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Abstract: The concept of spectrum sensing has emerged as a fundamental solution to address the
growing demand for accessing the limited resources of wireless communications networks. This
paper introduces a straightforward yet efficient approach that incorporates multiple stages that
are based on deep learning (DL) techniques to mitigate Radio Frequency (RF) impairments and
estimate the transmitted signal using the time domain representation of received signal samples. The
proposed method involves calculating the energies of the estimated transmitted signal samples and
received signal samples and estimating the energy of the noise using these estimates. Subsequently,
the received signal energy and the estimated noise energy, adjusted by a correction factor (k), are
employed in binary hypothesis testing to determine the occupancy of the wireless channel under
investigation. The proposed system demonstrates encouraging outcomes by effectively mitigating RF
impairments, such as carrier frequency offset (CFO), phase offset, and additive white Gaussian noise
(AWGN), to a considerable degree. As a result, it enables accurate estimation of the transmitted signal
from the received signal, with 3.85% false alarm and 3.06% missed detection rates, underscoring the
system’s capability to adaptively determine a decision threshold for energy detection.

Keywords: spectrum sensing; energy detection; deep learning; adaptive threshold

1. Introduction

Multiple entities, be they humans or machines, that participate in wireless communi-
cation should utilize the same, limited electromagnetic (EM) frequency spectrum that is
allocated by the regulatory bodies to be used for certain wireless communication standards.
On the other hand, the wireless communications field has been expanding in terms of
both the number of users and application areas, and this trend appears to continue into
the future [1]. This growth has been creating more demand to access the limited EM
frequency spectrum, making it a scarce resource that must be efficiently managed to meet
the demand [2].

The field of wireless communications has witnessed extensive research and implemen-
tation efforts to address the increasing demand for efficient and reliable communication
systems. Various strategies have been explored, including, but not limited to, the utilization
of cellular systems, advancements in multiplexing and multiple access techniques, the
integration of radar sensing and communication functionalities [3–5], beamforming for
spatial user separation [6], and the adoption of massive multiple-input multiple-output
(MIMO) technology [7], to name a few.

The concept of cognitive radio (CR) has emerged as a promising solution with the
potential to achieve efficient utilization of the electromagnetic frequency spectrum and
transform the wireless communications protocol stack into a more adaptable system. By
understanding its radio environment and making intelligent decisions in real time, CR

Electronics 2023, 12, 4183. https://doi.org/10.3390/electronics12194183 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12194183
https://doi.org/10.3390/electronics12194183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2871-0437
https://doi.org/10.3390/electronics12194183
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12194183?type=check_update&version=1


Electronics 2023, 12, 4183 2 of 18

aims to address various user needs in different application scenarios [2,8]. Even though
there are multiple facets to consider, such as spectrum sharing and management, spectrum-
aware networking, sensing scheduling, joint software, and hardware design [9,10], to
equip the radio with cognitive abilities, it can be claimed that sensing the spectrum with
the purpose of identifying the opportunities, e.g., available time-frequency slots, in the
spectrum space [11] is the initiator of the CR’s capabilities. Thus, being an essential
component of CR, spectrum sensing has attracted the interest of the research community.

It appears that this interest will persist. Based on the findings of [12], it has been
observed that while 5G networks generally outperform 4G networks in terms of service
quality and speed, their performance has diminished over time due to the increased number
of users accessing 5G networks without a corresponding increase in network capacity. The
primary limiting factor in addressing this capacity constraint is the scarcity of available
EM spectrum resources. Considering the envisioned goals of 6G [13,14], which strive
to establish ubiquitous connectivity across diverse vertical application domains, it can
be inferred that the ongoing significance of efficient EM spectrum utilization persists.
Consequently, the research topic of spectrum sensing retains its importance, as it directly
addresses the need to effectively detect and allocate available spectrum resources in support
of 6G’s objectives.

Spectrum sensing research is often classified into two primary categories: wideband
sensing and narrowband sensing. Wideband sensing can be further characterized by
two distinct methodologies: Nyquist-based and sub-Nyquist-based methods. Similarly,
narrowband sensing is investigated under two discrete classifications: coherent methods
and non-coherent methods [15,16].

Nyquist-based wideband sensing methods often suffer challenges due to their reliance
on high sampling rates, necessitating specialized and expensive equipment. In contrast, sub-
Nyquist wideband sensing methods alleviate the aforementioned requirements. However,
a substantial portion of these methods rely on assumptions of sparsity and the estimation
of sparsity levels, thereby introducing high computational complexity [17]. An increase
in computational complexity is frequently associated with increased energy consumption,
which is particularly undesirable for radios operating in resource-constrained environments,
such as mobile phones or military radios that are deployed in field conditions.

