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Metaproteogenomic analysis of saliva samples from
Parkinson’s disease patients with cognitive impairment
Muzaffer Arıkan 1,2, Tuğçe Kahraman Demir3, Zeynep Yıldız4, Özkan Ufuk Nalbantoğlu5,6, Nur Damla Korkmaz 7,13, Nesrin H. Yılmaz8,
Aysu Şen9, Mutlu Özcan10, Thilo Muth11, Lütfü Hanoğlu1,7,8 and Süleyman Yıldırım 1,12✉

Cognitive impairment (CI) is very common in patients with Parkinson’s Disease (PD) and progressively develops on a spectrum from
mild cognitive impairment (PD-MCI) to full dementia (PDD). Identification of PD patients at risk of developing cognitive decline,
therefore, is unmet need in the clinic to manage the disease. Previous studies reported that oral microbiota of PD patients was
altered even at early stages and poor oral hygiene is associated with dementia. However, data from single modalities are often
unable to explain complex chronic diseases in the brain and cannot reliably predict the risk of disease progression. Here, we
performed integrative metaproteogenomic characterization of salivary microbiota and tested the hypothesis that biological
molecules of saliva and saliva microbiota dynamically shift in association with the progression of cognitive decline and harbor
discriminatory key signatures across the spectrum of CI in PD. We recruited a cohort of 115 participants in a multi-center study and
employed multi-omics factor analysis (MOFA) to integrate amplicon sequencing and metaproteomic analysis to identify signature
taxa and proteins in saliva. Our baseline analyses revealed contrasting interplay between the genus Neisseria and Lactobacillus and
Ligilactobacillus genera across the spectrum of CI. The group specific signature profiles enabled us to identify bacterial genera and
protein groups associated with CI stages in PD. Our study describes compositional dynamics of saliva across the spectrum of CI in
PD and paves the way for developing non-invasive biomarker strategies to predict the risk of CI progression in PD.
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INTRODUCTION
Parkinson’s disease (PD) is a complex neurodegenerative disorder
estimated to affect over 6 million people worldwide1. Due to the
impact of the ageing population, a considerable increase in PD
cases is expected in thefuture decades2. PD physiopathology is
attributed to the alpha-synuclein (α-syn) aggregates accumulating
in the neurons, which causes significant disruption of both motor
and non-motor functions in the course of the disease3. One of its
most common non-motor symptoms is cognitive impairment (CI)
that progressively develops on a spectrum from mild cognitive
impairment (MCI) to full-scale dementia (PDD)4. Despite variability
among patients, there is a high risk of dementia in PD, with nearly
half of patients reaching the dementia stage within 10 years after
diagnosis and virtually all patients develop full dementia within
20 years after diagnosis5. These patients cannot live independent
lives and require care and support from their families and nursing
homes, leading to economic burden. Thus, the current unmet
need in the clinic is whether the PD patients at risk of developing
cognitive decline can be predicted in order to implement disease
changing interventions.
Saliva is a complex biofluid and considered to be a rich source

of potential biomarkers for chronic diseases as saliva components
typically include host cells, microbiota and biological molecules6.
The oral health of PD patients such as saliva secretion, the

composition of saliva, and dysbiosis significantly aggravate in the
course of the disease7. Indeed, α-Syn can be detected in different
biological fluids, including cerebrospinal fluid (CSF) and saliva8–10.
The alpha-synuclein pathology in the oral cavity of PD patients
often leads to poor secretion of saliva and dysphagia11,12.
Remarkably, a 6-year follow-up study of dysphagia in PD patients
reported a significant association between CI and dysphagia13.
Another common oral motor disorder of PD is drooling which has
also been associated with CI in PD14. Together, these findings
suggest a link between oral problems and CI in PD. Furthermore,
recent studies reporting oral microbiota dysbiosis of PD patients
linked dysphagia, drooling, and salivary pH with oral micro-
biota15,16. Therefore, we hypothesized that biological molecules of
saliva and saliva microbiota dynamically shift in association with CI
progression in PD and harbors discriminatory key signature
changes for predicting CI stages in PD.
To test the hypothesis, we employed metaproteogenomics

approach by integrating 16 S rRNA gene amplicon sequencing
and metaproteomics data generated from saliva samples. We
recruited 115 subjects to identify changes in saliva composition
that can be used to differentiate PD patients at different CI stages.
We determined that salivary microbiota differentiates CI stages
and detected bacterial taxa associated with CI. We also identified
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functional level changes associated with CI in PD, and highlighted
a short list of candidate signatures differentiating CI stages in PD.

