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Simple Summary: The circadian timing system is our bodies’ built-in clock and controls our physiol-
ogy on a daily basis. This system helps us adapt to changes in our environment, such as light and
dark cycles, temperature changes, and the timing of meals. Disruptions to this system are linked to
many health problems, including cancer, sleep disorders, and metabolic disorders such as diabetes
and obesity. One key player in this system is adipose tissue, or fat, which stores and releases energy.
Changes in how this tissue works can significantly impact our metabolic health. This article explores
how the circadian timing system and adipose tissue interact and how disruptions to this interaction
can lead to metabolic diseases. Furthermore, the potential of chronotherapy, a new field that uses
our understanding of the circadian timing system to improve treatments for metabolic disorders, is
discussed. This approach includes the timing of medication and targeting specific genes that regulate
our natural clock. By understanding these complex interactions, it could be possible to develop more
effective treatments for metabolic disorders such as obesity and diabetes.

Abstract: Essential for survival and reproduction, the circadian timing system (CTS) regulates adap-
tation to cyclical changes such as the light/dark cycle, temperature change, and food availability.
The regulation of energy homeostasis possesses rhythmic properties that correspond to constantly
fluctuating needs for energy production and consumption. Adipose tissue is mainly responsible for
energy storage and, thus, operates as one of the principal components of energy homeostasis regula-
tion. In accordance with its roles in energy homeostasis, alterations in adipose tissue’s physiological
processes are associated with numerous pathologies, such as obesity and type 2 diabetes. These
alterations also include changes in circadian rhythm. In the current review, we aim to summarize
the current knowledge regarding the circadian rhythmicity of adipogenesis, lipolysis, adipokine
secretion, browning, and non-shivering thermogenesis in adipose tissue and to evaluate possible links
between those alterations and metabolic diseases. Based on this evaluation, potential therapeutic
approaches, as well as clock genes as potential therapeutic targets, are also discussed in the context
of chronotherapy.

Keywords: circadian dysfunction; adipose tissue; metabolic diseases; obesity; diabetes; chronotherapy

1. Introduction

The circadian timing system (CTS) is a biological mechanism that regulates the daily
rhythmicity of the physiological processes in living organisms. It is a crucial regulator of
adaptation to environmental changes, such as the light/dark cycle, temperature fluctu-
ations, and nutrient availability. Epidemiological research has established a correlation
between circadian disruption and the development of various health conditions, including
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cancer, sleep and behavioral disorders, and metabolic disorders such as diabetes and obe-
sity. Energy homeostasis, a fundamental aspect of overall health, demonstrates rhythmic
properties that correspond to the body’s dynamic energy demands. As a primary com-
ponent of the energy regulation system, adipose tissue plays a crucial role in the storage
and release of energy as required. Thus, alterations in adipose tissue physiology can have
significant effects on metabolic health, including the development of obesity and type
2 diabetes. The importance of comprehending the intricate relationship between the CTS
and adipose tissue function is underscored by the fact that circadian rhythm disturbances
were linked to these metabolic disorders [1–3].

This article seeks to summarize the current understanding of the circadian rhythmicity
of important adipose tissue processes, such as adipogenesis, lipolysis, adipokine secretion,
browning, and non-shivering thermogenesis. By investigating the complex interaction
between circadian rhythm and adipose tissue function, we can elucidate the potential mech-
anisms underlying metabolic diseases. In addition, we investigate the pathophysiology
underlying the implications of circadian rhythm dysfunction in obesity and type 2 diabetes.

Chronotherapy, an emerging field that optimizes therapeutic interventions using the
knowledge of circadian rhythms, holds tremendous promise for the treatment of metabolic
disorders. In this review, we investigate the potential applications of chronotherapy ap-
proaches, such as the timing of anti-diabetic and anti-obesity drugs, in enhancing treatment
efficacy and patient outcomes. In addition, we discuss the possibility of targeting clock
genes, which are essential regulators of the circadian system, as a novel therapeutic strategy
for metabolic diseases.

We aim to provide a comprehensive overview of the complex relationship between
circadian rhythm, adipose tissue function, and metabolic diseases by examining the most
recent research in this field. In addition, we aim to highlight the therapeutic potential of
chronotherapy and clock gene modulation as novel approaches in the field of metabolic
disorders. Through a greater comprehension of these intricate mechanisms, we can pave
the way for more targeted and effective interventions to combat the growing global burden
of obesity and type 2 diabetes. Overall, this review underscores the importance of circadian
rhythm in adipose tissue function and highlights the potential for chronotherapy as a novel
therapeutic strategy in the field of metabolic disorders.

2. Circadian Rhythm

The 24-h daily periods, as a result of the rotation of the earth around its own axis,
form the basic framework of the environmental conditions in which all organisms live.
Adaptation to cyclical changes such as the light/dark cycle, temperature change, and food
availability is crucial for survival and reproduction. This adaptation is mainly carried out
by the circadian timing system (CTS), which controls many important biological functions
in mammals [4–6].

Molecular Mechanisms of Clock Machinery

The CTS consists of molecular clocks found in all cells and the suprachiasmatic nucleus
(SCN), which undertakes the main clock function that synchronizes these molecular clocks.
Cellular molecular clocks can sustain themselves without any regulatory cue (Zeitgeber, ZT)
from the external environment and function by interlocking translational–transcriptional
feedback loops. Two transcription factors, namely, muscle aryl hydrocarbon receptor nu-
clear translocator-like protein 1 (BMAL1) and circadian locomotor output cycles kaput
(CLOCK; clock circadian regulator for humans); CRY1 and CRY2 cryptochromes; PER1,
PER2, PER3 period genes play a key role in cellular oscillation [6]. BMAL1 and CLOCK
form a heterodimer and bind to the promoter regions of the PER and CRY genes, activating
their transcription. The resulting PER and CRY proteins are also coupled to form a het-
erodimer, similar to BMAL1 and CLOCK. The PER:CRY structure physically interacts with
BMAL1:CLOCK and causes the heterodimer to dissociate from the promoter region [7].
In this context, the negative feedback generated by the PER:CRY heterodimer serves as
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a measure of cellular circadian time. The new cycle starts with the degradation of the
PER and CRY proteins. The PER protein is degraded by the ubiquitin-proteasome path-
way [8–11]. Similarly, adenosine-monophosphate-activated protein kinase (AMPK) and
glycogen synthase kinase 3 beta (GSK3β) were shown to be responsible for the degradation
of CRY1 and CRY2 proteins, respectively [12,13]. Cells also have auxiliary mechanisms such
as reverse-erythroblastosis virus alpha/beta (REV-ERBα/β) and retinoic-acid-receptor-
related orphan receptors (RORα/β/γ) in addition to this basic oscillation mechanism. The
BMAL1:CLOCK heterodimer structure increases transcription by binding to the promoter
regions of the REV-ERB [14] and ROR genes [15]. The resulting protein products, REV-ERBs
and RORs, compete with each other for binding to the promoter region of the BMAL1
gene. RORs increase BMAL1 gene transcription while REV-ERBs suppress it [16]. Other
auxiliary oscillation mechanisms, in addition to REV-ERBs and RORs, include differentiated
embryonic chondrocytes 1 and 2 (DEC1/2), leucine zipper transcription factor E4 promoter-
binding protein 4 (E4BP4), and proline- and acid-rich basic leucine zipper transcription
factor albumin d-box binding protein (DBP) [17,18]. The core clock, secondary, and third
interlocked transcriptional feedback loops are shown in Figure 1.
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Figure 1. The core clock, secondary, and third interlocked transcriptional feedback loops. CLOCK-
BMAL1 are transcription factors and compose a heterodimer that rhythmically activates clock-
controlled genes (CCGs) binding E-Box. In turn, PER and CRY translocate into the nucleus and inhibit
CLOCK-BMAL1-driven transcription. In the secondary loop, transcription of nuclear receptors RORs
and REV-ERBs controls Bmal1 transcription via RORE and regulates the CLOCK-BMAL1 indirectly.
DBP-E4BP4 are transcription factors that form a third loop either activates (DBP) or represses (E4BP4)
gene transcription from RORs via D-box.