While wideband sensing methods offer the potential to sense a significantly broader
spectrum in comparison with narrowband sensing methods, the latter, characterized by
their relatively lower sampling rates, prove more compatible with conventional, non-bulky,
cost-effective equipment, including mobile phones, software-defined radios, and military
radio devices. Despite the generally high performance exhibited by coherent narrowband
sensing methods, such as matched filtering and waveform detection, their notable drawback
lies in the necessity of possessing either partial or complete prior knowledge of the primary
signal characteristics, which is frequently unavailable.

Alternative narrowband sensing techniques, such as cyclostationary feature detection,
covariance-based detection, etc., exhibit commendable performance even in challenging
channel conditions. Nonetheless, these methods are encumbered by the drawback of high
computational complexity. Energy detection is a non-coherent and straightforward narrow-
band sensing technique that is widely adopted in the literature. It involves subjecting a
test statistic to binary hypothesis testing against a threshold value. Its popularity stems
from its low computational complexity and the absence of the need for prior knowledge
about primary user signals. However, it exhibits limitations in terms of reliability at low
signal-to-noise ratio (SNR) values and susceptibility to noise uncertainty. Finally, it is worth
mentioning that artificial intelligence (AI)-based approaches have been leveraged either
as standalone methodologies or in combination with the aforementioned techniques to
yield enhanced and more efficient approaches [18]. In [19], a system is introduced that
incorporates convolutional neural network (CNN) and long short-term memory (LSTM)
deep learning (DL) architectures. CNN extracts energy-correlation features from sensing
data covariance matrices, while LSTM utilizes these features across multiple sensing pe-
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riods to learn the primary user activity patterns and enhance the detection probability.
Notably, this approach operates without making assumptions about signal-noise models.
In [20], researchers utilize short-time Fourier transform to create time-frequency matrices
from the received samples, which serve as inputs for the CNN model used in spectrum
occupancy classification. Effectively, this approach transforms the problem into an image
classification task. The proposed method places no constraints on primary user signals
and remains robust in the presence of SNR variations. Ref. [21] presents a system using
spectral correlation function outputs as the input for a CNN. This approach not only deter-
mines channel occupancy, but also identifies the types of signals occupying the channel,
demonstrating robustness even in challenging channel conditions. In [22], the authors
employ power spectrum as the CNN input, normalizing received signal power to mitigate
noise power uncertainty. They use the Residual Neural Network model, training it with an
extensive dataset of signal and noise data. Transfer learning is applied, where the network
is initially trained with simulated data and then fine-tuned with real-world signals. This
method performs well under colored noise and exhibits the ability to generalize when
detecting unknown signals. In contrast, Ref. [23] directly employs complex-valued samples
as CNN inputs, eliminating the need for feature extraction. Transfer learning techniques
are integrated to address performance degradation in diverse scenarios beyond the training
dataset. Likewise, in [24], raw signals act as inputs for a neural network model, which
includes one-dimensional CNN, bidirectional LSTM (BiLSTM), and self-attention (SA)
components. This fusion utilizes CNN for local pattern extraction, BiLSTM for capturing
long- and short-term dependencies, and SA for highlighting specific features.

In the context of energy detection, establishing a threshold that ensures a consistent
false alarm rate and missed detection rate requires either having explicit information
about the noise variance and SNR, or estimating these parameters from the available data.
Extensive research has focused on the development of adaptive threshold determination
methods, driven by the recognition that the noise floor commonly exhibits non-stationary
behavior. The objective of these studies is to devise techniques that can dynamically adjust
the threshold to accommodate the temporal fluctuations in the noise floor, enabling more
robust and accurate detection performance.