RESULTS
Characteristics of participants and analyses
A total of 115 individuals (43 PDD, 45 PD-MCI) and 27 HC were
included in this study. Both 16 S rRNA gene amplicon sequencing
based microbiome analysis and metaproteomics profiling were
performed for all salivary samples collected from the participants
(Fig. 1).
The demographic and clinical features of the study participants

are summarized in Table 1. The mean age differed significantly
between the study groups. We therefore adjusted all P-values for
Age confounder, where appropriate. There was no significant
difference in the proportion of female subjects between study
groups. Years of education differed significantly between PD-MCI
and HC, PDD and HC but not between PD-MCI and PDD
participants which was also adjusted. There was expectedly a
significant difference in mean MMSE scores pairwise between all
study groups. The HC group had a mean MMSE score of 27.9, MCI
group had a mean MMSE score of 23.6, and PDD group had a
mean MMSE score of 18.7.
Comparison of 16 S rRNA based and metaproteomics based

microbial composition results
We performed both 16 S rRNA gene amplicon sequencing and

metaproteomics for all 115 salivary samples. First, we compared
ASV-based taxonomic composition with metaproteomics based
taxonomic composition.
The 5 most abundant genera in salivary microbiota samples

across sample groups were Streptococcus, Prevotella, Veillonella,
Campylobacter and Neisseria in both 16 S rRNA gene amplicon and
metaproteomics results (Fig. 2a). However, the relative abundance
distributions of bacterial genera did not show any correlation

between the two methods which probably results from relatively
higher/lower expression of proteins in some bacterial genera in
saliva as expected (Fig. 2b). We calculated genus, family, and
phylum level overlap between the methods. The overlap at genus
level was 12.4% which increased to 19.7% at family level and
46.2% at phylum level (Fig. 2e). All shared genera, families and
phyla are shown in Supplementary Fig. 1. The amplicon
sequencing detected much more bacterial taxa at all three levels
than metaproteomics profiling. This is not surprising because only
a subset of bacterial genera (as described in the Methods) were

Fig. 1 Experimental overview. (1) Saliva samples were collected from a total of 115 individuals (43 PDD, 45 PD-MCI) and 27 HC. (2) Samples
were divided into two equal aliquots and used for DNA and protein extractions separately. (3a,b) DNA and protein isolations were performed.
(4a,b) Amplicon libraries and tryptic peptides were prepared for NGS and LC-MS/MS, respectively. (5) ASV abundances were determined. (6)
Predicted bacterial proteins of species-level genome bins that belonged to the 20 most abundant genera and bacterial taxa that showed
differential abundance between study groups in amplicon sequencing were determined. (7) All human proteins from UniProt database were
added to the predicted bacterial proteins which produced a final protein database that was used for protein identifications. (8) Protein group
abundances were determined. (9a,b) Analyses of amplicon sequencing and metaproteomics data were performed. (10) Amplicon sequencing
and metaproteomics datasets were integrated using MOFA.

Table 1. Demographic and clinical features of the study cohort.

Characteristics HC PD-MCI PDD

(n= 27) (n= 43) (n= 45)

Age (years, mean ± SD) 59.6 ± 8.20 67.1 ± 8.481 71.4 ± 7.101,2

Sex (Female) 15 (55.6%) 17 (39.5%) 21 (46.7%)

Education (years, mean ± SD) 10.8 ± 5.1 7.4 ± 4.81 4.6 ± 4.51

MMSE (mean ± SD) 27.9 ± 1.9 23.6 ± 2.91 18.7 ± 3.61,2

CDR (mean ± SD) 0.0 ± 0.0 0.5 ± 0.01 1.2 ± 0.51,2

Hoehn and Yahr score
(mean ± SD)

– 1.9 ± 0.8 2.6 ± 0.92

UPDRS-part II (mean ± SD) – 32.3 ± 14.9 50.0 ± 16.82

PD Duration (months)
(mean ± SD)

– 68.9 ± 44.5 105.2 ± 56.92

PD Parkinson’s Disease, SD Standard Deviation, MMSE Mini-Mental State
Examination, HC Healthy Control, PD-MCI Parkinson’s Disease with Mild
Cognitive Impairment, PDD Parkinson’s Disease with Dementia.
1p < 0.05 for pairwise comparison with HC.
2p < 0.05 for pairwise comparison with PD-MCI.

