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Abstract: The combination of linearity and elasticity assumptions provides classical calculation
procedures for the reinforced concrete (RC) columns and beams against internal and external seismic
loads. In these calculation procedures, the elasticity modulus of the concrete is taken into account
by ignoring the steel reinforcement due to its small area percentage in the total cross-section area.
This paper presents an innovative column stress calculation procedure considering the concrete–steel
composition as the equivalent elastic modulus based on the classical Hooke’s Law. This methodology
takes into consideration also the elastic modulus of the steel, providing a reduction in the factor
of safety. The application of the proposed method is presented for a series of RC column cross-
section areas. It is observed that the proposed methodology leads to elastic modulus improvement
of 6% to 27% compared to conventional calculations. The necessary flow chart for the execution
of the proposed process steps and accordingly developed MATLAB program are provided for
the application.

Keywords: column; equivalent elastic modulus; concrete; steel; safety factor

1. Introduction

In general, reinforced concrete (RC) columns resist greater strength than traditionally
computed results based on the conventional elastic, uniform and linear stress distribution
according to Hooke’s Law. For all uncertainty types that enter any RC beam calculation,
the elastic method is a satisfactory solution for present-day conditions [1]. Concrete–
steel composite structures have developed rapidly since the 1950s due to their superior
performance and material advantage [2]. Generally, concrete and steel joint behaviour in
an RC column and beam is unlike material science, where the direct rule of mixtures is
a weighted average. Such an approach provides a theoretical basis for elastic modulus,
ultimate tensile stress, thermal conductivity, and electric conductivity [3]. Recently, the
rehabilitation, retrofitting, and strengthening of structures have been endorsed by many
researchers as more sustainable solutions than the demolition and reconstruction of the
whole structure [4].

Generally, the elastic cross-section properties for the service load-level designs are
higher than those used to determine the required strengths [5]. Elastic analyses are used
for many purposes in the design of RC structures. In common civil engineering RC column
and beam strength calculations, only concrete elasticity modulus is taken into account,
and steel reinforcement contribution is not taken into account. According to the simplest
linear and elastic models, RC cross-sections remain planar under steel and concrete elastic
joint behaviour subject to external loads. It has been well-known for many years that
a “safety factor” (SF) is applied to increase the reliability of deterministic formulation
results to stay on the safe side. Thus, the numerical results out of relevant methodological
calculations end up with underestimation, and therefore, the results are increased by
multiplication with a safety factor (SF) that is more than one. Therefore, RC structural
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elements deserve objectively finer innovative methodologic calculations to reduce the
impact of SF. In practical applications, the importance of such a factor arises because of
the heterogeneous and complex behaviour of the concrete and steel material contacts. The
cross-section strength in an RC column should be computed by taking into account both
concrete and steel bar joint functions in an adjustable way.

The cross-section geometry can be in circular, rectangular, square, hexagonal, etc.,
forms in addition to the position of steel bars and their areal and elastic modulus amounts.
For example, in the literature, especially in stiffness calculations, some works take the
ratio of elastic modulus of concrete and steel, where stiffness is defined as the elastic
modulus multiplied by the moment of inertia [6]. Such an elastic modulus ratio concept
is important not only in common structural elements but also in prestressed, jacketed,
and encased concretes [4,5]. It is involved in all expressions related to the mass or weight
of the members, axial, and flexural actions, deformations, strains, and stresses [6]. The
importance of the elastic modulus ratio will be explained later in this paper based on a set
of new formulations.

In recent years, there have been several works based on the national code determi-
nation of elastic modulus (E) combination with the moment of inertia (I) just for stiffness
calculation leading to deformation studies [7–10]. Overwhelmingly in the literature, rectan-
gular cross-sections are adapted for formulations, whereas Ehsani and Alameddine [11],
and Sigmon and Ahmad [12] considered loads on circular cross-sections for stiffness calcu-
lations. For example, Bonet et al. [13] proposed a conservative column formula according
to the ACI-318-02 [14] standard. Bonet et al. [15] proposed a new approach for stiffness
calculation for RC columns for any cross-section shapes under the effect of axial load.
The calculations are made based on concrete and steel elastic modulus, young modulus,
mean compressive strength of concrete, and moment of inertia, where steel and concrete
elastic modulus are obtained from the Euro Code 2 [16]. The behaviour of cross-sections is
represented by elastic rigidities in frame elastic analyses, which define the stiffness of cross-
sections in various deformation modes, such as the axial stiffness, the flexural stiffness,
the shear stiffness, and the torsional stiffness. For moment frame systems, the dominant
deformation mode is typically bending; thus, flexural stiffness is of prime importance [17].

