YOLOv4 (a) [11] and Modified YOLOv4 (b) [60], where 

component details in (a) and (b) further describes CBM, CBL, SSP [54] etc. blocks 

used in architectures. 
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2.2. Deep Neural Network Optimization for Real-Time Execution 

This section particularly focuses on how to make our detection models operate in real-

time by applying certain techniques which includes TensorRT Optimizations, Multi-

Threading and Parameters reduction applied on detection network. 

2.2.1. Targeted embedded platform 

Beside our work on software side, our final goal is a successful deployment of Object 

detectors and trackers on targeted embedded platform. As this research work is mainly 

focused on Wide Area Surveillance (WAS) and related data is UAVs Imagery so our 

deploying devices are UAVs which mainly have limited capacity available in terms of 

weight and power for processing captured data. Thanks to Nvidia for their excellent 

research in compact hardware platforms for embedded devices especially Jetson boards. 

We choose Jetson AGX Xavier, a smart embedded platform that can operate on 30 

Watts of power. It is comprised of 8 CPU cores, 512 Cuda and 64 tensor cores which 

can be managed to operate in real-time if algorithms can be designed in efficient way so 

that they can efficiently consume available resources. On the other hand, Deep Learning 

models require much memory and processing cores to operate. To let them work in 

efficient manner, deep networks can be compressed using model slimming and pruning 

techniques. Mainly such techniques are used when results are required in real-time. 

Here we will discuss some of those approaches and their work-pipeline to attain real-

time promising results 

2.2.2. Multi-threading 

Multi-threading also helps in increasing speed on detection especially when live feed 

from cameras is coming as input to deep models. Mainly it helps on CPU cores where 

the processing pipeline is not distributed as in GPUs. Hence temporarily virtual threads 

are created on multi core CPUs to improve processing time. A typical detection pipeline 

consists of three main steps: preprocess camera feed, Inferencing and post-processing 

after getting inference output (classes and bounding box). Explaining more precisely, 

first   camera frames are pre-processed like reading frame from camera, transforming 

frame into cv.MAT format, resizing them according to model input and then feed them 

into the network so all preprocessing is done in one thread. Similarly, after model return 

detection results, again some post processing is required like NMS, plotting bounding 
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boxes on each object and re-scaling of box coordinates etc. So, all these postprocessing 

is done in third thread. Finally, after implementing multi-threading, we manage to 

increase FPS. 

There are two implementations of detection pipeline at running time when calculating 

FPS. One implementation is single pipeline in which first, video frames are initialized 

from file or camera, second, frames are converted in to input layer dimensions in our 

case 416 x 416. third, after forward passing through whole network, detections and 

corresponding bounding boxes are embossed in image if display is needed; otherwise, 

we write the class and bounding-box information in the detection file. 

The second implementation is to divide these steps in three different CPU based threads. 

Thread (video capture) will just grab frames from file and store. 2nd thread (inference) is 

reading image and make image ready to be load on network, this thread take image from 

thread process it and send to the network while network return results in three sub parts 

(i.e. image tensor, classes, confidence score and bounding boxes) to the queue thread 

(Drawing) which do post processing like scaling up boxes for localization and then 

draw or write in the files. Workflow of both implementations are clearly explained in 

Figure 2.10 and Figure 2.11. 

     
Figure 2.10: Single Threaded pipeline workflow. 

 

 
Figure 2.11: Multi - Threaded pipeline workflow (Aero head shows the flow of data 

between 3 independent working threads). 

 GPU 

 GPU 



42 

We also compare the performance of threaded implementation under different system 

configurations i.e. RTX 2080TI server and embedded computer Jetson AGX Xavier. 

Results in Table 2.1 and Table 2.2 reveal that multi-threading implementation yields 

2x faster speed performance then Single threaded pipeline. It also reveals that multi-

threaded approach works better with a higher number of CPU cores. For instance, in 

Table 2.1 FPS didn’t increase on Xavier machine having 8 cores as compared to the 

Table 2.2 for RTX 2080TI Server having 32 cores. 

Table 2.1: FPS Comparison among Single-Threaded VS Multithreaded Pipeline on 

RTX 2080TI. 

RTX 2080Ti YOLOv4 Modified YOLOv4 YOLOv3 

Single Thread FPS 43 43 40 

Multi Thread FPS 80 80 85 

Table 2.2: FPS Comparison among Single-Threaded VS Multithreaded Pipeline on 

AGX Xavier. Here FPS didn’t increase due to a smaller number of CPUs cores in Jetson 

AGX Xavier (8 CPU Cores) as compared to previous table for RTX 2080TI Server (32 

CPU Cores).  

AGX Xavier YOLOv4 Modified YOLOv4 YOLOv3 

Single Thread FPS 15 15 17 

Multi Thread FPS 16 16 22 

2.2.3. Tensor RT (TRT) 

Deep neural Networks are based on certain layers or operations like convolutional layer, 

nonlinear activation functions and pooling layers etc., that are mainly used for deep 

feature extraction, providing nonlinear feature representation, and filtering out more 

expressive features respectively and a set of finally fully connected layers are deployed. 
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 Figure 2.12: Tensor RT workflow pipeline [1]. 

Deep models are trained using one of the common deep learning frameworks like 

TensorFlow, PyTorch and Keras etc. These frameworks implementation is based on 

parallel processing on GPUs using Nvidia Cudnn library that provides many atomic 

operations like convolution, matrix multiplications and so on, written in Cuda language 

and provide enhanced speed while training. But still, this model optimization is not 

enough when we deploy our models on embedded GPUs and devices due to their 

limited resources. So here another library called Tensor RT helps a lot to port model to 

its optimized form. TensorRT has nothing to do with training stage of the model but is 

used just to optimize inference performance of the input model. 

It contains two parts, one is Optimizer which optimizes model to less memory occupied 

graph storage, which is done for once and later it is used. Here we must fix some 

parameters like batch size (examples passed at once during a single inference) and 

Precision like FP32, FP16, INT16 and INT8, which is fixed at this level to optimize the 

model parameters. This finally generates the optimized model called TRT plan which 

runs on runtime Tensor RT engine for production on embedded device or clouds etc. 

Importing model to Tensor RT is easy as it supports onnx format which support all type 

of deep learning frameworks like TensorFlow [27], PyTorch [62], Theano [63], Caffe 

[65] or MXnet [66] etc. 

2.2.3.1. TensorRT optimizations 

With TensorRT, we can do mainly 3 types of model conversion for optimized format 

i.e. FP32, FP16 and INT8 quantization. We will explain and implement these methods 

on our base detection model finetuned on Visdrone dataset. Briefly in TensorRT, once 
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we import model after defining its structure, we must go for these several steps towards 

optimization. 

 

 Figure 2.13: Vertical fusion Input – Un Optimized Graph [1]. 

 

 

 Figure 2.14: Vertical Fusion graph – Semi Optimized Graph [1]. 
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 Figure 2.15: Vertical + Horizontal Fusion Optimized graph [1]. 

2.2.3.2.  Layer and tensor fusion 

Referring to above figure of un-optimize and optimized graph, on left hand side (Figure 

2.13) we have three different layers Conv, Batch, Relu but in tensor RT version we 

combine and merge it as one layer (Figure 2.14 which will be faster than three separate 

layers when called. This is called vertical fusion. Another case we have 3 1x1 

convolution layers which have the same input, this could also be merged in one wide 

convolution known as horizontal fusion (Figure 2.14). Another concept in TensorRT is 

called elimination of concatenation layers. In the Figure 2.14 the 3 layers output is 

going into one layer. We can see that instead of performing the same operation multiple 

times (Figure 2.15) and using concatenation operation each time, we define the layer 

output once in a fixed memory location, but it will be updated multiple times by other 

layers if needed. Hence TensorRT fuses such layers which are unnecessary for better 

memory manipulation and find an optimal path in inference graph. 