M. Arıkan et al.

2

npj Biofilms and Microbiomes (2023)    86 Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;



used to generate a custom-based reference protein database to
identify proteins. In addition, we observed a larger fluctuation of
bacterial relative abundances based on 16 S rRNA gene amplicon
sequencing across samples than that of metaproteomics.
16 S rRNA gene amplicon-based microbiome profiles differenti-

ate study groups
We calculated alpha and beta diversity metrics for saliva

samples based on 16 S rRNA gene amplicon sequencing data.
There were no significant differences in alpha diversity indices
(Chao, Shannon, InvSimpson and Fisher) between study groups
(Fig. 3a). On the other hand, beta diversity analyses showed
significant differences between study groups (Fig. 3b). We
generated a beta-diversity ordination using the Aitchison distance
and tested if the samples cluster beyond expected by a chance
while adjusting for the confounding effects of age, sex, and
education. The results showed a significant difference between
the study groups (PERMANOVA, R2= 0.021, adj.p= 0.027). To
strengthen the conclusion, we also we used the Bray-Curtis and
Jaccard distance for 16 S rRNA gene amplicon sequencing results
to test differences between study groups, which also showed a
significant separation between the three groups (Bray-Curtis,
PERMANOVA, R2= 0.024, adj.p= 0.027; Jaccard, PERMANOVA,
R2= 0.021, adj.p= 0.026) (Supplementary Fig. 2).
To determine which microbial taxa were significantly associated

with CI, we performed differential abundance using three different

tools, namely LEfSe, MaAsLin2, ANCOM-BC and ANOVA (Fig. 3c).
Because the correct identification of differentially abundant
microbial taxa between experimental conditions varies between
different methods17, we used three different methods and sought
consensus between at least two of these methos in detecting
differential abundance. ANOVA-based differential abundance
analysis showed a significant decrease in the abundance of
Neisseria genus and unclassified Neisseriacceae with the progres-
sion of CI (Fig. 3d) while LEfSe-based analysis not only showed a
decrease in Neisseria genus but also significant increase in the
abundance of Streptococcus and Veillonella genera with the
progression of CI. The decrease in the abundance of Neisseria
was further supported by MaAsLin2 analysis while ANCOM-BC did
not detect any significant difference between study groups. We
further investigated potential correlations among bacterial genera
and with the covariates MMSE, CDR, UPDRSII. We determined a
significant positive correlation between Neisseria and MMSE
(p= 0.003, Spearman’s ρ= 0.268) and a significant negative
correlation between Neisseria and CDR score (p= 0.004, Spear-
man’s ρ= -0.27) (Supplementary Fig. 3). We have also found a
negative correlation of Lactobacillus and Ligilactobacillus with
Neisseria (p= 0.003, Spearman’s ρ= -0.27 and p= 0.03, Spear-
man’s ρ= -0.20, respectively) (Supplementary Fig. 3).
Metaproteomic profiling identifies human and microbial pro-

teins in saliva

Fig. 2 16 S rRNA gene amplicon sequencing (AS) and metaproteomics (MP) based overview of salivary microbiota composition across
samples. a The 20 most common bacterial genera in salivary microbiota samples by 16 S rRNA gene amplicon sequencing and
metaproteomics. Genera that were not among 20 most common taxa were grouped into “Other.” Each bar represents relative abundance
distribution for a sample. The order of sample bars is the same for both methods. b Correlation between abundance of bacterial genera by
16 S rRNA gene amplicon sequencing versus metaproteomics. Verticle axis shows bacterial genera by 16 S rRNA gene amplicon sequencing
while horizontal axis shows bacterial genera by metaproteomics. c–e Number of genera, families and phyla found across 16 S rRNA gene
amplicon sequencing and metaproteomics. Vertical bars represent the number of taxa shared between two methods highlighted with
connected dots in the lower panel. The horizontal bars in the lower panel indicate the total number of taxa detected by each method.
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We applied metaproteomics to determine the functional
characteristics of the saliva and quantified a total of 29,054
unique peptides and 9379 protein groups in 115 samples. Filtering
protein groups that were not identified by at least 2 unique
peptide sequences yielded 4253 proteins across our samples.
Next, we removed protein groups that were not taxonomically
assigned as Eukaryota or Bacteria which reduced the number of
proteins to 3354. Finally, proteins that were not detected in all
samples were filtered out to control the batch effect and only the

most robustly quantified 537 proteins were used for downstream
analyses.
Among 537 protein groups quantified, 287 (53.5%) were from

salivary microorganisms while 250 (46.5%) protein groups were
from human proteome origin. Human protein groups constituted
67.9% of the total protein intensities measured in the salivary
samples while microbial protein groups constituted 32.1% of total
protein intensities (Fig. 4a) which shows that human proteins are
more abundant in saliva and consistent with previous studies18.