3. The Role of Circadian Rhythm in Adipose Tissue Function

This section discusses the effects of circadian rhythm on adipose tissue processes such
as adipogenesis, lipolysis, adipokine secretion, browning, and non-flickering thermogenesis.
It is illustrated in Figure 2.
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Figure 2. The circadian regulation of adipogenesis, lipolysis, brown adipose tissue (BAT) thermogen-
esis, browning of white adipose tissue (WAT), and adipokine release. The circadian clock, represented
by the central clock machinery, influences the timing and coordination of adipose tissue functions
throughout the day. The central role of the circadian clock in orchestrating the rhythmicity of adipose
tissue processes highlights the importance of circadian regulation in maintaining metabolic balance
and its potential implications for metabolic disorders.

3.1. The Role of Circadian Rhythm in Adipogenesis

Adipogenesis, which refers to the de novo formation of adipocytes from multipotent
mesenchymal precursors, is one of the major adaptive mechanisms to confer a positive
energy balance. Adipogenesis is comprised of two consecutive phases. The first phase, in
which bone morphogenetic protein (BMP) signaling plays a critical role, is characterized
by the determination of mesenchymal precursor cells to pre-adipocytes. In the latter
stage, the committed pre-adipocytes differentiate to mature adipocytes under the control of
peroxisome proliferator-activated receptor-γ (PPARγ), the master regulator of adipogenesis,
and transcription co-activators CCAAT/enhancer-binding protein α and β (C/EBPα and
C/EBPβ) [19]. Upon activation, PPARγ and C/EBPα initiate the adipogenic program that
includes adipogenic-specific proteins such as glucose transporter 4 (GLUT4), lipoprotein
lipase (LPL), stearoyl CoA desaturase-1 (SCD1), phosphoenol pyruvate carboxykinase
(PEPCK), and fatty acid binding protein 4 (FABP4) [20].

Considering food intake is a cue for the circadian rhythm itself at both the cellular and
organism levels and adipogenic hormones such as glucocorticoids have oscillatory patterns
of secretion, it is not surprising that adipogenesis has rhythmic properties consistent with
the fact that PPARγ, the master regulator of adipogenesis, has a circadian expression pattern
in white adipose tissue (WAT) [21,22]. However, cautious consideration is needed when
linking the rhythmicity of glucocorticoid secretion and adipogenesis. The pulsatile manner
of glucocorticoid secretion does not seem to resonate with adipogenesis, as Bahrami-Nejad
et al. showed that a transcriptional circuit, possibly via fast and slow positive feedback
mechanisms upon PPARγ, filters glucocorticoid oscillations to induce adipogenesis in
adipocyte precursor cells [23].

The molecular circadian clock machinery has a substantial role in adipogenesis. In
a study, it was shown that BMAL1 has a crucial role in adipogenesis, BMAL1 mRNA is
highly expressed in differentiated 3T3-L1 cells, and the Bmal1-deficient mice embryonic
fibroblast cells failed to differentiate into 3T3-L1 cells [24]. Researchers also reported that
PPARγ agonist partially but not fully restores the differentiation potential of Bmal1 defi-
cient cells, suggesting BMAL1 does not have total control over PPARγ and the relation
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between two pose coordination. Consistent with their previous study, Bmal1 KO mice had a
diminished capacity for fat storage, as well as decreased expression levels of marker genes
for mature adipocytes [25]. Conversely, BMAL1 is a negative regulator of adipogenesis
via the Wnt pathway, which is known to repress adipogenesis [26]. Based on these results,
although BMAL1 plays a role in adipogenesis, the direction of the effect is not conclu-
sive. Furthermore, none of the aforementioned studies were conducted in human cells
(e.g., human adipose-derived stem cells), thus, the role of BMAL1 in human adipogenesis
is currently unknown.

In addition to BMAL1, PER3 was also shown to have a role in adipogenesis, both
in vivo and in vitro. The primary mesenchymal stem cells (MSCs) isolated from Per3 KO
mice had an increased level of adipogenesis compared to MSCs from WT mice, suggesting
the inhibitory effect of PER3 on adipogenesis. PER3 directly interacts with PPARγ and
inhibits its activity [27]. The possible inhibitory effect of PER3 is also supported by evidence
from a study that reported an increased level of adipogenesis in adipocyte precursor cells
from Per3 KO mice [28]. The proposed mechanism is the regulation of Kruppel-like factor
15 (KLF15), which induces PPARγ expression [29]. The effect of the post-transcriptional
modification of PER3 on adipogenesis was also defined. Accordingly, mIR-181a was shown
to target PER3 and induce adipogenesis, further supporting the inhibitory role of PER3 [30].

Auxiliary oscillators, which offer fine-tuning for the circadian rhythm, were shown
to have a role in adipogenesis. It was demonstrated that BMAL1 suppressor (Nr1d1, the
REV-ERBα gene) has a biphasic mRNA and protein expression profile during adipogenesis
in mice 3T3-L1 cells. Interestingly, the protein expression profile is opposite to the gene
expression profile of REV-ERBα chronologically [31]. Continuous light exposure increased
adipogenesis in zebrafish larvae with the mRNA expression of REV-ERBα, further support-
ing the involvement of REV-ERBα in adipogenesis [32]. In contrast to REV-ERBα, RORα
was shown to suppress adipogenesis at a later stage via induction of the expression of
DEC1 and DEC2 in 3T3-L1 adipocytes [33]. The inhibitory effect of RORαwas suggested
to be mediated by the inhibition of the transcriptional activity of CEBP/β, resulting in the
inhibition of PPARγ [34]. SREBP-1c was also proposed as a mechanistic link between RORα
and adipogenesis [35]. Melanoma antigen family member D1 (MAGED1), which interacts
with RORα, was demonstrated to negatively regulate adipogenesis [36]. In addition to
REV-ERBs and RORs, DBP has a significant role in adipogenesis, as Suzuki and colleagues
demonstrated in the knock-down model for DBP gene, which had a decreased level of
adipocyte differentiation with downregulated PPARγ expression [37].

