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Abstract
Objective. The clinical survival rates of the adhesive restorations are limited due to the deterioration of resin-dentin bonds
over time, partly due to the endogenous enzymatic activity of dentin. Recently, benzalkonium chloride (BAC) has been shown
to effectively inhibit endogenous protease activity of dentin. This study evaluated the effect of different concentrations of
benzalkonium chloride (BAC) on the degree of conversion (DC), vickers hardness (VH), setting time (ST) and biaxial flexural
strength (FS) of two self-adhesive resin luting cements (RC).Methods. Two RC SpeedCEM (Ivoclar-Vivadent) and BisCem
(Bisco) were modified by addition of 0.1, 0.5, 1, 1.5, 2 wt% BAC. The luting cements without the addition of BAC served as
control. The DC (FT-IR/ATR from the bottom of the resin disc), vickers hardness (from top and bottom of the light-cured
specimen), setting time (ISO 4049) and biaxial flexural strength (0.6 � 6 mm discs) of the specimens were tested. Data were
analyzed using ANOVA and Tukeys HSD.Results.DC results were in the range of 70–80%, with some significant changes in
BisCem (p < 0.05). VH values of both materials increased significantly compared to control, with no significant change as the
BAC percentage increases. BAC addition influenced the ST differently for both materials. For BisCem, a gradual decrease
(p < 0.05) was observed whereas, for SpeedCEM, a gradual increase was observed until 1% BAC (p < 0.05). For FS values, a
gradual decrease was observed for both materials with increased amounts of BAC (p < 0.05), compared to the control group.
Conclusions. BAC addition of up to 1% seems to be acceptable considering the properties tested. Clinical significance.
Incorporation of benzalkonium chloride to self-adhesive resin luting cements during the mixing procedure does not
significantly affect the degree of conversion or flexural strength of the luting agent and may be a good option to improve
the durability of adhesive interface.
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Introduction

With the development of the adhesive technology,
adhesively bonded minimal invasive restorations
became the standard of care for restoring the missing
tooth structure [1–3]. Adhesively bonded dental
restorations depend on the strong and durable bond-
ing created by the luting cements to dentin [4].
Debonding of the restoration will usually result in
failure of the restoration which, when unrecognized,

could lead to secondary caries and harm the abutment
teeth [5].
Both hydrolytic degradation of resin layer by water

sorption and endogenous enzymatic degradation of
dentin are known to impair adhesive bonding and
result in lost integrity of the adhesive restoration [6–
8]. Matrix metalloproteinases (MMP) and cysteine
cathepsines (CC) were identified in the dentin matrix
[6], providing two different paths for the collagen
degradation. Both MMPs and cysteine cathepsines
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are capable of degrading nearly all extracellular matrix
molecules when activated by acid-etching procedures
[6,7]. Even mildly acidic self-etch adhesives were
reported to be sufficiently acidic to activate dentin
proteases, which impair the resin-dentin bond stabil-
ity over time [9].
Attempts have been focused on inhibition of the

protease activity to increase the durability of resin
dentin bonds [10]. Recently, quaternary ammonium
compounds (QACs), well recognized antibacterial
agents, have been reported to be effective on inhibit-
ing endogenous dentin proteases [11,12]. Benzalko-
nium chloride (BAC), which is a QAC, was previously
shown to bind strongly to demineralized dentin and
inhibit soluble and matrix-bound MMPs [12].
Hence, BAC seems to be a good candidate for directly
being incorporated into the adhesive systems.
Self-adhesive resin luting cements (RC) have been

introduced with the aim of simplifying the multistep
adhesive procedures, eliminating the inexperienced
operator factor for restorative applications such as
post cementations [1]. Furthermore, the simplified
application technique also increased the acceptability
of resin cements for the clinician, with more clinicians
preferring resin-based cements with self-adhesive
capability [3,4]. They are applied to smear layer cov-
ered dentin and, by means of acidic monomers
included in these luting agents, simultaneous demin-
eralization and infiltration of the dentin layer is accom-
plished. Despite their mild acidic actions, after the
application of the cement, acidic monomers create
an acidic interface layer and may facilitate activation
of endogenic proteases at the interface layers [9].
Consequently, such a superficial infiltration of acidic
monomers may form incomplete hybrid layers con-
taining voids or layers that are not impregnated prop-
erly and are permeable to water [13–15]. Thus, such a
hybrid layer leaves the collagen fibrils unprotected,
accelerating their degradation by host derived
MMPs and CCs [6].
Optimal adhesion between resin and tooth struc-