Fig. 3 Structural diversity and differential abundance analysis of saliva samples by 16 S rRNA gene amplicon sequencing. a Alpha
diversity (Chao1, Shannon, InvSimpson, Fisher) comparisons of salivary microbiota samples between study groups. Median estimates
compared across study groups using the Kruskal-Wallis test. Boxes represent the interquartile range, lines indicate medians, and whiskers
indicate the range. n.s: not significant. b Beta diversity comparisons of saliva samples between study groups. PCoA was calculated using
Aitchison distance. The ellipses represent a 95% confidence level. Color is indicative of the study group. c Number of differentially abundant
genera across 4 microbiome differential abundance methods, namely ANCOM-BC, ANOVA, LefSe, MaAsLin2.Vertical bars represent the
number of differentially abundant genera shared between the methods highlighted with connected dots in the lower panel. The horizontal
bars in the lower panel indicate the total number of differentially abundant genera detected by each method. d Abundance distribution of
differentially abundant genera detected by at least two methods across study groups. Median estimates compared across study groups using
the Kruskal-Wallis test. Boxes represent the interquartile range, lines indicate medians, and whiskers indicate the range. p-values represent the
overall FDR-corrected p-values.
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We tested if the ratio between human and microbial protein
groups changes with the progression of the CI and detected no
significant change (Supplementary Fig. 4). We also performed beta
diversity analysis based on human and microbial proteins
separately to evaluate if there is a significant association between
human or microbial protein group composition and CI. The results
did not show any compositional difference in microbial or human
protein groups profiles across study groups (Fig. 4b, c). However,
beta diversity analysis based on all detected proteins showed
significant separation between groups (PERMANOVA, R2= 0.026,
p= 0.025); although when adjusted for all potential confounders,
the difference was attenuated (PERMANOVA, R2= 0.019, adj.p=
0.082) (Fig. 4d).
In order to assess changes in the functional profile of samples,

we annotated protein groups using Prophane and applied
differential abundance tests both at OG and functional category
levels. We have obtained 371 OGs from 24 functional categories
and 25 differentially abundant OGs between study groups. At the
OG level analysis, functions related to the replication, recombina-
tion, and repair (5 OGs in category L), cytoskeleton (4 OGs in
category Z), energy production and conversion (3 OGs in category
C), translation, ribosomal structure, and biogenesis (2 OGs in
category J) were among the most significantly different categories
between study groups. 20 of differentially abundant OGs were
significantly increased with the progression of CI while 5 OGs
showed an increase from HC to MCI and a decrease from MCI to

PDD (Fig. 5a). The differential abundance results for all OGs and
functional categories are shown in Supplementary Fig. 5 and
Supplementary Fig. 6, respectively.
At the functional category level, energy production and

conversion and inorganic ion transport and metabolism categories
were significantly increased with the progression of CI while
defense mechanisms and secondary metabolites biosynthesis,
transport and catabolism displayed a decreased abundance
(Fig. 5b).

Multi-omics factor analysis (MOFA)
We applied MOFA to integrate amplicon sequencing and
metaproteome results. The fitted model explained 30.1% and
34.4% of the variance in 16 S rRNA sequencing and metaproteo-
mics datasets, respectively (Fig. 6a) with latent 15 factors (Fig. 6b).
We examined potential correlations between factors and covari-
ates. We observed that only two of these factors (Factor 2 and
Factor 9) were significantly associated with CI in PD and included
both bacterial genera and protein features (Fig. 6c). Factor 9 has
been found to be correlated with Age covariate along with CI
stages (Supplementary Fig. 7). Thus, we focused on Factor 2
because it was the only factor associated with the progression of
CI (R2= 0.064, p= 0.003) and identified the contributing features
of this factor. Factor 2 values positively correlated with the
progression of CI (Fig. 6d). Amplicon sequencing based micro-
biome component of the Factor 2 revealed a decreased