In addition to the molecular circadian clock components, genes regulated by the cir-
cadian machinery are shown to affect adipogenesis. Nocturnin, which is a deadenylase,
is shown to be upregulated in differentiated adipocytes [38]. A further study, which re-
ported that nocturnin stimulates PPARγ translocation, provides a mechanistic link between
nocturnin and adipogenesis [39]. Angiopoietin-like 2 (Angptl2), whose expression has
circadian rhythmicity similar to nocturnin, has a role in adipogenesis. Kitazawa et al.
demonstrated that Angptl2 siRNA inhibited adipogenesis in 3T3-L1 preadipocytes [40].
Inhibitor of DNA binding 2 (ID2) is another circadian protein involved in adipogenesis.
ID2 overexpression increased PPARγ expression in 3T3-L1 preadipocytes [41].

Even though PPARγ does not have circadian rhythmicity in brown adipose tissue
(BAT) [22], adipogenesis is affected by the cellular clock in BAT in mice. BMAL1 is shown
to inhibit brown adipogenesis in both the commitment and differentiation stages, possibly
via transforming growth factor beta (TGF-β) and BMP signaling pathways [42].

3.2. The Role of the Circadian Rhythm in Adipose Tissue Lipolysis

The fatty acids released after lipolysis are the primary source of energy for many
organs and tissues, especially skeletal muscles. In adipose tissue, lipolysis is mainly con-
trolled by three key hydrolytic enzymes, namely, hormone-sensitive lipase (HSL), mono-
glyceride lipase (MGL), and adipose triglyceride lipase (ATGL). In addition to this, the
post-transcriptional and post-translational regulation of these hydrolases is well character-
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ized. Furthermore, other components of hydrolytic machinery (e.g., regulatory proteins
such as comparative gene identification-58 (CGI-58), G0/G1 switch gene-2 (G0S2), and
hypoxia-induced lipid-droplet-associated protein (HILPDA)) have important functions in
terms of the regulation of lipolysis in adipose tissue [43].

Given that physical activity is concentrated at certain times of the day evolutionarily,
the need for a daily rhythm in energy expenditure is reasonable. As expected, lipolysis in
both adipocytes [44] and adipose tissue possess circadian rhythm [45–48]. Both the central
clock and peripheral clocks seem to have significant roles in this rhythmicity [47,49,50]. In
a randomized clinical trial, altering the circadian rhythm by mild cold exposure increases
lipolysis associated with increased plasma levels of fibroblast growth factor 21 (FGF21),
indicating the remarkable role of the central component of circadian rhythmicity [49].
Nocturnin is also proposed as a link between the central clock and epididymal adipose
tissue lipolysis in mice. Nocturnin expression is not rhythmic in the epididymal WAT of
mice housed at 12 h/12 h light–dark cycle and fed ad libitum. cAMP, which is also an
inducer of lipolysis, induces nocturnin mRNA expression in restricted-fed mice. Thus,
nocturnin may serve as an indicator of the extent of lipolysis linked to the overall energy
intake of the body [51]. Hormone secretion, which is an output of the central clock, is
another modulator of lipolysis in adipose tissue. In a clinical study, suppression of the early
morning cortisol rise by metyrapone increased adipose LPL activity and decreased HSL
activity and lipolysis in subcutaneous adipose tissue, showing the link between the central
clock and WAT lipolysis via cortisol [52]. Another hormone linking the central clock to
lipolysis is growth hormone (GH). Boyle and colleagues demonstrated that during sleep,
blood glycerol concentration, which is used as a measure of lipolysis, decreases contin-
uously in GH-deficient subjects. In contrast, glycerol levels initially decreased and then
increased in normal subjects [53]. In accordance with the aforementioned studies showing
that the central clock affects lipolysis, several studies showed interventions affecting the
central clock alter lipolytic pattern. Bartness reported fat mass loss induced by short-day
in Siberian hamsters [54]. Similarly, cold exposure was shown to alter lipolysis [49]. In a
randomized controlled clinical trial in which all the factors affecting the central clock such
as sleep, light exposure, energy intake, and physical activity were controlled, late eating
resulted in a shift towards adipogenesis rather than lipolysis [55]. In addition to eating
time, the timing of physical activity also affects lipolysis. Kato et al. demonstrated that
exercise in a late period of the active phase increases isoproterenol-induced lipolysis and
HSL protein expression in male Wistar rats. In addition, researchers observed that late-time
exercise increased the association of BMAL1 with protein kinase A (PKA) regulatory units,
AKAP150, which is the anchoring protein of PKA, and HSL showing a mechanistic link
between the circadian clock and lipolysis [56].

Cellular clocks and factors affecting molecular clocks in adipose tissue contribute to
the regulation of lipolysis. Natriuretic peptide A (NPA) and C (NPC) receptor expressions
are shown to be associated clock genes in 129/Sy mice adipose tissue and NPA receptor
expression was found to correlate with plasma free fatty acid (FFA) levels [50]. In another
study, Noshiro and colleagues showed disrupted circadian rhythmicity of lipolytic genes
expressions in adipose tissue of Dec1 deficient mice [57]. Aryl hydrocarbon receptor (AhR)
agonist β-napthoflavone (BNF) was shown to decrease lipolysis via suppressing clock gene
and lipolysis gene transcription levels in mice adipocytes [58]. Early growth response
1 (EGR1), which is a target for insulin and also has a rhythmic expression pattern in
adipocytes, inhibits ATGL and lipolysis [59].

The relationship between circadian rhythm and lipolysis is generally believed to be
unidirectional. Nonetheless, studies indicate that lipolysis itself can regulate circadian clock
machinery. By using machine-learning algorithms, Markussen and colleagues reported
that lipolysis regulates the circadian clock machinery. Upon stimulation, lipolysis overrules
the rhythmicity of clock genes and establishes a new rhythm [60]. By the same token, the
pharmacological inhibition of lipolysis normalizes impaired nocturnal GH secretion and
pulsatility in obese patients [61].
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Several studies show that the circadian rhythm of lipolysis is disrupted in obesity.
Adipose tissue lipolytic activity in overweight women does not differ between morning
and evening [62]. In obese type 2 diabetic patients, the rhythmic expression of genes
involved in lipolysis is impaired [63]. In contrast, Amador and colleagues observed/had
shown rhythmicity for HSL in the abdominal adipose tissue of morbidly obese patients.
However, only HSL activity and HSL transcript expression levels were measured in this
study; plasma lipid and glycerol levels were not [64]. In addition to obesity, the circadian
rhythmicity of lipid metabolism is impaired in cancer cachexia [65].