2.2.3.3. Precision calibration and reduction 

Usually while training at very high precision, Floating Point FP32 accuracy is used 

which provides very high exponent power in the range from i.e. -3.4 x 1038   to +3.4 x 

1038. This level of accuracy is not necessary for all parameters of the network. So, we 
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may have to test different precision levels to attain speed performance. We can also 

downgrade operations to integer level like INT8 or INT16 optimization mode but with 

re calibrating our model weights which again be done with Tensor RT by passing some 

recalibration flags on the dataset. Tensor RT will run inference several times and try to 

find the weights range and then re-calibrate them to let entire network model to work 

properly. Once we get successful, FP16 tensor cores on GPU work very fast in 

computation which leads to faster FPS and less inference time. 

2.2.3.4. Automatic selection of best kernels 

Another approach towards optimizing the network is choosing best operations. For 

example, there are many ways to implement convolutions like via matrix 

multiplications, via Fourier transform or vinaigrette algorithm etc. and they have 

different implementations, tensor RT library will run each layer on a particular GPU and 

will select best implementation. That is why batch size and input size is fixed. As we fix 

our input size, so we can run convolution with different optimized algorithms. Hence 

tensor RT chooses best implemented form of deep learning model with respect to target 

platform or GPU. 

2.2.3.5. Static or dynamic mode 

Referring to TensorFlow ML framework, there are two TensorFlow based TRT modes: 

static which is a default mode and dynamic mode. If the flag (specified in the 

TensorFlow API as dynamic op) is set to False, static mode is allowed; else, dynamic 

mode is triggered. The primary distinction in between these two methods is that in static 

mode, TensorRT engines are built offline, whereas dynamic engines are generated 

during execution (by TrtGraphConverter.convert). If we have a graph with unknown 

feature shapes, such as camera frames with different resolutions, we can use dynamic 

mode. Even though TensorRT requires all shapes to be fully described, the dynamic 

mode enables us to have variable shapes inside our model. TF-TRT creates a new 

TensorRT engine for each input submitted to the model in this mode. For instance, 

suppose we can build an image classification network that operates on image data of 

any size and shape [m n, 3]. If we first transmit a few of images to a model with the 

dimensions [8, 224, 224, 3], a fresh TensorRT engine with these dimensions will be 

constructed. The initial batch will take longer to complete than usual during this 
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moment. If we submit more images of the similar shape [8, 224, 224, 3] in the future, 

the already generated engine is used automatically with no additional latency. 

Submitting a batch of a various shapes, on the other hand, will entail the creation of a 

new engine for just that shape. The max cached _engines parameter will be used to track 

the amount of engines that are saved for every TRTEngineOp inside this graph at any 

given moment. Static mode, on the other hand, does not aid in post-training 

measurement (INT8 calibration). If users attempt to use static mode for INT8 

calibration, conversion switches to dynamic mode. 

 
 Figure 2.16: Block diagram of model conversion pipeline to TRT format. 

2.2.3.6. Variable Batch Sizes 

TensorRT uses the input batch size as one of the metrics to select the most capable 

CUDA kernels. When dynamic op is set to true in both (TF 1.x and TF 2.0), the batch 

size is specified as the first dimension of the inputs and is calculated by the input shapes 

throughout execution. 

2.2.3.7. Regulation of Minimum Node Numbers in TensorRT Subgraphs 

TensorRT optimizes TensorFlow subgraphs provided by a subset of operators. If the 

subgraph contains a small number of operators, then it might not be effective to start a 

TensorRT engine for that subgraph as opposed to running the original subgraph. By 

using the minimum_segment_size argument, we can control the size of subgraphs that 

are to be optimized. When this option is set to x (3 by default), TensorRT engines are 

not generated for subgraphs with nodes fewer than x. It is critical to increase the 

minimum segment size to avoid creating very compact TensorRT engines (i.e., 

employing a very small number of layers). This will help protect the tiny TensorRT 

engines from future overheads and can get around any possible faults that occur from 

such engines. The original document report [1] shows that the default value of 3 gives 

most models the best result. 
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2.2.3.8. Memory management 

TensorRT keeps track of weights and GPU activations. Each engine in the 

TRTEngineOp cache has a scale that is generally equal to the size of the weights. 

TensorRT uses TensorFlow allocators to allocate memory, hence all TensorFlow 

memory settings frequently refer to TensorRT. As instance, if the TensorFlow Session 

config parameter config.gpu.options.per.process.gpu.memory fraction is assigned as 0.3, 

TensorFlow will receive 30% of the GPU memory for all internal functions, including 

with TF-TRT module and TensorRT engine. This means that if TensorRT requests more 

memory than TensorFlow has available, TensorFlow will crash. TensorRT may employ 

algorithms that require no more than the maximum size of workspace in bytes; however, 

the overall workspace requirement of all TensorRT procedures may be less than the 

maximum workspace size, i.e. (TensorRT might not having such algorithm that requires 

more workspace). TensorRT just distributes the required workspace in such situations 

rather than determining what the user needs. 

2.2.3.9. Quantization-aware training 

TF-TRT is also used to transform INT8 inference models that have been trained with 

quantization. The error from quantized weights and tensors to INT8 is represented 

during train period, enabling the model to update and minimize the loss. 

The approach for quantization-aware training is as follows: Before training the model, 

the TensorFlow graph must be updated with quantization nodes as usual. Quantization 

error will be described by the quantization nodes by clipping, resizing, normalizing, and 

un-scaling tensor values, enabling the model to adjust to the error. We have the option 

of using fixed quantization ranges or making them trainable variables. The question 

here is how a 32-bit floating-point precision model, which represents billions of 

different numbers, can be reduced to an 8-bit integer with only 256 possible values. In 

deep neural networks, weights and activations often have a limited range of values. We 

can maintain good accuracy if we concentrate our valuable 8 bits just in that range, with 

only a little rounding error. TensorRT quantizes using 'symmetric linear quantization,' a 

scaling mechanism from the FP32 to the INT8 range (which in our case is -127 to 127 

for symmetry preservation). If we can determine the range of values for each network 

intermediate tensor, we can utilize that range to calculate the tensor with high precision. 



49 

 

Figure 2.17: x is the input, r is the tensor floating point range, and s is the scaling factor 

in INT8 [1]. The above equation accepts x as an input and returns an INT8 quantized 

value. 

The INT8 inference is modelled as precisely as possible during training. This indicates 

that a TensorFlow quantization node should not be inserted in sites where quantification 

will not be performed during inference (due to a fusion that has already occurred). 

TensorRT commonly merges operation patterns like Conv > Bias > Relu or Conv > 

Bias > Batch-Norm > Relu, therefore inserting a quantization node between each of 

these ops, as stated under the fusion category, would be inappropriate. It is advised to 

quantize nodes after activating ops such as Relu. If a required quantization range is 

lacking, TF-TRT can generate an error, allowing us to add that range to our graph and 

repeat the procedure. Alternatively, quantization nodes can be automatically added in 

the correct positions in our model using a method like tf.contrib.quantize, however this 

is not assured to model inference accurately using TensorRT, which can have a 

detrimental impact on our performance. 

As our target platform is embedded GPU boards so our TensorRT transformed models 

will be tested on Nvidia Jetson AGX Xavier board. In Chapter 3, Section 3.2. FPS VS 

Accuracy tables will be plotted for better understanding of best techniques. 

2.2.4. Deep model compression by parameters reduction 

Another very significant approach to make light weight models in constructing real-time 

system is Parameter Reduction or Pruning. Presently, it becomes a particular field to 

study behaviors of deep learning models and then tweak their structure either by 
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reducing their parameters or transforming them to operate in mixed precision mode. All 

such techniques are performed before the deployment of ML models, especially on such 

machines where computation resources are limited such as embedded platform or fast 

pace working pipeline is needed. ML Engineers thoroughly investigate about trainable 

parameters and after performing several experiments to reduce trainable parameters, a 

customized model is generated, which can speed-up the inference time with zero or very 

low accuracy loss. We comprehensively investigate our object detection model 

(YOLOv3 and YOLOv4) by its structural and parametric aspects as described in 

CHAPTER 2, Section 2.1.1. Later we perform several pruning techniques which are 

explained in up-coming section under this chapter. 

2.2.4.1. Training of base model 

The goal of basic training is to create a huge model with great precision. Its accuracy 

and parameter selection are important for further sparse training, and it can also be used 

for knowledge distillation, which is another technique to learn pruned model from base 

model. It is not suggested to neglect basic training to directly prune or sparse the model. 