Fig. 4 Metaproteome landscape of both human and microbiota protein groups in saliva samples. a Distribution of quantified human and
microbial protein groups. Venn diagram indicates the numbers of quantified protein groups, while the bar graph shows the total intensity of
human or microbial proteins. b tSNE plot of bacterial protein groups quantified in saliva samples (PERMANOVA, R2= 0.20, adj.p= 0.089).
c tSNE plot of human protein groups quantified in saliva samples (PERMANOVA, R2= 0.21, adj.p= 0.106). d t-Distributed Stochastic Neighbor
Embedding (t-SNE) plot of all proteins quantified in saliva samples (PERMANOVA, R2= 0.026, adj.p= 0.025). Beta diversity comparisons were
performed using Aitchison distance. The ellipses represent a 95% confidence level. Color is indicative of the study group.
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abundance of the Neisseria, Alloprevotella, TM7x, Unclassified
Absconditabacteriales and Fusobacterium and increased abun-
dance of Ligilactobacillus, Lactobacillus, Rothia, Corynebacterium
and Gemella in association with the progression of CI in PD.
Metaproteome component of Factor 2 showed increased abun-
dance of proteins associated with translation, ribosomal structure
and biogenesis (category J), intracellular trafficking, secretion, and
vesicular transport (category U), replication, recombination and
repair (category L) and unknown function (category S) and a
decreased abundance of proteins associated with carbohydrate
transport and metabolism (category G) and defense mechanisms
(category V).

Comparisons with PD patients with normal cognition (PDNC)
We calculated alpha and beta diversity metrics for saliva samples
based on 16 S rRNA gene amplicon sequencing data including 123
samples from our study (subjects (HC, n= 27; PD-MCI, n= 45;
PDD, n= 43; PDNC, n= 8) and 40 samples (HC, n= 20; PDNC,
n= 20) from a published study)15. Alpha diversity comparisons
showed no significant difference between sample groups
(Supplementary Fig. 8a). On the other hand, the results showed
that beta diversity of saliva microbiota is dissimilar across the
range of cognitive impairment as compared with PDNC and HC
groups (PERMANOVA, R2= 0.036, p= 0.001) (Supplementary
Fig. 8b). In addition, we performed differential abundance analysis
and confirmed the association of same bacterial taxa with PD
groups with CI (PD-MCI and PDD) when compared to PDNC and
HC groups (Supplementary Fig. 9).
Furthermore, we repeated MOFA analysis adding 8 PDNC

samples as the fourth sample group to our cohort. We examined
potential correlations between factors and covariates and
determined the association of Factor 2 primarily with CI in PD
and Disease Duration (PD-MCI, p= 0.01; PDD, p= 0.02; PDNC,

p= 0.44, Disease Duration, p= 0.0002) (Supplementary Fig. 10a).
Factor 2 values negatively correlated with the progression of CI
(Supplementary Fig. 10b). Amplicon sequencing based micro-
biome component of the Factor 2 revealed a decreased
abundance of the Neisseria, Alloprevotella, TM7x and Fusobacterium
and increased abundance of Ligilactobacillus, Lactobacillus and
Rothia in association with the progression of CI in PD which were
consistent with our previous analysis results. Metaproteome
component of Factor 2 supported the association of 2 PGs
(pyruvate, phosphate dikinase (PPDK)) and bactericidal
permeability-increasing protein (BPI) identified in our previous
analysis without PDNC group.

DISCUSSION
In this study, we characterized the compositional dynamics of
saliva of PD patients across a continuum of CI (PD-MCI and PDD)
as compared with HC using both 16 S rRNA gene amplicon
sequencing and metaproteomics profiling. We identified the
discriminatory key signatures in saliva composition related to CI
stages of PD by applying an integrative metaproteogenomics
approach. Employing an integrative analysis of saliva metage-
nomics and metaproteomics, we demonstrated that a shift in
salivary microbiome and protein translation machinery and
defense mechanism related changes in human proteome is
associated with the CI progression in PD.
Both metaproteome and microbiota profiles indicated Strepto-

coccus, Prevotella, Veillonella, Fusobacterium and Neisseria as the
most abundant bacterial genera in the study cohort which is in
agreement with a previous study comparing salivary microbiota of
healthy controls and PD patients15. The amplicon sequencing
detected much more bacterial genera, families, and phyla than
metaproteomics profiling. This is not surprising because only a
subset of bacterial genera (as described in the Methods) were

Fig. 5 Functional categories of differentially abundant proteins in the saliva samples. a Heatmap of differentially abundant OGs between
the study groups. Representative OG categories are shown, and the colors indicate the average label-free quantification (LFQ) intensity for
each study group. Each row corresponds to an OG with the OG id. CLR: Centered log ratio. b LFQ intensity of functional category V (defense
mechanism), category C (energy production and conversion), category P (inorganic ion transport and metabolism) and category Q (secondary
metabolites biosynthesis transport and catabolism) in saliva samples across the study groups. Median estimates compared across study
groups using the Kruskal-Wallis test. Boxes represent the interquartile range, lines indicate medians, and whiskers indicate the range. n.s: not
significant, *p < 0.1, **p < 0.05.
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used to generate a custom-based reference protein database to
identify proteins.
Although alpha diversity in amplicon-based microbiota showed