For example, Ref. [25] introduces an adaptive thresholding method by leveraging
the binarization concept used in image processing. The proposed approach represents
the threshold as a linear function of the mean and standard deviation of the received
signal samples. Ref. [26] proposes a heuristic method modeled as a linear function of
the signal-to-interference-plus-noise-ratio. They highlight the simplicity and practicality
of this approach for engineering applications. The authors also highlight that although
the proposed method necessitates complex offline optimization, it offers straightforward
online threshold control. Ref. [27] addresses the problem of minimizing the error decision
probability by formulating it as a function of the primary user’s spectrum utilization ratio
(ranging from 0 to 1) and the threshold. The authors demonstrate that when the spectrum
utilization ratio is fixed, the error decision probability function exhibits convex behavior,
allowing for the derivation of solutions. A novel three-event energy detection algorithm
is presented in [28]. The authors employ Newton’s method with forced convergence in
a single iteration to accurately approximate the optimal decision threshold, effectively
minimizing the error decision probability. In [29], the authors present a novel approach
centered on deep reinforcement learning. They employ a custom-designed reward function
within the deep Q-network algorithm to intelligently adjust the energy detection threshold.
Furthermore, they seamlessly integrate this method with a clustered cooperative spec-
trum sensing architecture, harnessing the collective power of these advanced techniques
for enhanced spectrum management. In [30], the authors present a method for adaptive
threshold determination, employing noise power estimates obtained at each sensing inter-
val. The noise power estimation relies on the spectral minima tracking (SMT) technique.
Furthermore, the authors perform a correlation analysis to assess the relationship between
the parameters of the SMT technique and the resulting noise power estimates. Leverag-
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ing the insights from this analysis, they fine-tune the parameters of the SMT method to
enhance the accuracy of their noise power estimations. In their study, Ref. [31] enhance
the fixed double-threshold using a conventional mean energy detection algorithm with a
novel approach by determining the intermediate threshold adaptively. They formulate the
intermediate threshold as a weighted combination of high- and low-value thresholds and
employ a decision error probability metric to optimize its value.

With the primary objective of enhancing the utilization of the limited electromagnetic
spectrum in real-world applications, this study introduces a novel multi-stage DL approach
to spectrum sensing. It employs energy detection with adaptive thresholding, utilizing
multiple stages of DL techniques applied to the time domain representation of the narrow-
band channel readings to estimate the threshold. The key contributions of the proposed
approach are:

• The introduction of a multi-stage DL approach that effectively mitigates channel
impairments and jointly conducts spectrum sensing while maintaining superior per-
formance, resulting in low false alarm (3.85%) and missed detection (3.06%) rates.

• The enhancement of system interpretability through a multi-stage DL approach, dis-
tinguishing it from monolithic DL models. This distinctive feature substantially
diminishes the ‘black box’ nature often associated with DL systems.

• The integration of DL techniques to dynamically estimate the energy detection thresh-
old. To the best of our knowledge, although AI-based methods for spectrum sensing
exist, the utilization of DL techniques to adaptively determine the threshold in energy
detection has not been extensively explored in the literature; thus, it represents a novel
contribution.

• Our exclusive use of the time domain samples eliminates the need for typically
resource-intensive operations and transformations, although it presents additional
challenges. Certain transformations excel at extracting valuable features, some of
which exhibit remarkable performance even under severe channel impairments.
Nonetheless, our system effectively addresses these challenges within the time do-
main.

• The exploration of diverse DL architectures, expanding beyond conventional choices
such as CNN and LSTM. The incorporation of autoencoders serves as a bridge toward
the wider integration of generative AI for the future in solving spectrum sensing
problems.

The subsequent sections are organized as follows: Section 2 provides a comprehensive
overview of the system model, energy detection, proposed neural network architectures,
training and testing datasets, hardware setup, hyperparameter settings, as well as the
block bootstrapping method, which is one of the various methods utilized for performance
measurement. Section 3 presents the results obtained from the experimental analysis.
Finally, Section 4 concludes the paper by discussing the findings in detail and highlighting
their implications.

2. Materials and Methods

Although various methods in the literature extend beyond mere channel occupancy
detection, spectrum sensing fundamentally aims to determine EM channel occupancy,
essentially reducing to binary hypothesis testing [32]. In the following section, we present
the mathematical representation of the spectrum sensing scenario.

2.1. Mathematical Representation of the Spectrum Sensing Scenario

The spectrum sensing scenario that we consider can be mathematically represented as:

y =

{
w if H0

x · ej(2π f∆n+φ) + w if H1
(1)
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where y ∈ CN represents the vector of received samples; x ∈ CN represents the vector of
transmitted signal samples; f∆ represents the carrier frequency offset (CFO) expressed in
terms of data rate; n represents the zero-based array index; φ represents the phase offset in
radians; w ∈ CN represents the vector of independent and identically distributed additive
white Gaussian noise (AWGN) samples, where w follows a complex Gaussian distribution
CN (0, σ2I); H0 denotes the null hypothesis indicating the vacancy of the channel; and,
finally, H1 denotes the alternative hypothesis representing channel occupancy.

2.2. Binary Hypothesis Testing and Energy Detection

The received signal samples, denoted as y, are utilized to construct the test statistic T
according to Equation [32]:

T =
1
N

N−1

∑
n=0
|y[n]|2 (2)

Subsequently, this test statistic is compared with a threshold γ to facilitate the hypoth-
esis test:

T
H0
≶
H1

γ (3)

In Equation (3), γ represents the decision threshold, dictated by the channel’s noise
variance. It can be predefined or statistically estimated, and it plays a crucial role in
achieving accurate and reliable detection results.