Cai et al. [18] presented a new unified design equation for estimating the axial compres-
sive strength of square and rectangular concrete-filled steel tubular (CFST) short columns.
The proposed design equation offers several advantages over existing formulations, includ-
ing faster and more convenient estimation, elimination of section slenderness calculations,
and extended material strength limits for concrete infill and steel tubes. Nocera et al. [19]
developed probabilistic models to estimate the Strength Reduction Factor (SRF) and Elastic
Modulus Reduction Factor (ERF) of rubberized concrete, considering various mix design
variables, and three types of rubber aggregates using a Bayesian approach with Markov
Chain Monte Carlo simulation. The proposed probabilistic models are employed to assess
the reliability of rubberized RC structures, including a column and a one-way slab sub-
jected to compressive axial force and distributed load, respectively. Khalel and Khan [20]
focused on the selection and impact of fibre reinforcement in fibre-reinforced cementitious
composites. They proposed a model that predicts compressive and flexural strengths
based on input parameters such as fibre shape, type, length, and percentage. Their model
assumes the elastic modulus validation using statistical tools and demonstrates accuracy,
with errors less than 6% for compressive strength and 15% for flexural strength. Gandomi
et al. [21] used a multi expression programming procedure as a new design calculation by
considering the elastic modulus of concrete. For greater sustainability in construction, Chen
et al. [22] proposed popular coarse recycled aggregate concrete (RAC) as a replacement for
natural aggregate concrete (NAC) structures. Felix et al. [23] have used a machine learning
procedure to estimate the elastic modulus of concrete through regression and artificial
neural network (ANN) procedures. Although these references dealt with the elasticity
modulus of concrete, there is no mention of the contribution of the steel reinforcement
support in the RC cross-section strength computations as proposed in this paper. RC
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columns are among the most common vertical load-bearing components in bridges and
building structures, which provide an increase in service loads and damages caused by
earthquakes or due to exposure to additional physical loads in harsh environments, where
strengthening, rehabilitation, and retrofitting are often demanded to restore and enhance
their performances.

The main purpose of this paper is to propose a new calculation approach for the
RC column strength calculation by considering not only concrete elastic modulus but
also supportive steel reinforcement elasticity modulus joint contributions. The equivalent
elastic modulus equation is derived for the integrated behavioural action of concrete and
steel. The application of the methodology is presented for a set of circular, rectangular,
and square-column cross-sectional areas coupled with a set of concrete quality classes.
The comparison of the classical and newly proposed method results shows 6% to 27%
improvements.

2. Composite Elasticity Model

In RC structures, stress, strain, and deformation activities are concerned with the
structural element cross-sectional areas subject to internal and external loadings. Although
non-linear deformation is related to the same cross-sectional area, it has not been consid-
ered herein because it is more related to the stiffness property of the structural element.
Commonly it is well-known that stress is equal to force divided by the total cross-sectional
area, irrespective of concrete and steel areas. In this paper, the reverse operation is also
used to calculate the stress on concrete and steel interactively to reach the same force after
the calculation of the equivalent elasticity modulus for the joint behaviour of concrete and
steel bars.

In general, an RC cross-section has few properties for strength calculations, such as
the moment of inertia of the cross-section and the elasticity modulus of concrete. Cross-
section properties should include physical quantities like steel area percentage in the total
cross-section area and elastic modulus of steel bars, as they are the most-ignored elements.

The research progress in RC needs to understand the actual areal behaviour of structure
cross-section as the composite material form. There are unprecedented developments in
RC elements’ analysis based on the assumptions of linearity and elasticity concepts in
Hooke’s Law, where only concrete elastic modulus is taken into account. However, such an
approach is not confirmed with facts because steel bar contribution is not considered. Steel
is an elastic material like concrete, and the inclusion of steel strength in the calculations
provides an additional ability for refined results that reduces the multiplicative SF amount.