no significant differences between study groups beta diversity
comparisons of saliva samples significantly differentiated CI
stages, suggesting salivary bacterial community restructures by
the progression of CI. Results of four differential abundance
methods showed in consensus a significant decrease of Neisseria
genus with the progression of CI, which aligned well with the
previously published reports19,20. Here, we further showed the
continuous decrease of Neisseria with the progression of CI in PD.
The metaproteome profile of saliva samples was composed of a

balanced number of human and bacterial protein groups. On the
other hand, human proteins constituted much higher percentage
of total protein intensities measured in the saliva samples, as
observed in previous studies18. Differential abundance analyses of
metaproteome profiles determined marked functional alterations
associated with CI. Particularly, the functions related to cytoske-
leton and translation, ribosomal structure and biogenesis, defense
mechanisms and energy production and conversion were among
the most significantly altered functions between study groups.
The taxa Neisseria deserves special attention among others as it

is implicated in prevention of oral diseases due to its beneficial
abilities such as metabolizing low-pH products into weak acids. On
the other hand, consistently reported high abundance of

Lactobacillaceae members in the oral cavity of PD patients may
have negative effects due to their ability to reduce secretion of
neuroprotective hormones such as ghrelin21. The decrease in
Neisseria accompanied with the increased abundance of Lactoba-
cillaceae family has been also reported in a recent study on PD16.
Our results suggest a continuity for this compositional shift across
CI spectrum in PD. Moreover, we have detected a decrease in
PPDK enzyme, as another signature. PPDK is known as one of key
enzymes in gluconeogenesis22 and related to lactic acid produc-
tion23. Furthermore, we detected BPI as another signature protein
group, which is involved in the defense of host against bacterial
pathogens and considered as a microbial translocation markers24.
Elevated serum endotoxin levels have been previously reported in
PD patients, which indicate greater bacterial translocation,
particularly for the subgroup with high risk for early dementia25.
Thus, our observation of decreased BPI abundance in saliva
suggests a potential LPS-BPI imbalance in PD patients which
worsens with the CI progression.
In conclusion, our study presents a comprehensive overview of

significant key changes in saliva composition that parallel the
progression of CI in PD and suggests potential non-invasive
biomarker candidates for predicting CI in PD by integrating
amplicon sequencing and metaproteomics. This approach paves
the way for developing non-invasive biomarker strategies to
predict the risk of CI progression in PD.

Fig. 6 Multi-omics factor analysis (MOFA) of metaproteogenomics dataset. a Fraction of total variance explained by type of measurement
(view). b Fraction of total variance explained by latent factors (LFs) 1–15. Stars indicate significant association of the factor with study groups.
c Scatter plot of latent Factor 2 (x axis) and latent Factor 9 (y axis). Dots and ellipses are colored according to their group assignment. d Box
plot of latent Factor 2 values grouped and colored by CI status. e Lollipop plot shows top ranking bacterial genera in latent Factor 2. f Lollipop
plot shows top ranking salivary PGs in latent Factor 2. Human protein groups are colored orange, bacteria protein groups are colored blue.
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The conclusions drawn from the data we presented in this
manuscript should be interpreted under the following
considerations.
In spite of the valuable insights gained from our microbiome

study, it is essential to acknowledge the limitations that may
impact the interpretation and generalizability of our findings. The
absence of adequate controls for confounding variables, such as
dietary habits (although we confirmed that the participants did
not have strict dietary habits) and medication usage may
introduce biases and hinder our ability to establish direct causal
relationships between the microbiome and cognitive impairment
in PD. Another limitation is the poor representation of PD patients
without cognitive impairment (PDNC) in our cohort as a
comparison group. Even though we attempted to rectify this
limitation in our study design by adding published data generated
from PDNC group we were unable to pinpoint a dataset including
both metaproteomics and amplicon sequencing from the same
saliva samples obtained from PDNC group. Thus, even though the
microbial taxa found to be associated with CI in our study is robust
we have less confidence in the saliva proteins linked with the
confidence impairment due to the poor representation of PDNC
group in our cohort. Regardless, these findings should be
validated in a prospective longitudinal study in the future. Despite
these limitations, however, our study contributes valuable
preliminary insights into associations of putative saliva biomarkers
with CI in PD. Future research endeavors should aim to address
these confounding factors rigorously.