In our case we choose Visdrone 2019 object detection dataset [2] for training. Visdrone 

is a challenging dataset due to small objects and limited data examples; so, for basic 

training, we select YOLOv3 [10] and YOLOv4 [11] models as a base model to train on 

Visdrone dataset to get more accurate and precise large model in terms of parameters 

and memory size. 

2.2.4.2. Sparse training 

A sparse matrix is a matrix containing many zero entries. While applying operations on 

matrices, the resultant matrices sometimes contain many zero entries or a number very 

close to zero like 0.00001. Applying operations like multiplication on each of such 

entries and storing them in a memory lacks performance in real-time during inference. 

Therefore, if we remove such entries and transform matrices to compact form, we get 

gain in memory size and speed in training and inference. On the other hand, removing 

all these zeros will probably have an impact on network accuracy or performance of the 

base model. Experiments reveal that applying sparsity during training causes a drop in 

accuracy; but after passing sparse network through several epochs, accuracy is regained 

to the same level as it was before. While implementing sparsity training, a sparsity 
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factor is set which can be considered as a threshold for model parameters. One 

important observation to get benefit from sparse training is that; the higher the sparsity 

factors the lower should be the learning rate. Sparsity factor should be set in this way 

because it leads to better results, but of course it claims more time to regain the 

accuracy after instant drop. This inverse relation between learning rate and sparsity 

factor can be written as follows:  

 α ≈   
1

𝐴
 +  𝑥 , 𝐴 > 0                                              (2.4) 

Where α is a hyperparameter representing learning rate and A is the sparse factor and 𝒙 

is the increment factor to sparsity and is always positive. 

Figure 2.18 shows difference between pre and post specified tensors which results in 

faster execution and inference time. 

 
Figure 2.18: The effect after sparsifying the given tensor, resulting 2 times faster 

execution [64]. 

From our experiments in training model with sparsity factor, we observed base model 

accuracy drops significantly (Figure 2.19) but later after long trade-off between mAP 

VS epochs, it restores mAP of the initial base model, hence one can obtain extra sparse 

matrices and reduce memory operations with sparsity training [67]. 
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Figure 2.19: Accuracy restoration while sparse training. 

2.2.4.3. Channel pruning 

After restoring accuracy by applying sparsity on base model, channel pruning is applied, 

which reduces model parameters by cutting some connections and replacing or 

reconnecting them. Channel pruning is a kind of limited or protected pruning approach, 

meaning it has less pruning ratio compared to other methods. So base model 

architecture is modified by not cutting the layers; instead, it simply prunes the channels. 

Normally, there are five groups of 23 shortcut connections in YOLOv3, based on the 

add operations. To ensure that the two input dimensions of the shortcuts are the same 

after applying channel pruning, this pruning avoids the difficulty of dimensional 

processing by not cutting the layers directly connected to the shortcuts. Also, it 

produces a higher pruning rate on the channels, which aids in the reduction of model 

parameters. Channel pruning is especially powerful if it is used in addition with other 

pruning strategies. In our experiments channel pruning is used in slim pruning and 

results in reduction of 14 million parameters of base YOLOv3 model (Table 2.8, Table 

2.9). After applying, even though number of parameters and model size are decreased, 

but at the same time drop in accuracy is also observed. So, we try this process with 

different percentage numbers. Finally, we obtained reasonable accuracy by applying 

fine-tuning on the generated model after converting it to darknet weights file with 

corresponding cfg file. 
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2.2.4.4. Layer pruning 

This approach is an extension of the prior channel pruning strategy. It analyzes the 

preceding CBL of each shortcut layer, sorts the gamma averages within each layer, and 

prunes the smallest layer. When a shortcut structure is cut here, a shortcut layer and the 

two convolutional layers next to it are also cut. To preserve the YOLOv3 structure's 

integrity, all layers linked to the shortcut layer must have the same channel number. To 

match the feature channels of each layer that are connected by a shortcut layer, we loop 

through the pruning masks of all connected layers and perform an OR operator on all 

these pruning masks to create a final pruning mask for these layers. 

Note that only shortcut module in the backbones is considered here. However, the 

YOLOv3 architecture includes 23 shortcuts. Removing 8 shortcuts cuts down 24 layers, 

whereas cutting 16 shortcuts means dropping 48 layers. 

In our experiments, we consider 6 shortcuts to be pruned. For one shortcut, 2 CBL 

(Convolution - Batch Normalization - Leaky Relu) block cut-off from the network, 

which means (6 x 2 = 12) layers are erased. This reduces around 18 million parameters. 

Finally, fine tuning of this model makes it more precise and accurate in the terms of 

mAP. We performed certain experiments for Visdrone data. Experiments results are 

mentioned in results section in tabular form showing parameters reduction, 

improvement in inference time and corresponding accuracy loss. However, after fine-

tuning the network over augmented data we achieve 4% higher mAP on Visdrone test-

dev dataset as compared to the base model, which is explained in detail in Section 3.4. 

2.2.4.5. Network slimming 

Most of the modern CNNs use batch normalization [68] as a common strategy to 

achieve quick convergence and superior generalization performance. After a 

convolutional layer, it is common practice to add a BN layer with channel-wise 

scaling/shifting parameters. As a result, the parameters inside the BN layers can be used 

directly as the scaling factors required for network slimming. It has the significant 

benefit of causing no network overhead. In fact, this could be the most effective method 

for determining important scaling factors for channel pruning. 

Training with sparsity-induced regularization at the channel level results in a model 

with multiple scaling factors close to zero. Thus, channels with scaling factors with 
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values close to zero are pruned by eliminating all input and output connections, as well 

as the weights associated with them. All layers prune the channels using a global 

threshold defined as a given percentage of all scaling factor values. For example, by 

setting the percentile threshold to 0.7 will prunes 70% of channels with lower scaling 

factors. However, when the pruning ratio is large, pruning may cause some temporary 

accuracy loss. However, the subsequent fine-tuning procedure on the pruned network 

can help compensate loss in accuracy. Figure 2.20 shows the flow-chart of network 

slimming [69]. 

In YOLOv3 there are plenty of BN and Conv layers called CBL blocks, hence the 

whole pruning technique is applied to these layers to get maximum advantage. 

 

Figure 2.20: Network Slimming step by step workflow. 

As shown in Figure 2.14 above, the idea behind slimming is to introduce a scaling 

factor for each channel, and then multiply it with the output of the channel. Then jointly 

train the network weights and these scaling factors, and finally directly remove the 

channels with small scaling factors and fine-tune the pruned network. In particular, the 

objective function is defined as:  

𝐿 = ∑ 𝑙(𝑓(𝑥, 𝑊), 𝑦) + 𝜆 ∑ 𝑔(𝛾)                                      (𝟐. 𝟓)

𝛾𝜖𝛤(𝑥,𝑦)

 

Among here, (x, y) represents the training data and labels, W are the trainable 

parameters of the network, and the first term is the training loss function of the CNN. g 

(𝜸) = |𝜸| denotes L1 regularization on scaling factor, and 𝜆 is the balancing factor of the 

two terms. In the experiments, L1 regularization is chosen. The sub-gradient descent 

method is used as an optimization method for the unsmooth (non-derivable) L1 penalty 

term. We can also replace the L1 penalty term with a smooth L1 regular term and avoid 

using sub-gradients at unsmooth points. 

Technically this approach is based on two main points: 

1- To use the scaling factor γ as the pruning factor in in batch normalization, that is, the 

lower the γ, the less essential the associated channel is, and it can be pruned. 
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2-  To reduce the size of γ, add an L1 regularization term about γ to the target equation 

to make it sparse, this allows automatic pruning during training, which was not seen 

in earlier model compression strategies. 

Utilizing these above points there are further approaches having slightly differences to 

prune the network but reveals better results. 

2.2.4.6. Normal pruning 

In normal pruning following are the steps implemented on YOLOv3 architecture: 

1. Find the BN layer's associated index that has to be cropped. 

2. The gradient obtained by the L1 regularization is added to the gradient of the BN 

layer before each backpropagation.  