In addition to adipocytes, the regulation of lipolysis is influenced by cellular clocks
in other cell types. Bmal1 deficiency in visceral adipose tissue regulatory T cells (Treg)
disrupts the rhythm of lipolysis, suggesting the modulatory role of the immune system in
the circadian regulation of lipolysis [66]. Furthermore, intestine specific Bmal1 deficiency is
reported to have profound effects on glucose and lipid metabolism [67].

3.3. Adipokine Release

Adipokines secreted from adipose tissue have many effects on various physiological
processes, especially the metabolism. The circadian regulation of metabolic processes such
as food intake and energy expenditure extend to the adipokine secretion profile. Leptin,
which, among other physiological effects, acts as a satiety signal, has a rhythmic secretion
profile in both animals and humans [68–73]. In a clinical trial, it was observed that leptin
pulse amplitude and 24-h leptin plasma levels are higher in women than men. Rhythmic
patterns, on the other hand, do not differ between sexes [69]. This pattern of rhythmicity is
governed by the central component of the CTS, as Kalsbeek and colleagues showed that
leptin rhythm is controlled by the central clock and neither cortisol, feeding, nor insulin
play a role in the regulation of leptin rhythm in rats [71]. Similarly, SCN is the main
determinant and constant glucocorticoid release, or different feeding regimes do not alter
leptin rhythmicity in Syrian hamsters [74]. On the contrary, starvation abolishes the leptin
rhythm, and there is a causal link between food intake and the rhythm of leptin secretion in
humans [75]. Similar findings in terms of the effect of starvation on leptin rhythmicity were
also reported in male Wistar rats [76]. Furthermore, the consumption of carbohydrates
with a high glycemic index was found to change the rhythmicity of leptin secretion [77].
The role of the central clock was also shown in an animal study in which ventromedial
hypothalamus (VMH) lesions in rats were shown to alter the leptin secretion rhythm,
showing the significant role of the central clock [78]. Studies investigating the possible
hormonal regulation of leptin rhythm demonstrated that similar to cortisol [74], LH [79]
and GH [80] are not associated with leptin secretion. However, prolactin is proposed as a
possible regulator of nocturnal leptin secretion [81].

The rhythm of leptin secretion is impaired in many conditions. Studies show that
acute sepsis [82], depression in young females [83], heroin abstinence [84], aging [85],
and increased BMI [86] in humans impair rhythmic leptin secretion. However, the leptin
profile did not change in either Cushing syndrome [87] or in stage IV cancer patients [88].
In animal studies, obesity [89], stress [89,90], and aging [91] are associated with altered
patterns of leptin secretion. The mechanistic link between the aforementioned conditions
and alterations in the rhythm of leptin secretion remains largely unknown.

Adiponectin is another adipokine that was extensively studied in terms of the circa-
dian rhythm. Studies investigating the possible rhythmic profile of adiponectin secretion
have conflicting results. Gavrila and colleagues reported that adiponectin has ultradian
pulsatility and diurnal rhythm in healthy men. The further evidence supporting the notion
of circadian regulation of adiponectin secretion derives from studies showing vasoactive
intestinal peptide (VIP), which is shown to regulate feeding behavior, deficient mice have
altered adiponectin secretion [92]. In addition, MAGED1, which interacts with RORα,
deficiency increases adiponectin levels [36]. Moreover, the rhythm of adiponectin secretion
was shown to be impaired in obesity [93] and hyperinsulinemia [94]. In line with the
aforementioned studies, Bmal1 deficient mice have higher levels of adiponectin compared
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to WT controls [95], implying the circadian regulation of adiponectin secretion. On the
contrary, several studies reported that adiponectin has no circadian rhythmicity. A study
shows the circadian expression profile of adiponectin mRNA in the rat adipose tissue depot,
but plasma levels of adiponectin do not exhibit rhythmic characteristics [90]. Similarly, in a
murine cell culture study, adiponectin secretion did not have circadian rhythmicity [96].
Similar results were obtained from both animal [97,98] and clinical [99,100] studies. Other
adipokines, such as visfatin [101–103], vaspin [104], retinol binding protein 4 (RBP4) [105],
apelin [106], and resistin [107] were shown to have a rhythmic secretion profile. Addition-
ally, shift work was found to result in elevated serum resistin [108,109]. On the other hand,
omentin [110] and chemerin [111] do not exhibit rhythmicity in terms of plasma levels.

3.4. Brown Adipose Tissue Non-Shivering Thermogenesis

Adaptation to the ambient temperature is a vital function for all mammals. Since
temperature changes throughout the day and night, thermogenesis is expected to align
with temperature changes to maintain homeostasis. BAT is the site responsible for non-
shivering thermogenesis via the uncoupling of electrons from the ATP synthesis process in
the mitochondria [112]. In concordance with the rhythm of the ambient temperature, BAT
thermogenesis is shown to have a daily rhythm [113–115]. In addition, studies in which
thermogenesis was not directly measured demonstrated that genes and proteins related to
thermogenesis in BAT had a rhythmic expression profile [116,117]. The central component
of the rhythm regulation was shown in several studies. VMH, one of the nuclei connected
to SCN in hypothalamus, was demonstrated to control BAT thermogenesis in mice. In-
terestingly, the specific deletion of Bmal1 in VMH neurons is sufficient to disrupt BAT
thermogenesis, showing that even though BAT thermogenesis has circadian rhythmicity,
the source of the rhythm is the cellular rhythms in VMH rather than SCN [118]. Similarly,
Felipe and colleagues showed that food deprivation and cold altered the circadian pattern
of BAT glycogen content, which is considered an indicator of BAT thermogenesis. However,
it was not determined whether the effect of cold or food deprivation was mediated through
the circadian clock system or any other mechanisms [119]. Peripheral clocks are also in-
volved in the regulation of the rhythmicity of BAT thermogenesis. Angers and colleagues
demonstrated that major facilitator superfamily domain-containing protein 2a (Mfsd2a) is
upregulated in BAT during thermogenesis via β adrenergic signaling [120]. Much clearer
evidence regarding the role of the cellular clocks in BAT thermogenesis is presented in
the study of Lee and colleagues. In this study, GLUT4, UCP1, and REV-ERBα expression
rhythms related to thermogenesis were reported in human brown adipocytes [114]. How-
ever, central control of the rhythm of BAT thermogenesis seems to be dominant over the
cellular clocks, as shown in a study that demonstrates that BAT-specific deletion of Bmal1
only has a mild effect on thermogenesis [121]. The possible rhythm of the adaptive ther-
mogenic response to cold was also investigated, but conflicting results were reported. In a
randomized controlled clinical trial, cold-induced thermogenesis was reported not to have
diurnal variation [122]. On the other hand, as indirect evidence, Machado and colleagues
showed that cold-induced alterations in thermogenesis-related gene expressions have diur-
nal variation [123]. Furthermore, Straat and colleagues demonstrated diurnal variation in
cold-induced thermogenesis in only males, suggesting sexual dimorphism [124].