Inside the cross-section of a column, as for the classical structural engineering calcula-
tions, concrete and steel are subjected to the same stress, whatever the cross-section areal
composition of these materials. To explain this concept, let us consider a square column, as
in Figure 1.

The following points are important for proposing a new formulation for concrete and
steel joint behaviour.

1. The total cross-sectional area, AT, is composed of a concrete area, AC, and the steel
bars’ area, AS;

2. The steel bars’ area, AS, or the concrete area, AC, are expressible as follows;

AS = AT − AC (1)

AC = AT - AS (2)

3. The total area can be calculatable provided that the cross-section shape of the column
is given as circular, rectangular, or square with two-dimensional measures;

4. As for the stress distribution, concrete and steel areas are subjected to the same stress
amount;
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5. As for the strain, both materials will react equally, where concrete will be a dependent
material to steel or vice versa. Thus, each material will have the same strain under the
force, F, in a column (see Figure 1).
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Figure 1. Column and representative cross-section stress and area elements.

In the light of these points, it is possible to write stress expressions for each element
from Hooke’s Law, in general, as a well-known expression between stress, σ, and strain, ε,
with a mediator of elastic modulus, E as,

σ = E ε (3)

The versions of this expression can be written for the elastic modulus of concrete and
steel materials (concrete, EC, steel, ES) separately as follows:

σ = EC ε (4)

and
σ = ES ε (5)

These equations can be transformed into forces (concrete, FC, steel, FS) by taking into
consideration the stress and the cross-sectional areas.

FC = AC EC ε (6)

and
FS = AS ES ε (7)
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According to the static mechanism, action and reaction forces balance each other
leading to the following expression:

F = AC EC ε+ AS ES ε (8)

The crunch point of the newly proposed methodology is the consideration of equiva-
lent elastic modulus, EE, which allows writing the following expression similarly to the
previous equations:

AT EE ε = AC EC ε+ AS ES ε (9)

Since all cases are under the same stress and strain, this expression takes the following
simple form:

AT EE = AC EC + AS ES (10)

Division of both sides by total area, AT, yields:

EE =
AC
AT

EC +
AS
AT

ES (11)

The ratios on the right-hand side imply areal percentages of concrete, APC, and steel,
ASC, respectively. Then succinctly, the last expression can be written as:

EE = APC EC + APS ES (12)

Finally, according to this expression, Hooke’s Law takes the following newly modified
form as:

σ = (APC EC + APS ES) ε (13)

If only the concrete cross-sectional area is taken into consideration as in the classical
civil engineering calculations, then Equation (13) reduces to Equation (4) provided that APS
is equal to zero, then APC is equal to 1. The relative improvement percentage, RIP, between
the last expression becomes after a simple algebraic calculation as:

RIP = APC + APS
ES

EC
− 1 (14)

With elasticity modulus ratios, ER = ES/EC, the final form of the relative improvement
percentage, RIP, becomes as follows:

RIP = APC + APS ER − 1 (15)

3. Application and Results

In light of what has been explained in the previous sections, the application of the
proposed methodology is presented for a set of column cross-sectional areas in different
forms (see Figure 2). Concrete and steel cross-sectional area (AC and AS), total area (AT),
and rebar ratio (ρ) values are calculated and presented in Table 1.

Additionally, elastic modulus values are given in Table 2 for a set of concrete and steel
quality classes for newly proposed methodological calculations in light of the equations
presented in the previous section.

The following MATLAB program (Figure 3) is written by the authors for automatic
computations of equivalent elastic modulus and relative improvement percentages based
on the relevant numerical values given in Figure 2 and Tables 1 and 2.

The essence of this program can be described in the Figure 4 flowchart by integrating
the concrete qualities and steel elastic modulus application on the 20 different types of
cross-section areas given in Figure 2 and Table 1.

In Table 3, the equivalent elastic modulus values appear as outputs after the aforemen-
tioned MATLAB program execution.
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Table 1. Concrete and steel cross-sectional area calculations of the column set.