2.3. Proposed Adaptive Thresholding Approach

Motivated by the principle of energy conservation, we adopt a perspective that centers
around Equation (1) in the following manner:

Ey =

{
Ew if H0

Ex + Ew if H1
(4)

Here, E represents energy, and the subscripts denote the corresponding signal vectors.
By leveraging insights from [33–35], we propose a deep learning-based method to estimate
x from y. This estimation allows us to determine Ex, which, in turn, enables us to adaptively
determine the threshold γ, which, in this case, is equivalent to Ew.

Thus, Equation (3) can be reformulated by substituting Ey and Ew while introducing a
correction factor k, as follows:

Ey
H0
≶
H1

k · Ew (5)

Introducing the correction factor k addresses limitations in accurately estimating the
transmitted signal vector’s energy. Under the null hypothesis, where the signal vector
consists of zeros, ideal estimation yields zero energy. However, inherent imperfections lead
to estimates close to zero but not precisely zero. This discrepancy requires accounting for
and is addressed by introducing the correction factor k to adjust the threshold.

2.4. System Design

As shown in Equation (1), RF impairments, such as CFO, phase offset, and AWGN,
affect the transmitted signal, causing deviations in the received signal. Addressing and
compensating for these impairments enables accurate estimation of the transmitted signal
from the received one.

We propose a multi-stage DL system that combines explicit and implicit estimation
approaches to address these impairments. A dedicated neural network (NN) model
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estimates the CFO, and this estimation is used with signal processing techniques to mitigate
its effect on the received signal.

For the remaining impairments, such as phase offset and AWGN, an implicit estimation
approach is adopted. Another dedicated neural network jointly estimates and corrects
these impairments by capturing complex patterns and dependencies in the data. Training
on a moderately diverse dataset, the network learns to implicitly estimate and compensate
for the combined effect of phase offset and noise.

By referring to Figure 1 and following the sequential numbering assigned to each line,
readers can effortlessly navigate and comprehend the system design. The system begins by
estimating the CFO using a dedicated fully convolutional network (FCN). The estimated
CFO is then utilized in the CFO correction block, where the received signal y is multiplied
by e−j2π f̂∆n to obtain an intermediate signal ẑ, which undergoes a certain level of CFO
correction. This stage is known as coarse CFO estimation and correction.

Figure 1. System design diagram.

Subsequently, the same FCN is employed, with the previous network’s output, i.e.,
the CFO-corrected intermediate signal ẑ, serving as the input. This stage, referred to as fine
CFO estimation and correction, further refines the CFO estimation and yields the signal ˆ̂z,
which represents a well-CFO-corrected signal. The coarse estimation result is denoted as
f̂∆, while the fine estimation result is denoted as ˆ̂f∆.

Afterwards, a U-Net [36]-based autoencoder, known for its effectiveness in noise
mitigation applications [37–39], is employed to compensate for phase offset and denoise
the signal.

Next, the energies of both the received signal y and the estimated transmitted signal
x̂ are computed, as depicted in Figure 1. These energy values are utilized to determine
the energy of the noise Eŵ. Finally, the estimated noise energy is multiplied by a factor k,
and together with Ey, it is employed in the binary hypothesis testing to make a decision
between H0 and H1.

Determining the value of parameter k through an exhaustive search, covering all
real values from one to infinity, and selecting the optimal k where the probabilities of
false alarm and missed detection intersect is theoretically valid. However, implementing
such an approach is computationally infeasible. Therefore, we employ a practical and
empirical method to determine an appropriate value for k. Specifically, we create a vector
of 200 evenly spaced numbers ranging from 1 to 1.5, with the upper limit of 1.5 chosen
based on empirical analysis. This approach allows for an efficient and effective selection
of the parameter k. Each element of this vector is substituted for k, and the corresponding
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false alarm and missed detection rates are evaluated. The values of k that resulted in
the intersection of the false alarm and missed detection rates are identified as the most
favorable choice, as demonstrated in Figure 2. The average central processing unit time
required to perform this process is approximately 800 ms.

Figure 2. False alarm and missed detection rates as a function of k values.

While recurrent neural networks (RNNs) are commonly used for time series problems,
CNNs and FCNs have also proven effective [40–43]. In our system, we employ FCNs for
CFO estimation due to their ability to detect and combine complex patterns, making them
suitable for this task.

Table 1 provides a comprehensive summary of the FCN layers and their associated
parameters utilized for CFO estimation.

Table 1. Overview of fully convolutional network (FCN) layers and parameters for carrier frequency
offset (CFO) estimation.