The trainable scale factors inside BN layers are used as channel significance 

indicators. Channel-wise sparsity training is used to efficiently distinguish 

significant channels from unimportant channels by imposing L1 regularization on γ. 

In YOLOv3, BN layers follow convolution layers and normalize convolutional 

features using small batches approach and is given by formula: 

𝑦 =  𝛾 ×
𝑋  −𝑋̅

√𝜎2+ 𝜀
 +  𝛽                                          (2.6) 

Where 𝜎 and 𝑥̅ denotes mean and variance in mini batch and γ and 𝛽 represents 

scaling factor and bias respectively. Training objective with sparsity training is 

composed of both object detector (YOLO) and L1 regularization given by                   

𝐿 = 𝑙𝑜𝑠𝑠𝑦𝑜𝑙𝑜 +   𝑓(γ). 

3. Determine and set the cropping rate by retrieving the absolute value of the BN 

layer's parameter of the cropped layer into a list and sorting from small to large. As 

an instance, if the cropping rate is 0.8, the cropping threshold equals the value of the 

0.8 quantile in the list. 

4. Set the γ of the channel below cropping threshold to 0, then check for the clipped 

mAP value. The bias value β should be non-zero. 

5. Make a new model structure and combine β into running mean computation in BN 

layer, next to the convolutional layer. 

6. Finally, build a new model file. 
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2.2.4.7. Optimized normal pruning 

This technique is very similar with normal pruning, explained earlier. The only 

difference is that here shortcut layer in the architecture is pruned while avoiding cutting-

off the entire layer.  

Shortcut Layer is basically a skip connection, determining that output of the previous 

layer and any other layer is merged. As an instance, in yolo architecture definition file, 

if the from parameter is set to -3, then it indicates that the shortcut layer's output is 

obtained by adding feature maps from the third preceding layer backwards from the 

shortcut layer. The first three steps in this pruning technique are the same as in the 

normal pruning. After setting the clipping threshold, we will 

1. Extract the channels whose parameters are less than the clipping threshold; and if 

the channel γ of the entire layer is lower than the threshold, then to avoid the entire 

layer from being clipped, keep the channels with larger γ’s value in the layer, so we 

should set threshold according to the layer parameters. 

2. The mask of the shortcut layer is then merged, and the union strategy is adopted 

easily because we didn’t cut the whole layer from original architecture, instead we 

choose such layer where moderate channel values are present, which avoids whole 

layers to be clipped. 

3. Verify the mAP of the model. 

4. Finally, we will compare the number of trainable parameters and inference speed. 

5. If it is accurate enough in comparison to base model, generate new cfg and save the 

weights, otherwise fine-tuning can be applied. 

2.2.4.8. Shortcut pruning 

Shortcut pruning is pretty like normal pruning in terms of technique. It analyzes the 

CBL of each shortcut layer, sorts the Gamma values of each layer, and selects the least 

values to prune convolution layers with shortcuts. In implementation, mask of first 

convolutional layer is used in each shortcut group. Hence in total 5 masks are used for 

convolutional layer pruning for 5 shortcut layers present in architecture. This does not 

reduce number of layers but decrease number of channels to 1, instead of cutting them 

entirely. 
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2.2.4.9.  Layer channel pruning 

This strategy is the joint combination of Channel as well as Layer pruning, meaning 

cutting layers and channels at the same time. Layer and channel pruning can be used to 

reduce the model's width and depth. It may be used in both simultaneous and iterative 

pruning modes to create a good recipe towards parameter reduction. This approach of 

simultaneous layer pruning, and channel pruning is also applied on our base models to 

facilitate the comparison of pruning effects. 

The experiments related to all pruning techniques are provided in Chapter 3, Section 

3.3. 

2.3. Multi Object Tracker (MOT) Deployment 

As our main goal is to design a real-time multi object tracker, so after applying all the 

techniques proposed in previous chapters, we select best of object detection models to 

embed in a tracker, that can perform in real-time and maintain a reasonable trade-off 

between mAP (Mean Average Precision) and FPS (Frames Per Second). Based on our 

all simulations we prefer YOLOv3 base layer channel pruned model due its good mAP 

and lower number of layers. Its mAP is 30 and recorded frame per seconds are 23 on 

jetson Xavier. Turning it to mixed precision mode like FP-16 even raises FPS above 40 

which is quite enough to perform tracking in real-time. Figure 2.21 in Section 2.2.4.11 

shows overall performance of all models being used in experiments. Anyone of these 

real-time models can be selected to use in multi object tracking pipeline either in 

Tracking by Detection or Joint Detection and Tracking (JDE) [41] based Multi Object 

Tracker for tracking purpose. 

2.3.1. The deep sort tracker 

For tracking by detection, we implement Deep Sort algorithm [70] which is based on 

two different CNN pipelines. The first pipeline is object detector which performs 

localization and classification. The second part consists of two sub algorithms (Deep 

Appearance Descriptor and Kalman Filter) which help to generate final tracklets. For 

appearance descriptor another CNN based feature extractor is used which turns each 

localized object in to a well discriminating feature embedding, making it well 

compatible with cosine appearance metric used in evaluation process. The Kalman filter 

helps in measuring the velocity of the detected objects on the eight-dimensional state 



58 

space (u, v, γ, h, x’, y’, γ’, h’) that contains the bounding box center position (u, v), 

aspect ratio γ, height h, and their respective velocities in image coordinates. This 

assumes constant velocity motion and linear observation model, where the bounding 

coordinates (u, v, γ, h) are observations acquired from previous pipeline working behind 

it as an object detector (YOLO).  

2.3.1.1. Assignment problem 

To resolve the relationship between projected Kalman states and newly received 

measurements, the authors construct it as an assignment problem that can be solved 

using the Hungarian [72] algorithm. The method incorporates motion and appearance 

information by combining two relevant metrics. The (squared) Mahalanobis distance 

[71] is used to include motion information between projected Kalman states and newly 

appeared measurements. Mahalanobis distance [71] produces information about 

possible object locations based on motion that are especially useful for short-term 

predictions. This distance between freshly acquired measurements and estimated 

Kalman states is computed as follows: 

d(1)(𝑖, 𝑗) = (𝑑𝑗  − 𝑦𝑖)
𝑇

𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖)                                   (2.7) 

where (𝑦𝑖, 𝑆𝑖) is the i-th track distribution's projection onto measurement space and 𝑑𝑗 is 

the bounding box of acquired detection. The cosine distance [73], on the other hand, 

helps to determine appearance information, which is particularly important for 

recovering identities after long-term occlusions when motion is less discriminative. The 

second metric computes the shortest cosine distance [73] in appearance space between 

the i-th track and the j-th detection and is given by: 

d(2)(𝑖, 𝑗) = mink{ 1 −     𝑟𝑗
𝑇𝑟𝑘

(𝑖)
 | 𝑟𝑘

(𝑖)
 ∈  𝑅𝑖}                            (2.8) 

Here 𝑟𝑗  is the appearance descriptor for detection 𝑑𝑗 and  𝑅𝑖 = (𝑟𝑘
(𝑖)

)
𝑘=1

𝐿𝑖

 is the 

collection of the last hundred (Li = 100) related appearance descriptors, for each track i. 

Hence both metrics i.e. Mahalanobis and Cosine distance complement each other by 

covering different aspects of the assignment problem. To build the association problem, 

both metrics are combined by a weighted sum as follows: 

c𝑖,𝑗 = λ d(1)(𝑖, 𝑗) + (1 − λ)d(2)(𝑖, 𝑗)                                   (2.9) 
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where d(1) represents the Mahalanobis distance between freshly acquired measurements 

and estimated Kalman states and the second metric, d(2), quantifies the shortest cosine 

distance in appearance space between the i-th track and the j-th detection. λ is a 

hyperparameter which can be used to control the influence of each metric on the 

combined association cost between the i-th track and j-th detection. During experiments 

λ was set to 0, as stated by authors that they found setting λ = 0 is a reasonable choice 

when there is significant camera motion. In this way, only appearance information is 

used in the association cost term. 