Cross-
Section

No

Section Geometric Details Rebar Details Area Calculations

Shape Width Length Diameter Quantity Diameter AT AS AC ρ
mm mm mm Pieces mm mm2 mm2 mm2 %

1 Circular - - 600 20 22 282,743 7603 275,141 2.69%
2 Circular - - 500 14 20 196,350 4398 191,951 2.24%
3 Circular - - 550 18 22 237,583 6842 230,741 2.88%
4 Circular - - 650 22 20 331,831 6912 324,919 2.08%
5 Circular - - 450 12 18 159,043 3054 155,990 1.92%
6 Circular - - 350 8 14 96,211 1232 94,980 1.28%
7 Circular - - 700 16 24 384,845 7238 37,7607 1.88%
8 Circular - - 400 10 16 125,664 2011 123,653 1.60%

9 Rectangular 300 300 - 8 16 90,000 1608 88,392 1.79%
10 Rectangular 400 400 - 12 18 160,000 3054 156,946 1.91%
11 Rectangular 500 400 - 14 22 200,000 5322 194,678 2.66%
12 Rectangular 600 600 - 20 20 360,000 6283 35,3717 1.75%
13 Rectangular 500 500 - 18 14 250,000 2771 247,229 1.11%
14 Rectangular 500 600 - 20 16 300,000 4021 295,979 1.34%
15 Rectangular 800 800 - 32 26 640,000 16,990 623,010 2.65%
16 Rectangular 450 450 - 12 22 202,500 4562 197,938 2.25%
17 Rectangular 450 400 - 12 24 180,000 5429 174,571 3.02%
18 Rectangular 400 600 - 16 14 240,000 2463 237,537 1.03%
19 Rectangular 500 300 - 14 16 150,000 2815 147,185 1.88%
20 Rectangular 350 350 - 8 14 122,500 1232 121,268 1.01%

AT = total area of the cross section, AS = rebar area, AC = concrete area = AT − AS, ρ = rebar ratio = AS/AC ×
100 (%).

Table 2. Concrete and steel material elasticity values.

Concrete
Class

Compressive
Strength

Tensile
Strength

Modulus of
Elasticity Metal Alloy

Modulus of
Elasticity

Shear
Modulus

Poisson
Ratio

MPa MPa MPa GPa GPa -

C16 16 1.4 27,000 Aluminium 69 25 0.33
C18 18 1.5 27,500 Brass 97 37 0.34
C20 20 1.6 28,000 Copper 110 46 0.34
C25 25 1.8 30,000 Magnesium 45 17 0.29
C30 30 1.9 32,000 Nickel 207 76 0.31
C35 35 2.1 33,000 Cast iron 120 46 0.30
C40 40 2.2 34,000 Steel (rebars) 207 83 0.30
C45 45 2.3 36,000 Titanium 107 45 0.34
C50 50 2.5 37,000 Wolfram 407 160 0.28Buildings 2023, 13, x FOR PEER REVIEW 8 of 13 
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Table 3. Equivalent elastic modulus.

C16 C18 C20 C25 C30 C35 C40 C45 C50

EQUIVALENT ELASTICITY MODULUS (×104 MPa)

C
R

O
SS-SEC

T
IO

N
A

R
EA

1 3.35 3.40 3.45 3.65 3.84 3.94 4.03 4.23 4.33
2 3.24 3.29 3.34 3.54 3.73 3.83 3.93 4.12 4.22
3 3.40 3.45 3.50 3.69 3.89 3.98 4.08 4.27 4.37
4 3.21 3.26 3.30 3.50 3.70 3.79 3.89 4.09 4.19
5 3.17 3.22 3.26 3.46 3.66 3.76 3.85 4.05 4.15
6 3.01 3.06 3.11 3.31 3.50 3.60 3.70 3.90 4.00
7 3.16 3.21 3.26 3.45 3.65 3.75 3.84 4.04 4.14
8 3.09 3.14 3.19 3.38 3.58 3.68 3.78 3.97 4.07
9 3.13 3.18 3.23 3.43 3.63 3.72 3.82 4.02 4.12