Block Input (Cin, L) Output (Cout , L) Parameters

Conv1d (2, 512) (32, 512) Kernel size = 3, Stride = 1,
Padding = 1

MaxPool1d (32, 512) (32, 256) Kernel size = 2, Stride = 2,
Padding = 0

Conv1d (32, 256) (64, 256) Kernel size = 3, Stride = 1,
Padding = 1

MaxPool1d (64, 256) (64, 128) Kernel size = 2, Stride = 2,
Padding = 0

Conv1d (64, 128) (128, 128) Kernel size = 3, Stride = 1,
Padding = 1

MaxPool1d (128, 128) (128, 64) Kernel size = 2, Stride = 2,
Padding = 0

Conv1d (128, 64) (1, 64) Kernel size = 1, Stride = 1,
Padding = 0

AdaptiveAvgPool1d (1, 64) (1, 1)
The implementation is conducted using the PyTorch framework. The model has 31,265 trainable parameters.

The architecture of our U-Net-based autoencoder, which has 165,378 trainable parame-
ters, can be seen in Figure 3.

During the training stage for both networks, a mean square error loss function was
utilized.
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Figure 3. U-Net based autoencoder architecture.

2.5. Dataset Descriptions

In our simulations, we utilize quadrature phase-shift keying (QPSK) modulated base-
band signals with a length of 512 samples. Each symbol within the signal consists of
8 samples. For pulse shaping, we utilize a square-root raised cosine filter with a roll-off
factor of 0.25 and a span of 10. To simplify the analysis and implementation, we set the
sampling frequency to 1 in our simulations.

During the training of the CFO network, we utilize CFO values that are uniformly
distributed within the range of [−0.01, 0.01] relative to the data rate. To simplify the training
process, we keep the phase offset and SNR constant. The constant phase offset was chosen
because it should not have an affect on the CFO estimation. Moreover, we use a relatively
high SNR of 20 dB to enable the network to effectively learn the patterns caused by the
CFO. Our training dataset comprises 20,000 signals, each of which consists of 512 samples
with in-phase and quadrature components. We partition this dataset into 70% for training
and 30% for validation. For ease of training, we normalize the CFO values to fall within the
range of [−1, 1], simplifying their use as target variables in the network. Additionally, we
generate a separate test dataset consisting of 20,000 signals. This test dataset introduces
phase offset values that are uniformly distributed from −45 to 45 degrees in 10-degree
increments and SNR values that are uniformly distributed from 0 to 20 dB in 5 dB steps.

Table 2 provides a concise summary of the datasets utilized for both training and
testing the CFO estimation network.

Table 2. Summary of datasets used for CFO estimation network training and testing.

Set CFO (Data Rate) Phase Offset (Degrees) SNR (dB) Size

Training [−0.01, 0.01] 30 20 20,000
Test [−0.01, 0.01] [−45:10:45] [0:5:20] 20,000

The training and testing datasets for the U-Net-based autoencoder are presented in
Table 3, following a similar fashion as the CFO estimation dataset.

Table 3. Summary of datasets used for U-Net-based autoencoder network training and testing.

Set CFO (Data Rate) Phase Offset (Degrees) SNR (dB) Size

Training [−0.01, 0.01] [−45:10:45] [0:5:20] 20,000
Test [−0.01, 0.01] [−45:10:45] [0:5:20] 20,000

During the training of the U-Net-based autoencoder network, the trained CFO estima-
tion network is used for CFO correction. This involves mitigating CFO in the data with
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estimated values before U-Net training. It is important to note that some residual CFO
remains due to estimation limitations. This approach mimics real-world scenarios with
residual CFO, enhancing the U-Net’s ability to handle remaining CFO components and
improve practical performance.

Before discussing training and testing setups, we must describe the energy detec-
tion dataset. It consists of 10,000 signals with RF impairments, generated as previously
explained. Additionally, 10,000 noise vectors following the complex normal distribution
represent scenarios where the null hypothesis cannot be rejected. These sub-datasets are
merged to form the final dataset for energy detection.

2.6. Training and Testing Setup

The training and testing of both networks were conducted on a machine equipped
with an Intel i7-6700HQ CPU (8 cores) running at 2.6 GHz base frequency, an NVIDIA
GeForce GTX 950M GPU, and 16 GB RAM. The CFO network underwent training for
90 epochs, employing a learning rate of 10−3. To enhance the learning process, a learning
rate scheduler known as ReduceLROnPlateau was utilized, reducing the learning rate by
a factor of 0.5 with a patience of 10. The Adam optimizer was employed with the same
learning rate and optimizer parameters were set to β1 = 0.5 and β2 = 0.999.

Similarly, the U-Net-based autoencoder network was trained for 35 epochs, employing
the same learning rate and Adam optimizer parameters. However, the patience value
for the learning rate scheduler was adjusted to 5. This configuration facilitated effective
network training and optimization of model performance.