Aside from rhythmicity, thermogenesis in BAT is influenced by stimuli that affect
the circadian clock system. For instance, a short photo period stimulates thermogenesis
in rodents [125–127]. The further research revealed that thermogenesis is entrained in
changed light periods [128]. Adaptive thermogenic responses to diet and cold exposure
were also studied extensively. In genetically obese ob/ob mice, food restriction causes in-
creased BAT thermogenesis [129]. However, Eley and colleagues reported the suppression
of thermogenesis by food restriction in lean but not obese rats [113]. Cold-induced thermo-
genesis is decreased in Per2 deficiency [130] and increased in Nr1d1 genetic loss [131,132].
Interestingly, Bmal1 deficiency did not alter the thermogenic capacity according to the
study of Li and colleagues [133]. The deficiency of Dec1, an oscillatory component of the
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circadian clock, enhances thermogenic Ucp1 gene expression [134]. In addition, the deletion
of circadian-regulated ID2 was shown to cause increased glucose uptake by the BAT [135].
The hormonal mediators of circadian time are also of importance. Corticotropin-releasing
factor was shown to induce BAT thermogenesis. Similarly, melatonin deficiency decreases
the level of BAT thermogenesis. Interestingly, Viswanathan and colleagues reported that
pinealectomy did not influence BAT thermogenesis [136]. It can be suggested that there
is no overall hormonal influence from the hypothalamus–pituitary axis. According to the
aforementioned conflicting results, it is not possible to determine whether temperature,
feeding, or photic stimuli are the primary exogenous cues of time. Further well-designed,
comprehensive studies, especially utilizing BAT-specific deletion of clock genes, are needed.

3.5. Browning of Adipose Tissue

Adipocytes are known to have plasticity according to the metabolic needs of the
organism [137,138]. Stimuli such as thyroxine, β-3 adrenergic signaling, cold exposure,
etc., inform adipose tissue of the need to readjust the balance between energy storage and
utilization [139]. Thus, white adipocytes may undergo a phenotypic change toward brown
adipocytes, a process known as “browning”. The resulting “beige or brite” adipocytes have
increased UCP1 protein levels, which are responsible for thermogenesis via the uncoupling
of electrons from the ATP synthesis in the inner membrane of the mitochondria. Beige
adipocytes may also arise from progenitor cells in adipose tissue [140].

Similar to adipogenesis, the browning process is shown to have rhythmic proper-
ties and be related to circadian clock machinery. Grimaldi and colleagues demonstrated
that PER2 is a suppressor of the browning process and that Per2 deficiency activates the
browning process in the WAT of mice via PPAR-dependent genes. The researchers further
observed that PPARγ interacts with the Ucp1 PPAR response element on the genome in
Per2 deficient mice in contrast to wild-type controls [141]. Similarly, the browning process
was reported to be induced in the WAT of Rora-deficient mice. Browning in these mice
was induced through PR domain zinc finger protein 16 (PRDM16) and PPAR-gamma
coactivator 1-alpha (PGC-1α). Nonetheless, PPARγ expression was not measured in this
study [142]. Even though BMAL1 is known to suppress the brown adipogenesis, the in-
volvement of BMAL1 in the browning process was not investigated by using Bmal1 KO
models. FGF21 [143], an inducer of browning, has a diurnal rhythm that is modulated
by cold exposure, providing additional evidence regarding the rhythm of adipose tissue
browning [49]. Altering the circadian rhythm in rats by phase shifting caused reduced
UCP1 mRNA expression levels in brown adipose tissue and metabolic risk. However, link-
ing these results to the studies showing shift workers have altered circadian rhythmicity
and impaired metabolic profile requires cautious consideration. The mechanisms by which
altered rhythmicity impairs the metabolic profile in humans are poorly understood and
need further investigation. Particular attention should be paid to the potential effects of
altered immune system activity on metabolic parameters in shift workers.

4. Circadian Rhythm Dysfunction in Obesity and Type 2 Diabetes

The disruption of the circadian clock is shown to be related to a variety of diseases,
including psychiatric disorders, sleep disturbances, and metabolic disorders such as obesity,
type 2 diabetes, metabolic syndrome, and cardiovascular disease [11,144,145]. Shift work
and social jetlag are considered to be common factors causing circadian disruption and
resulting in sleep disturbances, as well as metabolic disorders [146]. Sleeping for less
than 6 h or more than 9 h is linked to a higher risk of developing type 2 diabetes and
impaired glucose tolerance [147,148]. According to the research, shift workers have an
increased risk of developing type 2 diabetes, and the number of work nights seems to be
an important factor regarding the circadian disruption [145,149,150]. Furthermore, patients
with type 2 diabetes who worked night shifts had worse glycemic control compared to day
workers [151].
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In a human study, it was seen that insufficient sleep causes human adipocytes to
become insulin-resistant, indicating sleep as a significant factor for energy homeostasis in
adipose tissue. After four nights of sleep deprivation compared to regular sleep, cellular
insulin sensitivity in adipocytes from subcutaneous fat samples reduced by ~30% in healthy,
young, lean men and women [152].

Sleep deprivation may also lead to reduced leptin levels and an increase in the hormone
ghrelin, which both regulate appetite. Whereas leptin, which is mostly released by adipose
tissue, suppresses appetite, ghrelin increases food intake, decreases fat oxidation, and
consequently, causes an increase in adiposity. Leptin and ghrelin may be insufficient
to appropriately express calorie requirements as a result of sleep deprivation, and their
combined effects may lead to the false impression of a limited energy supply [153,154].
In a clinical study when healthy subjects were exposed to 88 h of sleep deprivation with
scheduled meals, the leptin diurnal rhythm amplitude showed a significant decrease. In
the following recovery period, leptin amplitude significantly increased, indicating sleep
loss’s effect on the daily leptin rhythm [155]. Furthermore, the nocturnal ghrelin increase is
shown to be blunted by sleep loss [156].