ture depends on the degree of conversion (DC) of the

bonding agent. Incomplete polymerization of resin
specimens for a particular resin system or composite
exhibit higher elution of monomers over time [16].
DC also correlates with the materials microhardness
during the setting reaction that gives useful informa-
tion on the monomer conversion for a specific resin
[17]. In addition to the mechanical properties of
adhesive resin cements, setting time of the cement
gives a good idea about the change in polymerization
reaction kinetics as a result of added ingredients or
mixing conditions [18]. Therefore, the purpose of this
study was to assess degree of conversion (DC), Vick-
ers hardness (VH), setting time (ts) and biaxial flex-
ural strength of self-etch adhesive resin cements after
addition of increasing concentrations of BAC and, in
this context, to evaluate the effects of BAC on physical
properties of adhesive resin cements. The hypothesis
tested was that the addition of BAC for improving the
durability of resin cements did not have any adverse
effect on their physical properties.

Materials and methods

The adhesive resin cements (RC) tested in this
study were: SpeedCEM (Ivoclar-Vivadent, Schaan,
Liechtenstein) and BisCem (Bisco Inc, Schaumburg,
IL) (Table I). Different amounts of BAC were added
directly to RC to prepare mixtures containing five
different concentrations of BAC: 0.1 wt%, 0.5 wt%,
1 wt%, 1.5 wt% and 2 wt%. Materials without BAC
addition served as control.

Degree of conversion

The DC of the materials was determined in real time
using Fourier transform infrared spectroscopy (FT-
IR) (Spectrum One, Perkin Elmer, Beaconsfield,
Bucks, UK) with an attenuated total reflectance
(ATR) sampling accessory. The unpolimerized adhe-
sive paste was put directly on the diamond ATR
crystal in a mold with 0.6 mm thickness and 6 mm
diameter. A polyester strip and a glass slide was placed

Table I. Materials used in the study.

Name Type Manufacturer Total filler
content

Monomers Shade Lot numbers

BisCem Dual-curing
self-adhesive
resin cement
paste/paste
(Automix)

Bisco Inc.,
Schaumburg, IL

>50%
volume

Bis-GMA,
TEGDMA, Bis[2-
(methacryloyloxy)ethyl] phosphate

Translucent 1100011020

SpeedCEM Dual-curing
self-adhesive
resin cement
paste/paste
(Automix)

Ivoclar Vivadent AG,
Schaan,
Liechtenstein

~40%
volume

UDMA, TEGDMA,
PEG dimethacrylate,
12-Methacryloyldodeylphosphate,
BPO

Transparent R56666

Bis-GMA, Bisphenol A-glycidyl methacrylate; TEGDMA, Tetraethylene glycol dimethacrylate; UDMA, Urethane dimethacrylate; PEG
dimethacrylate, polyethylenglycol dimethacrylate; BPO, Benzoyl peroxide.
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on the paste, respectively, and gently pressed to expel
the excess material. A halogen curing-unit tip (XL
3000; 3M, ESPE, St Paul, MN) with an output
intensity of 600 mW/cm2 was positioned 1 mm
from the adhesive surface during photopolimerization
and the specimen was light cured for 40 s (Figure 1).
The infrared spectra were recorded every 5.2 s for
15 min, beginning from the mixing of the resin
cement. The DC% was calculated from the aliphatic
C=C peak at 1638 cm�1 and was normalized against
the aromatic C=C peak at 1608 cm�1 according to
equation:

DC%
C C

U / U
100=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×aliphatic aromatic

aliphatic aromatic

/
%

where: Caliphatic = absorption peak at 1638 cm�1 of
the cured specimen, Caromatic = absorption peak at
1608 cm�1 of the cured specimen, Ualiphatic =
absorption peak at 1638 cm�1 of the uncured spec-
imen and Uaromatic = absorption peak at 1608 cm�1 of

the uncured specimen. The fraction of the remaining
double bonds for each spectrum was determined by
standard baseline techniques using the comparison of
maximum heights of aliphatic and reference peaks for
calculations. Light polimerized RC without BAC was
used as control. Five specimens with 0.6 mm thick-
ness and 6 mm diameter were prepared for each
group.