Table 4 provides a concise summary of the training hyperparameters utilized in our
study.

Table 4. Summary of training hyperparameters.

Neural
Network Number of Epochs Learning Rate Learning Rate

Scheduler Factor Patience Optimizer

CFO
Estimation 90 0.001 ReduceLR

OnPlateau 0.5 10 Adam, β1 = 0.5, β2 = 0.999

U-Net-Based
Autoencoder 35 0.001 ReduceLR

OnPlateau 0.5 5 Adam, β1 = 0.5, β2 = 0.999

With the hardware setup detailed in Table 5, our trained neural network can efficiently
execute a single CFO estimation and correction event for an individual signal in approxi-
mately 0.6 ms. Furthermore, the other neural network can perform phase offset estimation,
correction, and denoising for the same signal in approximately 2.2 ms.

Table 5. Summary of training and testing hardware.

Hardware Component Value

CPU Intel i7-6700HQ (8 Cores) 2.6 GHz
GPU GeForce GTX 950M
RAM 16 GB

2.7. Block Bootstrapping

To evaluate the performance of our system, we utilized various assessment methods.
One of these methods involves employing the block bootstrapping technique [44] to con-
struct 95% prediction intervals, which are presented in Section 3 afterwards. This method
is applied individually to each signal estimation. Initially, we computed the corresponding
residuals by computing the differences between our estimate and the true transmitted
signal. Then, we generated multiple blocks of length 81 by striding over the residuals
vector with a stride of 1, extracting a block at each stride. These blocks were then randomly



Electronics 2023, 12, 4183 10 of 18

sampled with replacement, concatenated, and trimmed to the length of 512. This process
was repeated multiple times, resulting in the construction of 3000 residual vectors in our
simulation.

To obtain the 95% prediction interval for the corresponding estimation, we added each
of the residual vectors to our estimation one at a time. This process resulted in the formation
of a new dataset. Finally, we computed the 2.5th and 97.5th percentiles of this dataset,
which served as the lower and upper bounds of the prediction interval, respectively.

The utilization of the block bootstrapping method is preferred over naive resampling
approaches due to the interdependence of contiguous samples in our transmitted signal,
and consequently the estimated signal, caused by the pulse shaping filter. By attempting to
mimic the underlying process that generated the time series, such as the residuals in our
case, the block bootstrapping method aims to capture the temporal dependencies.

The choice of block length is a critical factor in block bootstrapping, as it directly
impacts the ability of the method to capture the desired temporal dependencies. It serves
as a tunable parameter, and an inappropriate selection of the block length may hinder the
effectiveness of block bootstrapping in capturing the intended dependencies. In our case,
we chose a block length of 81 to align with the length of our pulse shaping filter, ensuring
that relevant dependencies within the signal were properly captured.

3. Results

The presence of RF impairments in the received signal and their subsequent mitigation
to obtain an estimate of the transmitted signal had a profound impact on the performance of
our energy detection system, particularly in the determination of the threshold. Therefore,
our initial evaluation focuses on assessing the performance of the two neural networks
responsible for mitigating these RF impairments. Following the evaluation of the neural
networks involved in RF impairment mitigation, we proceed to present the evaluation
metrics for energy detection.

3.1. CFO Estimation

Figure 4 illustrates the Mean Absolute Error (MAE) between the normalized true CFO
and the estimated CFO, considering different SNR and phase offset values. The results
demonstrate a noticeable improvement in performance as the fine estimation follows the
coarse estimation, leading to a reduction in the MAE. Consistent with our expectations,
higher SNR values correspond to lower MAE values, indicating improved CFO estima-
tion. Furthermore, the results confirm that phase offset has a negligible impact on CFO
estimation, aligning with our prior understanding.

(a) (b)

Figure 4. CFO estimation results. (a) Mean Absolute Error (MAE) between the true CFO and
estimated CFO for [0, 5] dB Signal-to-Noise Ratio (SNR). (b) MAE between the true CFO and estimated
CFO for [10, 20] dB SNR.
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3.2. Transmitted Signal Estimation

Figure 5 presents the results for randomly selected signals at various SNR levels,
including the true transmitted signal (blue), the estimated transmitted signal (red), and
the corresponding 95% prediction interval (gray). In the previous subsection focusing
on CFO estimation, we established an inverse relationship between the SNR and MAE,
indicating that higher SNR values lead to lower CFO estimation errors. Expanding on this
observation, Figure 5 reveals that the combined effect of low SNR and the inferior quality
of CFO estimation at lower SNR levels, in comparison with higher SNR levels, leads to a
decrease in the performance of the transmitted signal estimation. On the other hand, the
inverse is also true, where higher SNR levels and improved CFO estimation contribute to
enhanced performance in signal estimation.