As discussed above, genetic KO mice of core circadian clock genes have altered lipid
metabolism. Furthermore, the extensive knowledge showed a strong link between the
circadian disruption and metabolic diseases. Adipose-Bmal1 knockout and liver- and
adipose- Bmal1 KO mice show altered feeding behavior and locomotor activity compared
with WT mice. When liver- and adipose-Bmal1 KO mice were fed a diabetogenic diet, their
body weight and adiposity increased compared to WT animals [157]. Brown adipocyte-
specific Bmal1 KO (BA-Bmal1 KO) mice did not show a change in their body temperature
due to an increase in locomotor activity and shivering, but the diurnal rhythmicity of
fatty acid use in BAT was disrupted, and both BAT thermogenesis and total body energy
expenditure were somewhat decreased. BA-Bmal1 KO mice were also found to be more
susceptible to obesity when given a diet high in fat [121]. Clock mutation is also known
to affect feeding behavior and energy homeostasis. The current research shows that mice
with the Clock mutation have increased weight gain, hyperphagia, increased adiposity, and
adipocyte hypertrophy, as well as glucose and lipid metabolism disorders [158].

In addition to the effect of the circadian clock disruption on the metabolic disorders,
the dysregulation of energy homeostasis in metabolic disorders may affect the circadian
rhythms, directly or indirectly. In a study in male mice, high-fat-diet (HFD)-induced obesity
caused significant changes in the expression of core circadian clock genes; clock-controlled
targets related to lipid metabolism in the hypothalamus, the liver and the adipose tissue;
and also, significant variations observed in the locomotor activity rhythm. The results
of this study indicated that the diurnal rhythm was dampened, and the circadian period
was lengthened in mice on a high-fat diet [159]. Conversely, in another study in female
mice fed a high-fat diet and having mild metabolic syndrome, the thigh-fat diet had minor
effects on the circadian rhythm of core clock genes in the adipose tissue and the liver,
while the cholesterol 7a-hydroxylase rhythm was dampened, indicating that peripheral
circadian rhythms may be altered [160]. In another study by Ando et al., the rhythmic
expression of Bmal1, Per1, Per2, Cry1, Cry2, Dbp, and adipocytokines such as adiponectin,
resistin, and visfatin in visceral adipose tissue weakened in obese and obese-diabetic mice
with a superior effect on obese-diabetic animals. When obese-diabetic mice were treated
with pioglitazone, the rhythmicity of the clock genes showed improvement in the liver
tissue [161]. Additionally, obesity causes disruption of the adipocyte clock via inhibition
of PPARγ, which regulates adipogenesis and leads to the downregulation of Bmal1 and
other clock genes. As a result, the progression of obesity and circadian disturbance interact
bidirectionally [162].

Moreover, there are some clinical studies evaluating the relationship between metabolic
disorders and circadian rhythm dysfunction in adipose tissue. In a study in morbidly obese
patients, the expression levels of the circadian clock genes in adipose tissue were shown
to be related to the metabolic syndrome markers [163]. In another study comparing lean,
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overweight/obese, and overweight/obese-type 2 diabetic patients under high levels of
glycemic control, the rhythmic gene expression of core clock genes and metabolic genes
in white adipose tissue did not display significant changes depending on the metabolic
state [164]. Santos et al. evaluated the circadian expression of clock genes in subcutaneous
and visceral adipose tissue cultures of female morbidly obese patients and found that the
circadian rhythm was maintained ex vivo for a minimum of two circadian cycles following
surgery, indicating the presence of the cellular circadian clock that controls individual cel-
lular processes separate from the SCN. In addition, according to correlation analyses of the
circadian rhythm and metabolic syndrome markers, having a larger sagittal abdominal di-
ameter leads to an increase in circadian variability of Per2 and Bmal1 gene expression [165].
PER2 and NR1D1 expressions in subcutaneous adipose tissue of overweight subjects were
shown to be increased after body weight loss with a caloric restriction [166].

5. Chronotherapy Approaches in Metabolic Disorders

Chronotherapy is an approach to treatment that considers the circadian rhythm of
the body and employs timing interventions to maximize efficacy and minimize adverse
effects. Chronotherapy can be used to treat sleep disorders, mood disorders, and certain
types of cancer. In the management of diabetes and obesity, chronotherapy may entail
synchronizing the timing of meals, physical activity, and drug administration with the
body’s natural circadian rhythm to improve blood sugar regulation. In addition, it may
entail modifying meal timing and composition to optimize metabolism and energy balance.
Interruptions in the circadian rhythm, such as those caused by shift work or irregular sleep
patterns, can alter insulin secretion and increase the risk of metabolic disorders.

5.1. Chronotherapy of Antidiabetic and Anti-Obesity Drugs

Chronotherapy is an emerging field of study that aims to optimize the timing of
medication administration so that it corresponds more closely with the body’s natural
insulin sensitivity and glucose metabolic patterns. Metformin, a commonly prescribed
anti-diabetic medication, was investigated in the context of chronotherapy, and research
suggests that evening administration may result in superior glycemic control compared to
morning administration. These studies have demonstrated that metformin has a complex
effect on the circadian clock, with effects on the liver and muscle, and that the acute
decrease in blood glucose in response to metformin therapy is time dependent. Metformin
reduces body weight gain, normalizes glucose tolerance and insulin resistance markers,
and restores islet morphology and cell apoptosis more effectively when combined with
melatonin in a rat model of HFD and circadian-disruption-induced obesity (CDO) [167]. In
addition, metformin increases leptin levels while decreasing glucagon levels and leads to
the activation of AMPK by liver kinase B1 (LKB1) and/or other muscle kinases, resulting
in phase advances in the liver and phase delays in the muscle in the expression of clock
genes and/or metabolic proteins [168]. Metformin activates casein kinase I epsilon (CKI
epsilon) by activation of AMPK, which, in turn, leads to mPer2 degradation and a phase
advance in the circadian expression pattern of clock genes in the peripheral tissues of
WT mice, but not in AMPK alpha2-deficient mice, and decreases the circadian period
of Rat-1 fibroblasts by one hour [169]. Henriksson et al. demonstrated that the time of
day influences the instantaneous reduction of blood glucose in response to metformin
treatment and blood lactate levels in healthy mice and that ablation of Bmal1 expression
in the liver modifies, but does not completely eliminate, diurnal variations in AMPK and
blood glucose responses induced by metformin [170]. Alex et al. examined the effect of
metformin on diabetic retinopathy (DR). Metformin therapy restored the expressions of
retinal clock genes and Kir4.1 in the retina, which were downregulated in DR. Additionally,
they showed that metformin upregulated clock regulating genes and AMPK activation via
metformin-boosted Kir4.1 and Bmal1 expression in rMC-1 cells. Silencing AMPK1 lowered
the protein expression of Kir4.1 and BMAL1 [171]. Metformin restores AMPK-SIRT1
signaling and WAT circadian function in db/db and HFD mice by increasing AMPK activity
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and, consequently, the expression of NAMPT, SIRT1, and circadian components. Metformin
drives a phenotypic shift away from fat accumulation via AMPK-NAMPT-SIRT1-mediated
alterations in clock components, providing support for chronotherapeutic approaches to the
treatment of obesity [172]. Additionally, metformin’s human pharmacokinetics are affected
by interindividual variation and time of day due to oscillations in glomerular filtration rate
(GFR), renal plasma flow (RPF), and organic cation transporter 2 (OCT2) activity, indicating
that the individual chronotype may be important for metformin’s chronotherapy [173].