2.3.2. Joint object detection and embedding (jde) tracker 

JDE [41] tracker is explained in detail in literature review (Section 1.1.6), which is 

faster as compared to other discussed object trackers. Typically, two stage detection 

pipelines (tracking-by-detection) are used in which first stages produce localized targets 

and then for each of these targets in the second stage, during the association step, 

identified objects are allocated and linked to known trajectories. The main difference 

among existing pipeline JDE pipeline and previous approaches i.e. separate detection 

and embedding (SDE) is illustrated in the Figure 2.21.  

  

Figure 2.21: shows a comparison of (a) the Separate Detection and Embedding (SDE) 

model, (b) the two-stage model, and (c) the suggested Joint Detection and Embedding 

(JDE) model [41]. 
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2.3.2.1. Detection pipeline 

In general, the detection branch is identical to the regular RPN, however there are two 

differences. First, the authors modified the quantity, scale, and aspect ratio of anchors in 

their work to adjust to the object, i.e., pedestrians. They set all anchors to a 1:3 aspect 

ratio. The total number of anchor templates A is set to 12, so A=4 for each scale, and 

the anchor's scale (width) spans from around 11 to 512 pixels. Second, they emphasize 

the significance of selecting an acceptable value for double threshold used for 

foreground/background assignment. The authors also establish that an IOU>0.5 

associated with the ground truth roughly ensures a foreground, consistent with the 

generic object detection, but boxes with an IOU < 0.4 associated with the ground truth 

should be considered background rather than the 0.3 applied in general settings. The 

foreground/background classification loss L𝛼 and the bounding box regression loss Lß 

are the two loss functions associated with the detection learning objective. The cross-

entropy loss is denoted by L𝛼 and smooth loss as Lß. 

2.3.2.2. Appearance embedding 

The second goal is to define the learning problem, i.e. to learn a feature representation 

or embedding space in which occurrences of the same identity are near together but 

instances of different identities are far apart. An effective technique for achieving this 

goal is to employ triple loss and optimize it. The triplet loss 𝐿triplet  is given by: 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡  =  ∑ max(0, 𝑓𝑇𝑓𝑖
− − 𝑓𝑇𝑓+)                       (2.10) 

In relation, f represents the embedding for detection d in a frame. 𝑓𝑇 is a mini-batch 

instance chosen as an anchor. 𝑓+ denotes positive sample in relation to 𝑓𝑇, while 𝑓𝑁 

denotes a negative sample. There are various challenges with this simplistic definition 

of the triplet loss. The first is the training set's large sampling space. In the paper, this 

issue is handled by examining a mini-batch and mining all the negative samples and the 

most difficult positive sample in this mini-batch and here 𝑓+ is the most difficult 

positive sample in a mini-batch. 
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2.3.3. Automatic loss balancing 

Each prediction head's learning objective in JDE can be treated as a multi-task learning 

problem. The overall objective is expressed as a weighted linear sum of losses from all 

scales and components. 

𝐿𝑡𝑜𝑡𝑎𝑙  =  ∑    ∑ 𝜔𝑗
𝑖

𝑗 = ɑ,ß,ɤ  𝐿𝑗
𝑖M

𝑖                                     (2.11) 

where 𝜔𝑗
𝑖 are loss weights, (i = 1 to M, j = ɑ, ß, ɤ) and M denotes the number of 

prediction heads. ɑ, ß and   ɤ can be determined as three different loss weights from 

multitask learning problem. In multi object tracking, these three losses can be listed as 

object detection, bounding box regression and prime triplet loss (to predict feature 

embeddings for tracking) respectively. 

2.3.4. Online association 

The JDE model provides the bounding box and apparent characteristics of each target 

for a particular video, allowing the correlation matrix between the newly discovered 

target's apparent characteristics and the current target trajectory to be determined. 

Detected targets can be linked to historical tracking trajectories using the Hungarian 

method. For trajectory smoothing and target position prediction, the model uses the 

Kalman filter. Cosine similarity calculates appearance affinity, and Mahalanobis 

distance is used to calculate motion affinity. The linear assignment issue is then solved 

using the Hungarian approach The Kalman filter updates the motion state of all matched 

tracks, as well as the appearance state. To update the apparent features of the linked 

detection and trajectory, the following formula is used: 

𝑒𝑖
𝑡 = 𝛼 𝑒𝑖

𝑡−1 + (1 − 𝛼)  𝑓𝑖
𝑡                                       (2.12) 

Where, 𝑓𝑖
𝑡 is the appearance embedding of the current matched observation, and the 

momentum term α = 0.9. Finally, observations that appear in two frames in a row but 

are not allocated to any tracklets are created as new tracklets. If a tracklets has not been 

updated in the last 30 frames, it will be terminated. 

2.3.5. Multi – class joint object detection and embedding (MC-JDE) tracker 

From the paper it has been observed that IDF1 score, (correct detections ratio over the 

average of ground-truths and predicted detections) value is low, and more ID switches 

are detected [41], which is one of JDE's drawbacks. The author initially assumed that 
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was due to JDE's poor apparent feature learning, however after replacing the apparent 

feature extraction model with a separate learning, the IDF1 value and ID Switch did not 

change significantly. Finally, the author discovered that this was primarily due to 

insufficient object detection accuracy when more than one pedestrian crossed each 

other. A failure is depicted in the Figure 2.22. The author's future research claims 

to focus on improving detection accuracy when targets are overlapped. 

 

Figure 2.22: Failure case comparison and wrong detection results when detected 

objects have high overlapping, results in more ID switches [41]. 

Among other Multi Object tracking (MOT) algorithms JDE differentiate itself by 

applying one stage tracking pipeline in which location and appearance embeddings are 

produced in a single pass and later embeddings are used to track each associated object 

produced from detection. However, original JDE tracking pipeline is based on Faster-

RCNN [5] (two staged) object detector which is much slower the one stage detectors 

like YOLOv3/v4 [10][11]. Also, in original implementation JDE tracker consists of 

single class, i.e., person class, to learn more accurate embedding and then differentiate 

them to track. This makes the scope of JDE quite limited in speed and robustness. We 

train YOLO based object detectors on 10 different classes present in Visdrone Object 

Detection Dataset [61] and then use this multiclass object detection model in JDE 

pipeline, which improves the FPS as well as turns JDE to multiclass detection and 

tracking pipeline thus called Multi Class MC-JDE tracker. Note that in this 

implementation the embeddings are generated from the three YOLO layers present in 

object detection model. Previously it was extracted from the second stage of Faster-

RCNN detection architecture. Hence MC-JDE can detect and track multi objects in less 

time and complexity. 

Simulation results and comparisons for the trackers are provided in Chapter 4, Section 

4.4. 
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CHAPTER 3 

3. EXPERIMENTAL PART 

This chapter includes all experimental details for the topics discussed under theoretical 

part in Chapter 2. 

3.1. Experimental Setup for Small Object Detection 

We performed several experiments on Visdrone dataset under several settings and 

compare results for both models. Visdrone [61] is a complex real-world dataset with 

objects of various sizes, viewpoints, weather, scale, and light. It includes 7215 photos 

for training, 548 for validation, and 1610 for testing. The images were acquired by 

multiple drone-mounted cameras and cover a wide range of locations and crowd 

densities. The dataset contains ten object categories: motor, bus, awning-tricycle, 

tricycle, truck, van, car, bicycle, person, and pedestrian. Training of both models was 

carried out on a GPU machine whose specifications are given in Table 3.1. 

Table 3.1: Hardware specifications of machine being used for experiments. 

We ran multiple trials on the dataset with several image sizes and measured mAP in 

each one. Experiments revealed that the modified YOLOv4 achieved 2% better mAP 

results than the original YOLOv4 [11] at varied image resolutions on the Visdrone 

object detection dataset [2] while operating at same FPS. 

System Configuration 

Operating System 

CPU 

GPU 

RAM 

Hardware memory 

Ubuntu 18.04 

Intel Core (TM) i7-10700F CPU @ 2.90GHz 

2 X NVIDIA RTX 2080 8GB Graphics card (R) 

32 GB 

1 TB 
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Figure 3.1: mAP results of original and modified YOLOv4 [60] for all object classes at 

832x832 image resolution. 
 