(a) (b)

(c)

Figure 5. Transmitted signal estimation results. (a) A randomly selected estimation result of the
transmitted signal at 0 dB. (b) A randomly selected estimation result of the transmitted signal at
10 dB. (c) A randomly selected estimation result of the transmitted signal at 20 dB.

Table 6 provides an overview of the RF impairments present in each of the signals
presented in Figure 5.
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Table 6. Radio Frequency (RF) impairments that are present in each of the signals provided in
Figure 5.

Subfigure True CFO CFO Est. |True CFO
− Est. CFO| SNR (dB) Phase Offset

(degrees)

(a) 0.5143 0.3229 0.1914 0 15
(b) 0.5429 0.4987 0.0442 10 -25
(c) 0.4768 0.4827 0.0059 20 35

CFO values are rounded to 4 decimal places.

While the estimation performance of the transmitted signal is indeed satisfactory at
high SNR levels, it is important to note that it is not solely determined by the SNR. Figure 6a
provides a clear example of this, where, despite an SNR of 20 dB, the transmitted signal
estimation performance is poor. This can be attributed to a phase offset of 45 degrees,
as the QPSK symbol constellations become indistinguishable from the baseband signal
observations at ±45 degrees. Furthermore, it is essential to acknowledge the presence of
outliers in the estimation results. Figure 6b highlights cases where the transmitted signal
estimation performance is poor, particularly when there is no phase offset of ±45 degrees.
These outliers, although relatively infrequent, do not significantly impact the overall system
performance. We demonstrate this by presenting the results that follow.

(a) (b)

Figure 6. Transmitted signal estimation results—outliers. (a) Example of the estimated transmitted
signal at 20 dB with a phase offset of 45 degrees. (b) Outlier example of the estimated transmitted
signal at 20 dB with a phase offset that is not ±45 degrees.

Table 7 provides a breakdown of the RF impairments present in each of the signals
featured in Figure 6.

Table 7. RF impairments that are present in each of the signals provided in Figure 6.

Subfigure True CFO CFO Est. |True CFO
− Est. CFO| SNR (dB) Phase Offset

(degrees)

(a) 0.9196 0.9200 0.0004 20 45
(b) 0.1057 0.1639 0.0582 20 −15

CFO values are rounded to 4 decimal places.

The assessment of the overall performance of the U-Net-based autoencoder neural
network cannot be effectively conducted by visually inspecting individual pairs of true
and estimated transmitted signals. To address this, we adopt a quantitative approach by
computing the residuals between the true transmitted signal and the received signal, as
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well as between the true transmitted signal and the estimated transmitted signal, for each
signal in our dataset. Subsequently, we calculate the average energy of the residuals for
both cases. Figure 7a illustrates the relationship between the SNR and the energy of the
residuals. As anticipated, an increase in the SNR corresponds to a decrease in the energy of
the residuals. Furthermore, the figure demonstrates that the average energy of the residuals
between the true transmitted and estimated transmitted signal is significantly lower than
the average energy of the residuals between the true transmitted and received signal. This
observation strongly suggests that the good performance of the estimation leads to reduced
residuals.

(a) (b)

(c)

Figure 7. Average energy of residuals with respect to RF impairments. (a) Average energy of residuals
with respect to SNR. (b) Average energy of residuals with respect to phase offset. (c) Average energy
of residuals with respect to absolute residual CFO.

Figure 7b presents the average energy of the residuals in relation to the phase offset.
Consistent with previous discussions, we observe that the estimation performance is
notably poor when the phase offset is ±45 degrees. Furthermore, upon examination of
this figure, it becomes evident that the scenario depicted in Figure 6b represents an outlier
case. As previously discussed, the presence of outliers does not significantly impact the
overall performance of our system. Lastly, Figure 7c illustrates the relationship between the
average energy of residuals, specifically those between the true transmitted signal and the
estimated transmitted signal, and the absolute residual CFO. The absolute residual CFO
is computed as the absolute difference between the true CFO and the estimated CFO. As
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anticipated, a clear direct relationship is observed: as the absolute residual CFO increases,
the average energy of the residuals also increases.

3.3. Energy Detection

In this section, we exhibit the performance of the energy detector using the optimal k
value. Figure 8 provides an extensive performance analysis using a dataset of 20,000 sig-
nals. Among these, 10,000 signals signify channel occupancy, while the remaining 10,000
represent spectrum availability. The subset denoting channel occupancy spans a range of
SNR levels from 0 dB to 20 dB, with intervals of 5 dB. Following the application of our
proposed system for channel impairment mitigation, the results reveal a false alarm rate of
3.85% and a missed detection rate of 3.06%. These quantitative findings distinctly validate
the effectiveness of our approach.