METHODS
Study subjects and clinical characteristics
The study was approved by the ethics committee of the Istanbul
Medipol University with authorization number 10840098-
604.01.01-E.3958, and informed consent was obtained from all
participants. If the patient has progressed into dementia stage and
was not able to make independent assessment of the consent
form, consent of the patient’s immediate family member (spouse,
children, or the caregiver) was obtained. A total of 115 subjects
(HC, n= 27; PD-MCI, n= 45; PDD, n= 43) within the age range of
50-75 were recruited at two tertiary training hospitals including
the Medipol Training and Research Hospital in the neurology clinic
and Bakirkoy Research and Training Hospital for Psychiatric and
Neurological Diseases. The subjects in the HC group were
recruited largely from the family members of the patients and
also some family members of the hospital employees and of the
students, otherwise from the individuals who responded to the
advertisement of the clinical study. All control group participants
were required to take formal neuropsychological testing and
assessed by the clinician on their cognitive capacity, and by the
exclusion criteria of the study. Subjects with previous head
trauma, stroke, or exposure to toxic substances, substance abuse,
history of antibiotic or probiotic use within last 1-month, chronic
severe diseases (diabetes, cancer, kidney failure, etc.), autoimmune
diseases, smokers, pregnancy, and those with symptoms sugges-
tive of Parkinson’s plus syndromes were excluded from the study.
Clinical and demographic information, including age, sex, years of
education were collected at clinic visits. The patients were
examined by experienced neurologists and the diagnosis of PD
was made within the framework of the “United Kingdom
Parkinson’s Disease Society Brain Bank” criteria. Hoehn-Yahr
Stages Parkinson’s Staging Scale was used to determine the stage
of the disease and The Movement Disorder Society’s diagnostic
criteria for Parkinson’s Disease Dementia criteria were used for
dementia evaluation according to Emre et al.26 The diagnosis of
MCI was made within the framework of the criteria defined by
Litvan et al.27 according to level II criteria (comprehensive
cognitive assessment based on the MDS task force diagnostic

criteria (neuropsychological testing that includes two tests within
each of the five cognitive domains).

Sample preparation for 16 S rRNA gene amplicon gene
sequencing
Unstimulated saliva samples were divided into two equal aliquots
of 500ml and used for DNA and protein extractions separately.
Microbial DNA extraction from saliva samples was performed
using DNeasy PowerSoil (Qiagen, Hilden, Germany) with modifica-
tions as described before28. In brief, 250ml saliva sample was
centrifuged at 10,000 x g for 5 min, supernatant discarded, and the
pellet was resuspended with 400 μl bead beating buffer and
transferred to the PowerBead tube. Samples were homogenized
by bead-beating using Next Advance Bullet Blender (30 s at level
4, 30 s incubation on ice and 30 s at level 4). After bead-beating
step, the manufacturer’s protocol was followed without any
modification. The V3-V4 regions of 16 S rRNA gene were amplified
using the universal bacterial primers (F-5′-CCTACGGGNGGCWG-
CAG-3′ and R-5′-GACTACHVGGGTATCTAATCC-3′). Next, amplicon
libraries were prepared by following Illumina’s 16 S rRNA
metagenomic sequencing library preparation protocol and
sequenced using a MiSeq platform and 2 × 250 paired end kit.
Amplicon sequencing libraries prepared from a total of 115 gDNA
samples were sequenced along with DNA extraction negative
control and a no-template PCR control per run.

Sample preparation for metaproteomics
For protein extraction, 250 ml saliva sample was centrifuged at
10,000 x g for 5 min. Discarding the supernatant, the pellet was
resuspended in 250 μl bead beating buffer and transferred to the
BeadBug™ prefilled tubes, 2.0 ml containing 1.0 mm Zirconium
beads. Samples were homogenized by bead-beating using Next
Advance Bullet Blender (30 s at level 4, 30 s incubation on ice and
30 s at level 4). After bead-beating step, samples were incubated
at 100 °C for 10 min under constant shaking (600 rpm), followed
by 4 °C incubation for an hour and centrifugation at 16,000 × g for
10min. The supernatants were finally transferred to a clean 1.5 ml
microcentrifuge tube. The total protein concentrations were
measured using the Qubit protein assay kit. 50 µg protein (eluted
in 30 µl) was used in the downstream analyses for each sample.
Tryptic peptides were generated using the Filter Aided Sample
Preparation Protocol (FASP) kit (Expedeon, San Diego, USA)
according to the manufacturer’s protocol. The peptides were
dissolved in 0.1 percent formic acid and diluted to 100 ng/μl
before injecting to the liquid chromatography tandem-mass
spectrometry (the ACQUITY UPLC M-Class coupled to a SYNAPT
G2-Si high-definition mass spectrometer (Waters, Milford, CT)). The
LC-MS/MS analysis was performed according to a previously
published protocol29.