10 3.16 3.21 3.26 3.46 3.65 3.75 3.85 4.05 4.14
11 3.35 3.40 3.44 3.64 3.83 3.93 4.03 4.22 4.32
12 3.12 3.17 3.22 3.42 3.62 3.71 3.81 4.01 4.11
13 2.97 3.02 3.07 3.27 3.46 3.56 3.66 3.86 3.96
14 3.03 3.08 3.12 3.32 3.52 3.62 3.72 3.91 4.01
15 3.35 3.39 3.44 3.64 3.83 3.93 4.03 4.22 4.32
16 3.25 3.30 3.35 3.54 3.74 3.83 3.93 4.13 4.22
17 3.43 3.48 3.53 3.72 3.92 4.01 4.11 4.31 4.40
18 2.95 3.00 3.05 3.25 3.44 3.54 3.64 3.84 3.94
19 3.16 3.21 3.25 3.45 3.65 3.74 3.84 4.04 4.14
20 2.94 2.99 3.04 3.24 3.44 3.54 3.64 3.84 3.93

The changes of equivalent elastic modulus with the cross-section area type are shown
in Figure 5.
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Each cross-section number on the horizontal axis represents the total cross-section
area, including concrete and steel. Another computation output of the program yields the
relative improvement percentages of the newly proposed methodology compared with the
classical Hooke’s Law calculation of the stress without steel reinforcements (see Equation
(15)), and the results are presented in Table 4. It indicates the improvement percentages of
the new methodological calculation over the classical engineering calculation.

Table 4. Relative improvement percentages change with cross-section shape and concrete quality.

C16 C18 C20 C25 C30 C35 C40 C45 C50

RELATIVE IMPROVEMENT PERCENTAGE (RIP)

C
R

O
SS-SEC

T
IO

N
A

R
EA

1 24.20 23.71 23.24 21.51 20.00 19.31 18.67 17.48 16.93
2 20.16 19.75 19.36 17.92 16.66 16.09 15.55 14.56 14.10
3 25.92 25.39 24.89 23.04 21.42 20.68 19.99 18.72 18.14
4 18.75 18.37 18.00 16.66 15.49 14.96 14.46 13.54 13.12
5 17.28 16.93 16.60 15.36 14.28 13.79 13.33 12.48 12.09
6 11.53 11.29 11.07 10.25 9.52 9.20 8.89 8.32 8.06
7 16.93 16.58 16.26 15.05 13.99 13.51 13.05 12.22 11.84
8 14.40 14.11 13.83 12.80 11.90 11.49 11.11 10.40 10.08
9 16.08 15.76 15.44 14.29 13.29 12.83 12.40 11.61 11.25

10 17.18 16.83 16.50 15.27 14.20 13.71 13.25 12.41 12.02
11 23.95 23.47 23.00 21.29 19.79 19.11 18.47 17.30 16.76
12 15.71 15.39 15.08 13.96 12.98 12.53 12.11 11.34 10.99
13 9.98 9.77 9.58 8.87 8.24 7.96 7.69 7.20 6.98
14 12.06 11.82 11.58 10.72 9.97 9.63 9.30 8.71 8.44
15 23.89 23.41 22.94 21.24 19.74 19.07 18.43 17.26 16.72
16 20.28 19.87 19.47 18.02 16.76 16.18 15.64 14.64 14.19
17 27.15 26.60 26.07 24.13 22.43 21.66 20.94 19.60 18.99
18 9.24 9.05 8.87 8.21 7.63 7.37 7.12 6.67 6.46
19 16.89 16.55 16.22 15.01 13.96 13.48 13.03 12.20 11.82
20 9.05 8.87 8.69 8.05 7.48 7.22 6.98 6.54 6.33

Figure 6 shows the relative improvement percentage change depending on the concrete
quality with respect to the cross-sectional area. According to the proposed methodology
in this paper, the least error percentage is with section number 20 coupled with concrete
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quality C50. The maximum relative improvement percentage is with the cross-section area
in number 17 (slightly rectangular) and associated with concrete quality C16. Comparison
of this last figure with the previous one indicates the same minimum and maximum
equivalent elastic modulus for the same cross-sectional and concrete quality categories.
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4. Discussion

According to Hooke’s Law, the classical column stress calculation does not consider
the steel bars’ contribution. Although steel reinforcement has a comparatively small
area within the total cross-section area, its very high elastic modulus adds an important
contribution to the RC column strength. The proposed methodology considers steel bar
areas’ important contribution to the overall stress calculation because the elastic modulus
of steel is higher than concrete. In light of the proposed methodology, the following points
are worth considering in comparison to the classical linear Hooke’s Law calculation:

1. The applications indicate that the relative improvement percentages over the clas-
sical Hooke’s Law calculations vary between 6% and 27% (see Figure 6). The steel
reinforcement consideration is the main improvement factor, together with areal and
elastic modulus contributions of various cross-section shapes with different concrete
qualities;

2. As the concrete quality increases (from C16 to C50), the improvement percentage also
increases, and other concrete quality improvement percentages are confined between
these two concrete qualities;

3. The minimum percentage improvement is with a square cross-sectional area coupled
with C50, whereas the maximum is with a slightly rectangular cross-sectional area
coupled with C16 concrete quality;

4. Increasing the relative improvement percentage on behalf of the steel is possible
by increasing the steel area percentage. Thus, there is an optimum reinforcement
possibility for the column design. In such optimization work, the budget (economic)
conditions also play a restrictive role;

5. Steel reinforcement contribution calculations augment the strength of the column,
and thus some part of the “safety factor” can be reduced according to the proposed
methodological calculation. With the newly proposed methodology, the SF amount
becomes closer to 1.

It is recommended that the contribution of the steel elastic modulus and areal ex-
tensions should be taken into account in future RC strength calculations of beams, slabs,
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shear walls, arches, and bridges. In addition, the crushing and buckling behaviours of RC
columns with the contribution of the steel elastic modulus can be studied as a future work
by examining the short and long columns.

5. Conclusions

In classical reinforced concrete (RC) calculations, steel reinforcement area and elastic
modulus are overlooked. Thus, classical RC calculations yield under-estimation; therefore,
the computation results are multiplied by a safety factor with a value slightly bigger than
one. This study provides a new methodology for refined calculations in RC columns
by integrating steel reinforcement elastic modulus and cross-section area contributions.
The necessary formulations are derived in the forms of equivalent elastic modulus and
relative improvement percentages. The proposed methodology provides finer calcula-
tions; therefore, the safety factor can be adapted closer to one if necessary. It is found
that depending on the configuration of a column’s cross-sectional areal shape (circular,
rectangular, or square) and their combinations with different concrete quality classes led to
the minimum relative improvement percentage being 6% and the maximum improvement
of approximately 27%. The application of the proposed methodology is recommended for
other reinforced concrete structural elements such as beams, slabs, shear walls, and those
alike. Furthermore, investigating the crushing and buckling behaviours of RC columns,
considering the influence of the steel elastic modulus, presents a potential avenue for future
research, particularly in the analysis of both short and long columns.
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review and editing, A.M. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Istanbul Medipol University.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Inge, L. The Modular Ratio in Reinforced Concrete Design (Manuscript). A.K.A: The Modular Ratio—A New Method of Design.

Concrete and Constructional Engineering, (England), Reprint No. 41 (37-4) (1937). Fritz Laboratory Reports. Paper 1202. Available
online: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1202 (accessed on 1 June 2023).

2. Qiang, Z.; Li, Y.; Kolozvari, K. Numerical modelling of steel–concrete composite structures. Struct. Concr. 2018, 19, 1727–1739.
[CrossRef]

3. Askeland, D.R.; Fulay, P.P.; Wright, W.J. The Science and Engineering of Materials, 6th ed.; Cengage Learning: Boston, MA, USA,
2010.

4. Alsomiri, M.; Jiang, X.; Liu, Z. Elastic Restraint Effect of Concrete Circular Columns with Ultrahigh-Performance Concrete Jackets:
An Analytical and Experimental Study. Materials 2021, 14, 3278. [CrossRef] [PubMed]

5. Denavit, M.D.; Hajjar, J.F.; Perea, T.; Leon, R.T. Elastic Flexural Rigidity of Steel-Concrete Composite Columns. 2018. Available
online: https://www.sciencedirect.com/science/article/abs/pii/S0141029617321107 (accessed on 1 June 2023).

6. Anwar, N.; Najam, F.A.S. Structural Cross-Sections, Analysis and Design; Butterworth-Heinemann: Cambridge, MA, USA, 2017;
588p.