Figure 9, on the other hand, provides insights into the system’s performance across
varying k values. While typical receiver operating characteristic (ROC) curves depict model
performance at different classification thresholds, our approach dynamically adjusts the
threshold based on the k value. Given the significance of finding the optimal k value for
peak performance, our ROC curve illustrates how different k values influence the results.

Figure 8. Confusion matrix analysis of the energy detector performance using the best k value.

(a) (b)

Figure 9. Receiver operating characteristic (ROC) curves. (a) Original ROC curve. (b) Zoomed-in
ROC curve for better visualization.
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4. Discussion and Conclusions

Spectrum sensing encompasses numerous aspects, with one fundamental yet critical
challenge being the balance between computational complexity and performance. This
study proposes a multistage approach that employs DL to adaptively estimate the energy
detector threshold by utilizing only the time domain representation of received signal
samples. The aim is to achieve a delicate equilibrium between computational complexity
and performance.

The proposed model distinguishes itself through its simplicity, relying exclusively on
time domain samples affected by RF impairments, thus avoiding the need for additional
feature extraction operations or transformations. It is noteworthy that some transformations
excel at extracting valuable features, even in the presence of severe channel impairments.
Therefore, abstaining from their use presents additional challenges. Nevertheless, our
system effectively tackles these challenges within the time domain, achieving outstanding
performance with low false alarm (3.85%) and missed detection (3.06%) rates, all while
jointly mitigating channel impairments and conducting spectrum sensing.

We leverage the received samples, which are influenced by RF impairments, to estimate
the transmitted signal. By estimating the energies of both the transmitted and received
signals, we can compute the noise energy necessary for threshold estimation. This noise
energy is then multiplied by a correction factor, denoted as k, to further refine the threshold
estimation process.

The multistage approach incorporates an FCN for accurate CFO estimation and explicit
CFO correction. Phase offset estimation, correction, and noise suppression are implicitly
handled by a U-Net-based autoencoder network. Energy calculations are performed on
the received and estimated transmitted signals to estimate the noise energy. Finally, the
energy of the received signal and the k-adjusted noise energy are used for binary hypothesis
testing, enabling effective spectrum sensing. Quantitative analyses confirm the efficacy of
our proposed method.

Based on our literature research, although AI-based methods for spectrum sensing
are available, the application of DL techniques for dynamically determining the energy
detection threshold has not been comprehensively investigated in the existing literature.
This represents a unique and innovative contribution of our work.

We also investigate a range of DL architectures, going beyond the typical selections,
such as CNN and LSTM. The inclusion of autoencoders serves as a gateway to the broader
integration of generative AI, a path to potentially improving spectrum sensing in the future.

We acknowledge the limitations of our approach. The system’s performance degrades
when encountering phase offsets exceeding 45 degrees, making it less suitable for complex
modulation schemes like 16-QAM or 64-QAM, as well as presenting additional challenges
in accurate detection and parameter estimation when applied to signals conforming to
standards like LTE and 5G NR, which exhibit noise-like properties.

Motivated by the identified limitations, we propose several potential research direc-
tions to address the challenges. One immediate but challenging approach is to design
custom loss functions specifically tailored to train the neural networks. The customized
loss functions would incorporate various characteristics of the received signal, particularly
its statistical properties. By incorporating relevant statistical information into the training
process, we anticipate that the neural networks could better adapt to the inherent com-
plexities and variations present in the received signal, ultimately improving the overall
system performance. However, developing such custom loss functions would require
careful consideration and exploration of appropriate statistical metrics and techniques,
making it a challenging yet promising avenue for further investigation. In addition to
exploring custom loss functions, another promising research direction is to investigate the
integration of state-of-the-art DL techniques into the proposed system. Techniques such as
attention mechanisms [45] and diffusion models [46] have shown significant advancements
in various domains and have the potential to enhance the mitigation of RF impairments.
A more robust approach would involve leveraging cyclostationary or covariance-based
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features, which provide valuable information about the underlying signal structure. How-
ever, extracting these features traditionally requires significant computational resources.
Therefore, a promising research direction is to explore DL methods for estimating these
features directly from the received samples. This approach would involve developing
specialized architectures and training techniques to efficiently extract informative features
and enhance system performance.

In our future work, we intend to conduct real-world experiments to validate the
system’s performance under practical conditions. Furthermore, we aim to explore various
use case scenarios and implement necessary modifications to extend the system’s appli-
cability to more complex modulation schemes and signals that adhere to specific wireless
communication standards.
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