Analysis of 16 S rRNA gene amplicon sequencing data
Raw 16 S rRNA gene amplicon sequencing data were analyzed
using the Nephele platform (v.1.6, http://nephele.niaid.nih.gov)30

using default parameters (QC: minlen: 30, req_qual: 12, overlap: 3,
trail_qual: 3, run_flash2_merge: True, f2_min_overlap: 10, run_-
flash2_merge: True, error_rate: 0.1, window_size: 4; DADA2:
maxEE: 5, ref_db: sv138.1, taxmethod: rdp, trimleft_fwd: 0,
truncLen_fwd: 0, truncQ: 4) and SILVA v.138.1 database31. The
contaminant sequences were identified and removed using the
decontam package32 based on negative control samples. Only
ASVs present in at least 2 samples were included in the
downstream analyses. Samples were rarefied to minimum
sampling depth (4,821 reads) before performing alpha diversity
analyses and CLR transformed before beta diversity analyses.
Diversity analyses were performed using QIIME233 and phyloseq34.
MaAsLin235, LEfSe36, ANCOM-BC37 and ANOVA tests were used to
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determine differential abundances between groups, controlling
covariates when possible. The R package ggplot238 was used for
visualization of the results.

Analysis of metaproteomics data
For metaproteomics data analysis, firstly, a custom protein database
based on 16 S rRNA amplicon sequencing results was built. Briefly,
we determined the top 20 most abundant bacterial genera across
study groups. We obtained all species-level genome bins that
belonged to these genera from a recently published comprehen-
sive study on human oral microbiome39. Next, we added all human
proteins from UniProt database40 to the predicted bacterial proteins
of these genome bins which produced a final protein database of
1,165,589 protein sequences. Progenesis-QI (Waters) software was
used to identify and quantify the protein groups. Protein groups
identified by at least 2 unique peptide sequences, taxonomically
assigned to Eukaryota or Bacteria kingdoms and present in all
samples were used for downstream analyses. Also, to reduce batch
effects on metaproteomics results, we used MMUPHin41 to adjust
protein abundances before further processing. Diversity analyses
were performed using phyloseq. We employed Prophane42 tool
with default parameters to annotate taxonomy and functions of the
detected proteins. All identified protein groups from each sample
were classified into main metabolic pathways using the ortholo-
gous groups (OG) classification against the EggNog database43.
ANOVA was used to examine potential associations at both the
protein OGs and functional categories levels with CI stages.

Multi-omics factor analysis
Multi-Omics Factor Analysis (MOFA)44 was employed to integrate
16 S rRNA amplicon sequencing and metaproteomics datasets as
data modalities with matching samples. ASV table was collapsed
to the genus level and both datasets were centered log ratio (CLR)
transformed to reduce compositionality bias before generating
the MOFA model. Data and training options were set to default
with 10,000 iterations in ‘slow’ convergence mode to generate 15
factors. Downstream analyses after generation of MOFA model
were performed using MOFA+ tool45.

Comparisons with PD patients without cognitive
impairment (PDNC)
We used two approaches to verify the reliability of our findings
regarding the correlation between our selected features and CI in PD.
Firstly, we incorporated data from a previously published study
conducted by Fleury et al.15 that employed 16 S rRNA gene amplicon
sequencing. This study compared 20 PDNC to 20 HC, targeting the
V3-V4 region of the 16 S rRNA gene and using the same primer set
we used in this study. We followed the same analysis steps as
described earlier to reinforce our findings and validate the
association of specific bacterial genera with PD-MCI and PDD groups.
Secondly, we gathered an additional 8 PDNC samples and analyzed
them using metaproteomics and amplicon sequencing techniques.

Statistical analyses
Statistical analyses were conducted in R 3.6.1. A Kruskal-Wallis test
was used for alpha diversity comparisons. Adonis2, an implemen-
tation of permutational multivariate analysis of variance (PERMA-
NOVA) from the vegan package with 999 permutations, was used
for beta diversity comparisons, with adjustment for potential
confounding factors Age, Sex, Education, Disease Duration and
HYE. Linear regression analysis was performed to test association
of latent factors generated by MOFA, with adjustment for
potential confounding factors. A t-test was used for continuous
variables, namely age and education, while Fisher’s exact test was
used for categorical variables. All p-values, where appropriate,
were adjusted for multiple testing using the Benjamini-Hochberg

method. Adjusted p-values are denoted by “adj.p” and raw p-
values are denoted by “p” throughout the manuscript. Results of
all statistical tests are provided in the Supplementary File 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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