Although the training was done at 416x416 image size, the trained model's performance 

was observed at various image resolutions during the testing stage. The results show 

that the model's performance improves as the size of the test image increases, with the 

best performance at 832x832 image resolution. On the test-dev dataset at 832x832 

image resolution, the results of the original and modified YOLOv4 [60] for each class 

are also shown and analyzed. The graph reveals that, except for the bicycle class, 

improved YOLOv4 [61] performs better almost in all other categories. As there are 

more cars samples in the training dataset than any other object, so both models perform 

best on cars. 
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Figure 3.2: mAP calculated on original and modified YOLOv4 for different image 

resolutions at test stage [60]. 

We trained the original YOLOv4 as well as the modified YOLOv4 architecture on 

Visdrone data. Every input image is scaled to 416x416. All tests are carried out with an 

input image size of 416x416 and a learning rate of 0.0001. The reason for using the 

416-image patch is to simplify and limit computations. After every 1000 epochs, the 

weights are saved for mAP calculation and to ensure that the model is learning properly. 

All trained model's results are evaluated on the Visdrone test-dev dataset at various 

image resolutions by using the official Visdrone DET Toolkit [61]. 

 

Figure 3.3: FPS results of original and modified YOLOv4 [60] for different image 

resolutions at test stage. 
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3.2. Experimental Setup for Tensor Optimizations 

We take 3 model architectures for applying tensorRT optimizations i.e. YOLOv4, 

modified YOLOv4 [11], and YOLOv3 [10] pretrained on Visdrone 2019 object trainset. 

The reasons to choose these architectures are that YOLOv4 [11] is considered a state-

of-the-art detector for its performance on the COCO [59] benchmark, but after tweaking 

the architecture an updated YOLOv4 (modified YOLOv4) also performs well on 

detecting small objects. YOLOv3 also contains feature pyramid network and make 

predictions at three different levels to recognize objects more precisely. To make them 

light weight and in compressed form, we consider transforming these trained models in 

fast mode by changing their precision state from FP32 to FP16 using the Nvidia 

TensorRT framework. The main reason for this is to make them more real-time while 

maintaining minimum impact on accuracy. Table 3.2 presents the measured accuracy as 

mAP and speed as FPS of the base models whereas Table 3.3 and Table 3.4 shows 

mAP and FPS measured on their respective TensorRT mixed precision lightweight 

(FP16 and FP32) versions. We can see that after applying TensorRT pipeline, in Table 

3.3 FPS slightly increases as network is optimized by vertical and horizontal fusion; but 

when we apply FP16 which reduces floating point operations to the half, FPS increased 

more than 2X as compared to unoptimized versions (Table 3.4) 

Table 3.2: mAP VS FPS of original (YOLOV3, YOLOV4 and Improved YOLOv4) 

non optimized versions (before serializing to TRT format) evaluated on Visdrone Test-

Dev Dataset on Jetson AGX Xavier. 

 

AGX XAVIER 

 

YOLOv4 

 

Improved YOLOv4 

 

    YOLOv3 

mAP @ 0.5 28.0 33.0 23.5 

Comparing FPS 12.0 12.0 16.0 

Table 3.3: mAP VS FPS on Visdrone Test-Dev Dataset with TensorRT FP32 models 

on Jetson AGX Xavier 

 

AGX XAVIER FP32 

 

YOLOv4 

 

Modified YOLOv4 

 

YOLOv3 

mAP @ 0.5 30.0 33.0 23.3 

FPS 13.0 13.0 16.0 
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Table 3.4: mAP VS FPS on Visdrone Test-Dev Dataset with TensorRT with FP16 on 

Jetson AGX Xavier. 

 

AGX XAVIER FP16 

 

YOLOv4 

 

Modified YOLOv4 

 

YOLOv3 

mAP @ 0.5 29.0 33.0 23.2 

FPS 30.0 30.0 37.0 

3.3. Experimental Setup for Model Compression and Parameters Reduction 

We choose our base model as YOLOv3, trained on Visdrone Object Detection dataset, 

on 10 classes. The main purpose was to produce highly accurate large and deep model 

before cutting any channels or layers of the model. As said earlier, sparse training is 

recommended prior to doing pruning. Hence, for that purpose, we did sparse training in 

such a way that small learning rate corresponds to higher sparsity factor and higher 

learning rate corresponds to smaller sparsity factor. We did sparse training for around 

600 epochs. After sparse training, the new model generated is then converted into 

darknet weights file. This reconverted model is fine-tuned on the same dataset to regain 

the accuracy. Table 3.5 provides the comparison between base model and pruned 

models. After pruning we can see that number of layers and trainable parameters are 

reduced which lead to reduce frame processing time; hence increase the speed 

performance (FPS) of detection pipeline. Typically reducing parameters has negative 

effect on accuracy. In the table, we can see that for Normal pruning mAP is badly 

affected; but after applying Layer Shortcut, Slim and Layer Channel pruning the mAP is 

increased from the base model. This is due to the fact that in such pruning techniques 

layers are not straightforwardly fused or cut by some percentage like in Normal pruning 

but only those channels whose parameters are less than the clipping threshold are 

removed; and if the channel γ of the entire layer is lower, then to avoid the entire layer 

from being clipped, we keep the channels with larger γ’s value in the layer, so we 

should set threshold according to the layer parameters. Moreover, Sparsity training and 

Fine tuning of the newly generated weights results in more precise results as compared 

to the base model whose mAP is 23.5 whereas layer, slim and layer channel have 31.5, 

30.7 and 30.8 mAP respectively. In-detailed discussion of all pruning algorithms and 

steps are clearly explained in Section 2.2.4.3 and Section 2.2.4.4. 
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Table 3.5: Table shows the results against applied pruning techniques on YOLOv3 

detection network. A higher reduction in model size and number of network layers and 

Increase in FPS and mAP indicates a better mode. 

 
 

Base 

Model 

 

Normal 

Pruning 

 

Layer 

Shortcut 

(6 shortcuts) 

 

Slim 

Pruning 

Layer 

Channel 

Prune 

(6 shortcuts) 

mAP 23.5 9.0 31.5 30.7 30.8 

No of layers 106 106 94.0 104 88.0 

Parameters 
62 

million 

42 

million 
52 million 48 million 48 million 

FPS 16.0 14.0 22.0 17.0 22.0 

3.4. Data Augmentation 

As Visdrone is a challenging dataset in terms of complex scenarios and limited data 

samples, very high accuracy on such dataset is not possible. Meanwhile pruning 

different models also lead to accuracy loss. So, we tried to augment the data in a 

different way particularly for Visdrone dataset or similar alike. Normally image size of 

Visdrone is around 1920 x 1080 and our model input size is 416 x 416. We perform two 

different techniques:  1) tiling and 2) zooming to increase the number of data samples 

for training. Zooming also helps in detecting same objects at different scales. This 

augmentation technique led to the significant improvement in the mAP.  

The proposed method works in two stages, first it converts the original image into n x n 

tiles and then observe which tiles have objects; if the tiles have objects, then it saves the 

tile in existing trainset as well as perform zooming on the same tile. If the tile is without 

any object, it’s neglected. Finally, after zooming the tile containing object it includes 

this resultant tile in existing training dataset. 

3.4.1. Experimental setup 

We choose YOLOv3 as a base model for training on augmented dataset. This reason 

was that YOLOv3 is most light, less complex, and suitable. Also, YOLOv3 pruning 

implementation is easily available to make it more customizable for specified task. We 

trained YOLOv3 Base and pruned model on augmented dataset as explained above. 
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Besides that, we also trained Normal YOLOv4 and Improved YOLOv4 on our 

augmented dataset to verify the validity of augmented dataset. All models perform 

much better as compared to the models trained on normal Visdrone Object Detection 

Dataset as shown in Figure 3.4. 

Figure 3.4: Plot shows accuracy improvement after including Augmented data (Tiles + 

Zooms) in Visdrone DET dataset. 
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CHAPTER 4 

4. RESULTS AND DISCUSSIONS 

4.1. Improved YOLOv4 

We achieved improvement in small object detection for images captured from UAVs. In 

the original YOLOv4 architecture, we connected up-sampling layers, resulting in more 

robust and accurate features for small objects. The recommended improvements 

increased mAP by 2% (as observed in Figure 4.1 when compared to the original 

YOLOv4 [11] model but had no effect on inference speed. The achieved result of 16 

frames per second at 416x416 image sizes is still less than 30 frames per second for 

real-time object detection. In the next chapter, we apply TensorRT [1] optimizations 

and multithreading techniques to boost speed and achieve real-time object recognition. 