PPARs were found to be involved in the regulation of circadian rhythm and metabolism,
and recent studies have revealed that all PPARs carry out their functions in a circadian
manner [174]. Bezafibrate, a ligand of PPARα, accelerated the active phase of mice under
light/dark (LD) conditions in a photoperiod-dependent way, suggesting that PPARα is
involved in the synchronization of the circadian clock to LD environmental circumstances.
Additionally, PPARα is involved in photo entrainment of the circadian clock without af-
fecting the circadian period [175,176]. A midnight injection of bezafibrate significantly
stimulated PPARα-dependent FGF21 expression, which is crucial for adaptations to fasting,
including lipolysis and ketogenesis, but a daytime infusion had little impact. Furthermore,
PPARα-deficient mice lacked the circadian FGF21 expression induced by bezafibrate [177].
Prolonged injection of the PPARα ligand Wy14643 significantly reduces body temperature
and suppresses nighttime locomotor activity [178]. The body temperature of mice treated
with bezafibrate declined late at night, and this may have contributed to the lower late
night behavioral activity under LD 8:16 [179].

Rosiglitazone and pioglitazone, which are PPARγ agonists, are shown to increase
insulin sensitivity and are used to treat type 2 diabetes. PPARγ exhibits a circadian ex-
pression pattern in the liver, fat, and blood vessels of mice, implying that it plays a crucial
role in the regulation of the circadian clock. These results demonstrate that PPAR is an
indispensable regulator of adipogenesis and a well-established therapeutic target for the
treatment of metabolic diseases. Yang et al. observed that pioglitazone, PPARγ improved
physiological parameters and reversed the majority of circadian-clock gene expression
changes in the liver in a non-obese insulin resistance mice model [180]. Rosiglitazone
improved the disrupted liver clock in the same experimental model. They also showed
that PPARγ antagonist GW6662 reversed the positive effects of rosiglitasone on the liver
clock [181]. Ribas-Latre et al. investigated the effects of a HFD on the recruitment of
the circadian transcription factor BMAL1 in metabolically active tissues and found that
restoring whole body insulin sensitivity with rosiglitazone was sufficient to restore changes
in BMAL1 recruitment and activity [182]. Interestingly, in one study, the rhythmicity of
clock genes and adipokines in perigonadal adipose tissues was attenuated in obese KK and
more obese, diabetic KK-A(y) mice and further impaired by a 2-weeks treatment of pioglita-
zone, although it improved the attenuated rhythmicity in the liver [161]. Reversed feeding
disrupted the mouse liver circadian expression pattern of clock genes and increased in-
flammatory markers, but administration of pioglitazone restored the clock gene expression
profile and decreased inflammation. Pioglitazone intake at 7 PM was more effective than at
7 AM in reversed feeding mice, thus, pioglitazone had a potent chronopharmacological
effect when administered at 7 PM to mice [183].

There are also a few studies on other antidiabetic drugs. Hennessey et al. found that
administering glyburide before bedtime was more effective than in the morning for indi-
viduals with Type 2 diabetes, resulting in improved fasting blood sugar and carbohydrate
tolerance curves without any hypoglycemia [184]. The diurnal effects of sitagliptin induced
anti-hyperglycemia in obese mice. Sitagliptin administration in the light phase significantly
decreased plasma glucose levels, insulin levels, hepatic steatosis, and restored glucose
tolerance in comparison to the HFD group, indicating that sitagliptin displays definite
chronopharmacology [185].

There are studies and ongoing research examining the combination of chronotherapy
and anti-obesity medications. The goal is to optimize the timing of medication admin-
istration so that it is more in sync with the circadian rhythm and metabolic processes
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of the body to enhance weight loss and metabolic outcomes. Bromocriptine affects cir-
cadian rhythms, and it was hypothesized to reset hypothalamic circadian activities that
were altered by obesity, thereby reversing insulin resistance and reducing glucose pro-
duction. Bromocriptine-QR, a formulation with rapid release, was shown in clinical trials
to improve glycemic control and reduce postprandial hyperglycemia [186–188] and re-
duce adverse cardiovascular events in type 2 diabetes patients [189]. Preclinical studies
suggest that the mechanisms of action include amelioration of the loss of responsiveness
of hypothalamic glucose-sensing neurons to hyperglycemia [190], reduction of elevated
sympathetic tone [191], reduction of leptin resistance [191–193], and reduction of MBH
NPY and AgRP mRNA expressions [194]. Moreover, bromocriptine influences several
MBH genes associated with neuronal plasticity [194].

In two Italian studies, the efficacy of fenfluramine chronotherapy in the treatment
of obesity was evaluated. The results indicated that administering a single dose of 80
mg in the morning for four weeks led to a greater decrease in weight and adipose mass
than administering the drug in the afternoon or three times a day [195]. In addition,
this administration was associated with a shorter duration of consumption, a lower total
calorie intake, and a reduction in appetite [196]. These findings suggest that morning
administration of fenfluramine chronotherapy may be an effective treatment for obesity.
Drugs that affect hypothalamic pathways may play a role in the chronotherapy of metabolic
diseases as well. Oxytocin release in the hypothalamus displays a diurnal rhythm that is
disrupted by chronic high-fat-diet feeding, and the manipulation of oxytocin can be used to
reprogram energy expenditure and control obesity. A peripheral injection of oxytocin can
also activate hypothalamic oxytocin neurons to exert metabolic effects, providing a potential
clinical avenue for obesity control in mice [197]. Lee and Bray found that patients with
hypothalamic obesity had altered mechanisms controlling insulin secretion when compared
to obese patients without hypothalamic injury, including a lack of diurnal variation in
glucose-stimulated insulin secretion and an inability to be affected by naloxone. Naloxone
increased insulin sensitivity in the obese control patients but had no effect on patients
with hypothalamic obesity or normal weight subjects [198]. In a study that examined the
effects of nicotine on glucose metabolism in db/db mice with type 2 diabetes, it was found
that oral nicotine consumption increased hypothalamic prepro-orexin gene expression and
decreased hyperglycemia without affecting body weight, body fat content, or insulin serum
levels. It also revealed that nicotine reduced the mRNA levels of glucose-6-phosphatase,
the rate-limiting enzyme of gluconeogenesis, in the livers of db/db and WT mice [199].