Vickers hardness

Each of the samples prepared for DC testing were also
used for Vickers hardness testing after 15 min of light
polymerization. The Vickers indenter was applied to
self-adhesive resin cement disc surfaces at a load of
490.6 mN and with a dwell time of 15 s. Six ran-
domized indentations were made on both the top and
bottom surfaces of each resin disc 15 min after light
polymerization, with each indentation seperated by
~0.5 mm. Microhardness was measured using a
Struers Duramin hardness microscope (Struers,
Copenhagen, Denmark) with a 40� objective lens.
The diagonal length impressions were measured and
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Figure 1. Degree of conversion (%) of resin cements. Letters show the statistically similar groups (p > 0.05) illustrations show the test set-up
(above) and the calculation method where the change in monomer conversion was calculated using the aliphatic-aliphatic C=C peak and
normalized against the aromatic C=C peak (below).
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Vickers values were converted into microhardness
values by the machine.
Microhardness was obtained using the following

equation:

H
P

d
= ×1854

2

where H is Vickers hardness in N/mm2, P is the load
in N and d is the length of the diagonals in mm.

Setting time measurements

Setting time of the materials tested was assessed by
using the thermocouple apparatus described in the
ISO 4049 test. The apparatus consisted of a 6 mm
diameter polyamide block with a 4 mm diameter and
2mm high locating part. A 6 mm long and 1mm thick
high density polyethylene tubing to fit on the locating
part was used to form the specimen well. A T-type
thermocouple wire surrounded by steel tubing was
located inside the polyamide block [ISO
4049:2009 (E)]. In order to facilitate removal of the
samples after testing, the thermocouple junction had a
conical solder tip which protruded 1 mm into the base

of the sample well (Figure 2). Five samples for Speed-
CEM and BisCem including 0.1 wt%, 0.5 wt%, 1 wt
%, 1.5 wt%,and 2 wt% of BAC and no-BAC as the
control were mixed and put into the specimen well.
The elapsed time between the begining of the mixing
of the adhesive resin cements was recorded. Before
and during the test, the apparatus was kept in an 37�C
incubator. The temperature rise was recorded with a
sampling rate of 10 Hz using a thermocouple data
logger with a built-in cold junction compensation
(TC-08, Pico Technologies Ltd, Cambridgeshire,
UK). Measurement was continued until a plateau
at maximum temperature was reached. The plateau
was extended backwards to meet an extension of the
straight line of temperature increase. Time at the
intersection of the both lines were recorded as the
setting time, ts.

Biaxial flexural strenght measurements

Disc shaped specimens (0.5 mm thick and 6.0 mm in
diameter) were fabricated in a polyethylene mold after
40-s light exposure on both sides with a halogen light
curing unit. Before the mechanical tests were applied,
adhesive discs were stored at 37�C for 24 h in a dark
container. Ten discs for both materials for five
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different concentrations (0.1 wt%, 0.5 wt%, 1 wt%,
1.5 wt%, 2 wt%) of BAC were tested (n = 10). There-
fore, 120 discs were fabricated. Each disc was placed
into a custom-made testing jig (Figure 3) and was
tested in biaxial flexure on a universal testing machine
(Model LR30KPlus; Lloyd Instruments Ltd., Fare-
ham, UK) at 1.27 mm/min until failure. The maxi-
mum load was recorded for each specimen, and the
following formula for the biaxial flexural strength (s)
was used:

s = ×− −
0.238

7P( )
2

X Y

b

where s is the maximum center tensile stress (mega-
pascals), p is the total load causing fracture
(Newtons),

X r r r r= +(1 )ln( ) [(1 ) 2]( )2 3
2

2 3
2+ −u u/ / /

Y r r= + +(1 )[1 ln( / ) ] [(1 )( / ) ]1 3
2

1 3
2u u+ −r r

and b is the specimen thickness at fracture origin
(mm), in which v is Poisson’s ratio (used v = 0.25),

r1 is the radius of the support circle (mm), r2 is the
radius of the loaded area (mm) and r3 is the radius of
the specimen (mm).