7. Bresler, B. Design criteria for reinforced columns under axial load and biaxial bending. ACI J. Amer. Concr. 1969, 57, 481–490.
8. Mirza, S.A. Flexural stiffness of rectangular reinforced concrete columns. ACI Struct. J. 1990, 87, 425–435.
9. Tikka Timo, K.; Mirza, S.A. Effective flexural stiffness of slender structural concrete columns. Canad. J. Civil. Eng. 2008, 35,

384–399. [CrossRef]
10. Raza, S.; Khan, M.K.; Menegon, S.J.; Tsang, H.-H.; Wilson, J.L. Strengthening and Repair of Reinforced Concrete Columns by

Jacketing: State-of-the-Art Review. Sustainability 2019, 1, 3208. [CrossRef]
11. Ehsani, M.R.; Alameddine, F. Refined stiffness of slender circular reinforced concrete columns. Struct. J. 1987, 84, 419–427.
12. Sigmon, G.R.; Ahmad, S.H. Flexural rigidity of circular reinforced concrete sections. Struct. J. 1990, 87, 548–557.
13. Bonet, J.L.; Miguel, P.F.; Fernandez, M.A.; Romero, M.L. Biaxial bending moment magnifier method. Eng. Struct. 2004, 26,

2007–2019. [CrossRef]
14. Building Code Requirements for Structural Concrete (ACI-318-02), Committee 318; American Concrete Institute: Detroit, MI, USA,

2002.

http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1202
https://doi.org/10.1002/suco.201700094
https://doi.org/10.3390/ma14123278
https://www.ncbi.nlm.nih.gov/pubmed/34198525
https://www.sciencedirect.com/science/article/abs/pii/S0141029617321107
https://doi.org/10.1139/L07-113
https://doi.org/10.3390/su11113208
https://doi.org/10.1016/j.engstruct.2004.08.001


Buildings 2023, 13, 1962 12 of 12

15. Bonet, J.L.; Romero, M.L.; Miguel, P.F. Effective flexural stiffness of slender reinforced concrete columns under axial forces and
biaxial bending. Eng. Struct. 2011, 33, 881–893. [CrossRef]

16. EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1: General Rules and Rules for Buildings. European Committee for
Standardization: Brussels, Belgium, 2004.

17. Park, R.; Paulay, T. Ductile reinforced concrete frames: Some comments on the special provisions for seismic design of ACI 318-71
and on capacity design. Bull. N. Zealand Soc. Earthq. Eng. 1975, 8, 70–90. [CrossRef]

18. Cai, Y.; Jiang, H.; Lai, Z. A unified design equation for square and rectangular concrete-filled steel tubular short columns. J. Constr.
Steel Res. 2023, 207, 107949. [CrossRef]

19. Nocera, F.; Wang, J.; Faleschini, F.; Demartino, C.; Gardoni, P. Probabilistic models of concrete compressive strength and elastic
modulus with rubber aggregates. Constr. Build. Mater. 2022, 322, 126145. [CrossRef]

20. Khalel, H.H.Z.; Khan, M. Modelling Fibre-Reinforced Concrete for Predicting Optimal Mechanical Properties. Materials 2023, 16,
3700. [CrossRef] [PubMed]

21. Gandomi, A.H.; Faramarzifar, A.; Rezaee, P.G.; Asghari, A. New design equations for elastic modulus of concrete using multi
expression programming. J. Civ. Eng. Manag. 2015, 21, 761–774. [CrossRef]

22. Chen, J.; Zhou, Y.; Nad Yin, F. A Practical Equation for the Elastic Modulus of Recycled Aggregate Concrete. Buildings 2022, 12,
187. [CrossRef]

23. Felix, E.; Possan, E.; Carrazedo, R. A new formulation to estimate the elastic modulus of recycled concrete based on regression
and ANN. Sustainability 2021, 13, 8561. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engstruct.2010.12.009
https://doi.org/10.5459/bnzsee.8.1.70-90
https://doi.org/10.1016/j.jcsr.2023.107949
https://doi.org/10.1016/j.conbuildmat.2021.126145
https://doi.org/10.3390/ma16103700
https://www.ncbi.nlm.nih.gov/pubmed/37241327
https://doi.org/10.3846/13923730.2014.893910
https://doi.org/10.3390/buildings12020187
https://doi.org/10.3390/su13158561

	Introduction 
	Composite Elasticity Model 
	Application and Results 
	Discussion 
	Conclusions 
	References