Finally, we also find that class imbalance issue in Visdrone dataset leads to low average 

precision (AP) while evaluating each class separately. For example, in a case Car vs. 

People, Pedestrian and Motorbike, Car class has many instances as compared to other 

classes present in the dataset. To overcome this problem, there must be some data 

driven approach to overcome accuracy issue. Section 3.4 in this report addresses the 

problem and its solution in detail. 
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Figure 4.1: Comparison of original and modified YOLOv4 in terms of mAP and FPS 

for different image resolutions on Jetson Xavier [60]. 

4.2.  Model Compression by Parameters Reduction 

As our main goal is to design a real-time multi object tracker, so after applying all the 

techniques proposed in previous chapters, we select best of object detection models to 

embed in the tracker, which can perform in real-time and maintain a reasonable trade-

off between mAP and FPS. Based on our all simulations we prefer YOLOv3 shortcut 

and layer channel pruned models with 6 shortcuts due their good mAP and fewer 

trainable parameters; their mAPs are 31.5 and 30.8 respectively and recorded FPS are 

22 on jetson Xavier. Turning it to mixed precision mode like FP-16 even raises FPS to 

55, which is quite enough to perform object detection in real-time. Figure 4.2 shows 

overall performance of all models being trained and used in our experimental work. 
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Figure 4.2: mAP VS FPS plots of object detection models; FP16 and FP32 represents 

corresponding TensorRT models. FP-16 models are more directed towards real-time. 

After implementation and testing of numerous pruning methods, best models will be 

selected and embedded in Tracking by Detection or Joint Detection and Tracking (JDE) 

based Multi Object Tracker, for UAVs to make it more real-time for embedded 

platform, which in our case is Jetson AGX Xavier. 

4.3. Ablation Study for Pruning Parameters 

While applying pruning techniques on our base models, there are certain parameters or 

thresholds like pruning ratio, global channels pruning percentage and channel keep 

percentage per layer, based on which pruned models are further tested to get the best 

model while tweaking these parameters. We test pruned models while applying pruning 

factors with different percentages. 

For normal pruning, we first pruned our model with a 0.4 threshold, i.e., 40 per cent of 

the model layers on average will be fused. This results in mAP loss and pruned model is 

to be fine-tuned afterwards to gain mAP. Finally, testing reveals model performance in 

terms of mAP loss and FPS gain. Table 4.1 shows pruned model after applying Normal 

pruning at a 40% prune rate. As normal prune straight away cuts 40 % of all channel 

parameters so a high accuracy drop is observed. Similarly, for other discussed pruning 

techniques like a slim prune, we check performance on two different parameters 

i.e. Global Channel and Channel keep ratio which determines what percentage of the 

FPS (Jetson AGX Xavier) VS mAP (Visdrone) 

Test Dev Dataset) 
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total channels should be pruned and for each layer how many channels should be 

preserved. We roughly checked on different values of these parameters, but the most 

suitable results were observed with the values presented in Table 4.2. This results in a 

nearly 20% reduction in model parameters and leads to better mAP and FPS as 

compared to the base YOLOv3 model. 

 Similarly, for Layer Shortcut and Layer Channel Pruning, we prune on Shortcut layers 

present in the base YOLOv3 model. Note that as shortcuts are the skip connection, so 

removing shortcuts removes two CBL (Conv, Batch-Norm and LeakyRelu) blocks as 

well. This implies that the more shortcuts are pruned, the more parameters will be 

reduced resulting in compactness in size. Among 22 shortcuts in total, we perform 

experiments by considering 6, 8, 10 and 14 shortcuts with reasonable accuracy drops. 

Increasing the number of removed shortcuts results in a higher accuracy drop. Finally, 

after applying sparsity training and fine-tuning on remaining weights; the number of 

layers, parameters, mAP on Visdrone DET Test Dev benchmark and FPS on Jetson 

AGX Xavier are measured as displayed in Table (4.3 and 4.4). Finally, we also applied 

TensorRT serialization to all these pruned models which led to being faster as compared 

to their base pruned version. The highest number of FPS we achieved is with mixed 

precision FP-16 TRT model. Figure 4.3 shows reduced parameters and the 

corresponding maximum FPS of pruned models in (FP16). 

Table 4.1: FPS of pruned model (Normal Pruning) on prune ratio 40. When pruned 

more than 40%, mAP reduces to zero. 

Base 

YOLOv3         

mAP 

Prune 

Percentage 

Trainable 

Parameters 

Pruned 

mAP 

Darknet 

FPS 

TensorRT 

FP32 FPS 

TensorRT 

FP16 FPS 

23.5 40% prune 42 million   6.0 14.0 23.0 53.0 
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Table 4.2: FPS of pruned model (Slim Pruning) on two different pruning ratios. 

Base 

YOLOv3 

mAP 
23.5 23.5 

Slim Prune 

Parameters 
Global Channel Prune %: 0.15 

Channel keep ratio %: 0.02 

Global Channel Prune %: 0.30 

Channel keep ratio %: 0.01 

Trainable 

Parameters 
48 million 46 million 

Pruned 

mAP 
30.7 18.0 

Darknet 

FPS 
17.0 12.0 

TensorRT 

FP32 FPS 
19.0 20.0 

TensorRT 

FP16 FPS 
48.0 50.0 

Table 4.3: FPS of pruned model (Layer Shortcut Pruning) on different prune ratios. 

Base YOLOv3 mAP 23.5 23.5 23.5 23.5 

Shortcut Prune 

Parameters Shortcuts: 6 Shortcuts: 8 Shortcuts:10 Shortcuts:14 

Trainable Parameters 48 million 46 million 40 million 36 million 

Pruned mAP 31.5 30.7 30.13 29.0 

Darknet FPS 21.0 22.0 23.0 26.0 

TensorRT FP32 FPS 22.0 20.0 21.0 23.0 

TensorRT FP16 FPS 35.0 37.0 44.0 53.0 
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Table 4.4: Layer Channel pruning experiments under two different pruning parameters. 

Model YOLOv3 
6 Shortcuts 

YOLOv3 

8 Shortcuts 

YOLOv3 

10 Shortcuts 

YOLOv3 

Layer Channel Prune 

with Parameters: 

Global Channel Percent 

%: 0.15 

Layer keep ratio %: 0.01 

Shortcuts: 0 Shortcuts: 6 Shortcuts: 8 
Shortcuts: 

10 

Trainable Parameters 61 million 48 million 46 million 41 million 

Pruned mAP 23.5 30.8 26.5 29.3 

Darknet FPS 16.0 21.0 23.0 25.0 

TensorRT FP32 FPS 16.0 22.0 22.0 23.0 

TensorRT FP16 FPS 37.0 35.0 38.0 45.0 

 

 

Figure 4.3: Plotting trainable parameters in millions (Red color) reduced after applying 

pruning techniques and corresponding highest FPS (Orange color) as compared to base 

models. 