Statistical analysis

Shapiro-Wilk test was applied to test results to con-
firm normal distribution of the data. One-way
ANOVA using Tukey post-hoc analysis was used to
detect any statistically significant differences among
groups (IBM SPSS Statistics Software version 21,
IBM Corporation, Armond, NY).

Results

DC results are plotted in Figure 1. Addition of BAC
up to 2% resulted in significant changes on some of
the properties tested, with 2% BAC showing the
highest change. DC ranged from 67.6–74% for
SpeedCEM and 73.5–79.2% for BisCem. The addi-
tion of BAC into SpeedCEM caused an increase of
~6%, which was not statistically significant. BAC
addition to BisCem caused an ~10% decrease for
the 2% BAC group. This change was found to be
significant (p < 0.05).
Vickers hardness values ranged from 21.94–

27.08 for the light activated sides and from 19.88–
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24.80 for the back sides of SpeedCEM samples
(Figure 2). For the light activated sides of the Speed-
CEM samples, addition of 1%, 1.5% and 2% BAC
significantly decreased the hardness values compared
to the control groups (p < 0.05). For BisCem, hard-
ness values ranged from 20.32–24.84 for the light
activated sides and from 17.42–22.60 for the back
sides of the samples and for the light activated sides,
no significant differences were observed within the
groups except for the front side being significantly
higher and the 1% BAC group being significantly
lower than the others.
Setting time values ranged from 4.7–8.7 min

for SpeedCEM and 4.47–12.7 min for BisCem
(Figure 4). Addition of 1% and 0.5% BAC signifi-
cantly increased the setting time compared to the
control of SpeedCEM. For BisCem samples, 2%
and 1.5% BAC significantly decreased the setting
time compared to control, 0.1% and 0.5% BAC
added groups (p < 0.05).
Biaxial flexural strength values ranged from 110.6–

137.4 MPa for SpeedCEM and 105.06–162.8 MPa
for BisCem (Figure 3). There was no statistically
significant difference between the different concentra-
tions of BAC added SpeedCEM samples and control
groups except for the 2% BAC group compared to the

0.5%, 0.1% and control groups where a significant
difference was observed (p < 0.05). For BisCem, 2%,
1% and 0.5% BAC added groups showed lower
flexure strengthwith statistically significant differences
(p < 0.05) compared to the control group.

Discussion

Self-adhesive resin cements are a group of luting
cements with a relatively complex and filler-
dependent polymerization reaction. Therefore, the
behavior of these cements can not be predicted using
the data accumulated using resin cements. There are
two clinical scenarios related to self-adhesive resin
cements where a protection from endogenous enzy-
matic activity may be needed. First, because of the
acidic environment at the interface, which may acti-
vate the MMPs and CCs [12]. Another vulnerability
is created when the self-adhesive resin cements are
used after acid etching. Previous studies have shown
that the bond strength of self-adhesive resin cements
may be improved by acid-etching the enamel surface
[19,20]. If this becomes a standard procedure for
better durability, hybrid layer degradation will have
to be kept in mind, especially when the dentin surface
is also intentionally or accidentally etched.
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The present study evaluated some of the clinically
relevant properties of two light-cured self-etch adhe-
sive resin cements after the incorporation of BAC.
Results of the present study reject the hypothesis
partly as the direct addition of varied amounts of
BAC had significant effects on some of the hardness,
setting time and biaxial flexural strength results of
self-adhesive resin cements tested.
The degree of conversion of dental adhesives is an

important parameter which effects nearly every phys-
ical property of a resin system [17] and low mechan-
ical properties are related with low percentage of
monomer-to-polymer conversion within resin-based
materials [21]. Previously, incorporation of quater-
nary ammonium compounds into methacrylate-based
restorative materials were not found to affect the DC
and microhardness [21,22]. In the current study, the
results showed that the addition of BAC resulted in
changes in DC of the tested adhesive resin cements in
the order of 6% and 10% for SpeedCEM and Bis-
Cem, respectively. The control groups of BisCem
showed significantly higher DC than the BAC incor-
porated groups. The increase in DC is a positive
effect. However, addition of 1%, 1.5% and 2%
BAC significantly decreased the hardness values of
the light activated sides of the SpeedCEM samples
compared to the control groups, whereas no signifi-
cant differences were observed among the light acti-
vated sides of the BisCem control group and the BAC
added groups except for the 1% BAC groups. Overall,
a decrease of hardness values up to 20% at the light-
exposed side and an increase of ~25% on the bottom
sides of both cements was observed. Previous reports
using much higher concentrations of BAC [23]
denoted that the addition of ionic dimethacrylate
monomers (IDMAs) which contain quaternary
ammonium groups slightly increased the viscosity
of the mixture and linear correlations were found
[24] between viscosity and Knoop hardness values
of light-cured dental composites. As is known, BAC is
a cationic surfactant with both hydrophilic and hydro-
phobic ends which might affect the viscosity of the
mixtures. The changes in the hardness values in
response to different quantities of added BAC shows
that the changes observed in DC did not directly
correlate with the hardness values.
Benzalkonium chloride, chlorhexidine and triclo-

san were previously added to orthodontic adhesive
resins with no significant effect on the bond strengths
of the tested materials [25]. Similar to this study,
Othman et al. [26], after testing the tensile bond
strength and the diametrial tensile strength, con-
cluded that the incorporation of BAC into a compos-
ite adhesive material added antimicrobial properties
to the compound without affecting its mechanical
properties.
Addition of BAC into SpeedCEM did not signif-

icantly increase the setting time compared to the

control. For BisCem samples, addition of 1,
1.5 and 2% BAC significantly decreased the setting
time compared to added groups. The phosphate
acidic monomer gives the advantage of superior adhe-
sion to various materials like metals, dentin and
ceramics. The cements used in this study had two
different phosphate acidic monomers and SpeedCEM
had urethane dimethacrylate as the main polymeriz-
able component compared to Bis-GMA in BisCem.
Quaternary ammonium salts were previously shown
to act as cationic initiators for N-Benzylpyridinium
salts. The difference probably lies in the efficiency and
compatibility of BAC as a cationic initiator in these
systems [27].
It was previously reported that biaxial flexure

strength data provided reliable results since maximum
tensile stresses occur within the central loading area of
the disc shaped samples, eliminating spurious edge
failures associated with three-point flexure testing
[28]. According to the results of the biaxial flexure
strength tests, the strength of the specimens gradually
fall as the amount of BAC increases. Both materials
had significantly lower biaxial strength values com-
pared to control at 2% BAC on the order of 20% for
SpeedCEM and 35% for BisCem. Similar to the
present results, Cadenaro et al. [29] found that addi-
tion of 1% or 5% CHX-another cationic agent
produced a significant decrease in the modulus of
elasticity of the most hydrophilic adhesive resin
among five different experimental adhesive blends.
The findings of the present study indicate that the

addition of BAC does interfere with the polymeriza-
tion of self-adhesive resin cements. In the setting time
and hardness results from the bottom of hardness
specimens, a significant improvement was found for
Biscem. These results are indicative of the materials
ability to self-cure when there is not enough curing
light exposure. On the other hand, conversion, hard-
ness from the top surfaces of the specimens and
biaxial fracture strength results, where the specimens
are light-cured by direct exposure, were lower com-
pared to controls, especially at higher concentrations.
These results indicate that BAC addition especially
interferes with the light-curing mechanism negatively
and, as a result, lower mechanical properties are
obtained. This could be another influence of the
cationic activity, which changes the viscosity of the
resin effecting the relatively quick polymerization
when light activation is preferred.
Incorporation of active ingredients into currently

used systems may provide an easy modification
method for the clinicians, where an improvement in
certain properties is needed. Evaluation of the
changes in mechanical and handling properties of
materials is essential before such modifications are
proposed. The present study gave an overview of the
clinically relevant property change for various con-
centrations of BAC. In conclusion, on account of

Benzalkonum chloride as cement additive 837



possessing antibacterial properties and being a poten-
tial MMP inhibitor, incorporation of BAC with
self-etch adhesive resins could be a good solution
in order to improve the bond durability. While
improving some of the mechanical properties, BAC
could also have some adverse effects on resin systems.
However, the effect of BAC on the mechanical
properties seems to be material-dependent and
dose-dependent. Further studies should be aimed
at investigating the effect of lower BAC concentra-
tions on the MMP-inhibiting and anti-bacterial
properties to achieve better overall results.

Declaration of interest: The authors report no
conflicts of interest. The authors alone are responsible
for the content and writing of the paper.
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