4.4.  Multi Object Tracker (MOT) Deployment 

As described in Section 2.3.5 the detection pipeline in JDE is less accurate and contains 

complex architecture which results in less accurate tracking results and lower FPS 

respectively. We perform detailed experiments on improving object detection pipeline 

0 10 20 30 40 50 60 70

Base Yolov3_AD

YOLOv3 Normal Prune 40

Slim Prune_0.1_0.02

Slim Prune_0.30_0.01

Shorcut Layer Prune_6

Shorcut Layer Prune_8

Shorcut Layer Prune_10

Shorcut Layer Prune_14

Layer Channel Prune_6

Layer Channel Prune_8

Layer Channel Prune_10

Max FPS (TensorRT FP16) VS Trainable Parameters

FPS Trainable Parameters (In Millions)



76 

in both aspects. After all we manage to produce light weight as well as more accurate 

detection models as compared to their base architecture by using YOLOv3 [10] which is 

single stage detector. After selection of best detection architectures, we connect darknet 

base YOLO detection pipeline with JDE tracker. As Faster R-CNN [5] consumes more 

resources and results in low FPS, so single stage detector can help in increasing tracking 

speed. For accuracy we already achieved high performance real-time object detection, 

as discussed in detail in Section 4.2. Our final experiment contains tracker evaluation of 

MC-JDE and Deep Sort trackers on Visdrone MOT Test-Dev benchmark which 

contains 17 different videos acquired from drone mounted cameras. The dataset 

contains very challenging video environment which contains day and night scenarios 

where drone is hovering over the city. Currently, our models are trained on 10 different 

classes which contain person, pedestrian, car, van, motorbike, bicycle, tricycle, awning-

tricycle, bus, and truck. The tacking results are measured on 5 classes, which is the 

subset of these 10 classes, including car, bus, truck, pedestrian, and van, as 

considered by official VisDrone MOT 2021 challenge [74]. According to a recent 

report on the VisDrone-MOT-2021 challenge, 29 different approaches were submitted, 

and eight of them were considered in the article. These innovative strategies in object 

detection, tracking, and reidentification are described in the tabular report shown in the 

Figure 4.4 based on Visdrone MOT benchmarking results. 

 

Figure 4.4: Results evaluated on VisDrone-MOT2021 Challenge's (MOT) data. Each 

assessment mode's top three findings are bolded and highlighted. Red, green, and blue 

are used as accent colors.[74] 

 

Metrics used in the evaluation are FPS and MOTA where MOTA (Multi-Object 

Tracking Accuracy) is a summary of total tracking accuracy in terms of false positives, 

false negatives, and identity switches. FPS is the processing time of frames in one 
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second. Results in Figure 4.4 are evaluated on the Visdrone MOT test challenge. We 

evaluated our MOT trackers on the Visdrone MOT test-dev dataset for 5 classes having 

17 different video sequences. As our experiments contain both trackers based on 

detection network, we didn’t separately train our trackers on the MOT dataset. This 

means the tracker can perform even better after learning on MOT training sequences. 

Table 4.5 compares the FPS and MOTA accuracy metric of the proposed MC-JDE 

Real-time tracker. Meanwhile, in the table, FPS is measured on embedded GPU Jetson 

AGX Xavier and is presented as range and not in the absolute numbers. This is because 

for each frame both trackers track targets by matching feature embeddings and distance 

measurement. So, if the current frame contains a high density of detected objects the 

tracker has big measuring space to assign IDs to the targets which result in low FPS and 

ID switches due to heavy occlusions. Table 4.5 demonstrates the comparison of both 

MC-JDE and Deep Sort trackers. In the table its seen that MC-JDE performs better in 

terms of both speed and accuracy. The reason is that MC-JDE generates embedding at 

three different scales from YOLOv3 [10] network model, which has already proven 

itself as an object detector. Secondly, prime triplet loss from the JDE tracker [41], used 

for measuring distance among these embeddings also differentiates them well from each 

other to assign correct IDs. In Table 4.5, MOT Accuracy (MOTA) for all 5 classes and 

their FPS have resulted for both trackers. Table 4.6 shows comparison with other 

trackers. Though MC-JDE average AP is low but for class Van, Bus and Truck it has 

high score then MAD [76] and deepsort_v2 [75] [40] algorithm. Average AP of MC-

MOT can be improved after learning on MOT dataset to stand among the other MOT 

algorithms. 

Table 4.5.: FPS and accuracy comparison among Deep Sort and MC-JDE tracker 

obtained from VisDrone 2018 MOT toolkit evaluated on VisDrone MOT Test-dev 

dataset. 

 

Method: YOLOv3 

 

MOTA 

 

𝑴𝑶𝑻𝑷𝑨𝒍𝒍 

 

FPS Range 

MC-JDE 20.2 72.2 (3 ~ 14 ) 

Deep Sort 10.8 72.1 (1~ 3 ) 
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Table 4.6: Comparison among other tracker on VisDrone MOT Test-Dev data. (Note: 

The Deep Sort and MC-JDE tracker are not trained on MOT dataset). Bold figures show 

better results of our trackers without training on MOT data. [75]. 

 

Algorithm 

YOLOv3 

 

AP 

 

𝑨𝑷𝟎.𝟐𝟓 

 

𝑨𝑷𝑷𝒆𝒅 

 

𝑨𝑷𝑪𝒂𝒓 

 

𝑨𝑷𝑽𝒂𝒏 

 

𝑨𝑷𝑩𝒖𝒔 

 

𝑨𝑷𝑻𝒓𝒖𝒄𝒌 

C-Track [77] 16.12 22.40 7.95 27.74 8.31 28.45 8.15 

Deepsort_d2 10.47 17.26 7.12 29.14 10.25 2.38 3.46 

MAD 7.27 12.72 7.12 29.14 1.46 1.65 2.85 

MC-JDE 4.73    8.85 1.45 4.23 7.97 5.07 4.91 

Deep Sort 4.49 8.37 1.38 11.36 3.54 1.17 5.02 



79 

CHAPTER 5 

5.  CONCLUSIONS AND FUTURE WORK 

In this thesis we try to tackle the two main problems for multi object detection and 

tracking for Wide Area Surveillance (WAS) applications: Developing an accurate 

detector that will enhance tracking pipeline and then maintaining this pipeline to work 

in real-time, which further requires transforming existing models to light weight form, 

where they can operate accurately in real-time. To detect objects in wide area imagery, 

the first task is to design an object detection architecture for small objects. For this 

purpose, we modify YOLOv4 architecture by interconnecting up-sampling layers and 

re-train the architecture on Visdrone Object Detection dataset [2]. This results in more 

robust and accurate features for small objects and this modification increases mAP by 

2% when compared to the original YOLOv4 model with no effect on inference speed. 

As our second task we consider improving FPS by applying CPU and GPU based 

optimization techniques. For CPU, we propose multi-threading pipeline to divide the 

load on three threads instead of single thread. For GPU based optimization we convert 

existing trained models to mixed precision format like FP32 and FP16 using TensorRT 

pipeline. Both techniques lead to increase in FPS, but at the same time TensorRT 

pipeline drops some accuracy while converting to low precision formats. So, to regain 

accuracy, we must fine-tune these models, which is not easy to apply on TensorRT 

models. So as our third contribution we perform Parameters Reduction and Network 

Slimming on our base models under different experimental conditions. This results in 

temporary loss of mAP; but after fine-tuning we regain a level of accuracy which is 

sometimes even better than the base model. Finally, as our last contribution, we perform 

data augmentation on Visdrone dataset by applying tilling and then zooming on existing 

images, which also leads to improvement in mAP as compared to training on original 

Visdrone Detection dataset. After all, we embed our best detector in Multi Object 

Tracking (MOT) pipeline to get best results in the term of speed and accuracy.  
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The current proposed MOT pipeline has still some limitations in maintaining speed in 

real-time and higher accuracy especially in drone surveillance. This is because that area 

covered by the drone is much wide, containing detected objects at very high density. 

First, it’s a big challenge for object detection to acquire all desired small targets, even if 

the object detector performs well, the appearance descriptor or embeddings for these 

small objects are not discriminative enough to match them successfully in the upcoming 

frames. Finally, the higher number of targets creates the complex graph at the time of 

matching association; so, if the object density is high in a particular frame, then the 

association matrix will be more complex and will affect the real-time performance of 

the system. Moreover, targets overlapping each other also results in ID switches which 

leads to accuracy drop. We also experience that the proposed detection-based object 

tracker can just extract visual and spatial-temporal information and thus is limited to the 

well-illuminated scenario. So as future work, there should be some deep learning-based 

motion model to extract more robust features for each detected object. This might work 

well in UAVs scenarios, as small objects from high altitudes have low-speed motion 

trajectories. The trajectory estimation can be added as a learning objective of deep 

network and the network can learn to predict future state as well, especially in both 

bright and dark scenes. To optimize the real-time performance of the tracker, the 

generated feature embeddings can be processed in lower precision or using special 

hashing techniques. These issues are open for future research. 
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