5.2. Targeting the Circadian Clock in Metabolic Diseases

The disruption of circadian rhythms is linked to metabolic disorders. Targeting these
clock genes may be the key to treating metabolic diseases.

Obesity is associated with disruption of the circadian clock in WAT in both rodents
and humans. Whang et al. found that a significant decrease in BMAL1 expression in
WAT may be the link. In the study, the decreased expression of PPARγ in obese WAT
trans-activates the uptake transporter Slc1a5; impaired PPARγ in obesity leads to the
downregulation of SLC1A5 and decreased adipocyte uptake of glutamine and methionine
(two epigenetic modulators), which disrupts Bmal1 [162]. Nakata et al. explored the role
of Bmal1 in the hypothalamic paraventricular nucleus (PVN) in glucose metabolism. The
deletion of Bmal1 in the paraventricular nucleus (PVN) of the hypothalamus decreased
insulin secretion, leading to impaired glucose tolerance. It was also discovered that fasting
conditions inhibit arginine vasopressin (AVP) expression in Bmal1 KO mice, suggesting that
PVN BMAL1 maintains AVP expression and its release into the circulation, helping enhance
insulin release and glucose tolerance. However, the circadian variation of AVP expression
is regulated by feeding but not by PVN BMAL1 [200]. Mandl et al. revealed the role of
BMAL2 in human adipose stem/progenitor cells (ASCs). BMAL2 functions as an inhibitor
of both the mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase
(MAPK) signaling pathways, leading to a feedback mechanism. A Western blot analysis
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of sWAT samples from normal-weight, obese, and weight-loss (WL) donors revealed that
the BMAL2 protein was solely elevated by WL compared to BMAL1; demonstrating that
BMAL2 is a WL-regulated adipogenesis inhibitor may aid in the development of strategies
to combat obesity [201].

REV-ERBα/β are important nuclear receptors that regulate energy balance and adipos-
ity, and their disruption can lead to increased food intake and decreased energy expenditure,
resulting in diet-induced obesity. In male mice lacking circadian nuclear receptors REV-
ERBα/β in the tuberal hypothalamus, REV-ERB-dependent leptin signaling in the arcuate
nucleus was impaired, leading to impaired diurnal leptin sensitivity. These KO mice fed an
obesogenic high-fat diet acquired excessive weight due to decreased energy expenditure
and increased food intake during the light phase [202]. Synthetic REV-ERB agonists were
identified that can alter the circadian pattern of core clock gene expression in rodents, and
when administered to mice with diet-induced obesity, obesity was reduced, and metabolic
diseases were alleviated [203]. Furthermore, REV-ERBα was identified as a new intra-
cellular regulator of glucagon secretion in alpha-cells. High glucose levels inhibit key
genes controlled by AMPK, such as Nampt, Sirt1, and PGC-1α, and Rev-erbα expression.
AMPK activation by metformin can reverse the inhibitory effect of glucose on Nampt-
Sirt1-PGC-1α and Rev-erbα, leading to increased glucagon secretion [204]. Garaulet et al.
found an association between the REV-ERB-ALPHA1 rs2314339 genotype and obesity in
two independent populations. Minor allele carriers had a lower probability of abdominal
obesity than noncarriers. Additionally, physical activity, but not energy intake, significantly
differed by genotype. This discovery highlights the importance of REV-ERB-ALPHA1
in obesity and provides evidence for the connection between our biological clock and
obesity-related traits [205].

RORα-deficient mice exhibit a lean and obesity-resistant phenotype due to increased
Ucp1 expression in BAT and subcutaneous WAT. This is linked to the increased expression
of thermogenic genes, and these mice maintain greater thermal control and cold tolerance
relative to their WT littermates [206]. Another study investigating the function of RORα
in thermogenesis and the browning of white and brown adipose tissue in RORα-deficient
mice demonstrated that RORα acts as an inhibitor of the thermogenic program in white
adipose tissue and that RORα antagonists can counteract this role in vivo. Inhibitors of
browning differentiation, such as TLE3 and RIP140, could be new RORα targets implicated
in the whitened appearance of adipocytes [142]. RORα and RORγ control the activation of
SREBP1c to regulate the lipogenic response to feeding. The loss of RORα/γ exacerbates
diet-induced hepatic steatosis by activating the SREBP-dependent lipogenic response to
feeding to an excessive degree. This highlights the importance of considering the time of
day when treating liver metabolic disorders [207].

Lozano et al. investigated the relationship between evening chronotype, obesity,
and weight loss in severely obese bariatric surgery patients. There was a significant
interaction between the CLOCK 3111T/C SNP and body weight among carriers of the
risk allele C, with evening types having a higher body weight than morning types [208].
According to Espinosa-Salinas et al., the rs3749474 CLOCK polymorphism may influence
the effects of appetite on waist circumference, with risk allele carriers increasing their waist
circumference by 14 cm for each increase in appetite level [209]. Oishi et al. investigated the
role of CLOCK in the obesity-induced elevation of plasminogen activator inhibitor-1 (PAI-1).
They discovered that CLOCK is involved in obesity-induced disordered fibrinolysis by
tissue-dependently regulating PAI-1 gene expression [210].

The deletion of Cry1/2 results in behavioral and molecular circadian arrhythmicity and
increased vulnerability to high-fat-diet-induced obesity, which is mediated by increased
insulin secretion and lipid storage in adipose tissues in Cry1/2(-/-) mice [211]. In another
study, the ablation of Cry1, but not Cry2, prevented HFD-induced obesity in mice, sug-
gesting increased energy expenditure [212]. These studies reinforce the important role of
circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target
for anti-obesity therapy. Concerning macroautophagy, it affects the circadian clock by
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selectively degrading CRY1, which occurs in a diurnal window when rodents rely on gluco-
neogenesis. Mutational analyses have identified two distinct light chain 3 (LC3)-interacting
region (LIR) motifs on CRY1 that regulate CRY1 degradation, providing potential targets
for controlling hyperglycemia [213].

As potential treatments for metabolic disorders, small-molecule modulators of the
circadian clock were investigated in many studies. These modulators interact with the
circadian clock genes and can help treat metabolic disorders by modulating the clock. Ac-
cording to studies, small-molecule modulators can reduce the risk of obesity, diabetes, and
other metabolic disorders. Additionally, they can enhance sleep quality and reduce fatigue.
Small-molecule modulators are a promising treatment option for metabolic disorders and
may provide a safe and effective way to improve metabolic health. Small molecules target-
ing circadian clock proteins have shown therapeutic potential in metabolic diseases. KL001,
KL101, and TH301 lengthen the period of the circadian clock and increase brown adipocyte
differentiation. TW68, GSK4112, and SR8278 alter circadian gene expression and have
metabolic effects such as lowering blood glucose levels and inhibiting gluconeogenesis.
SR9009 and SR9011 also alter circadian gene expression and promote increased energy
expenditure and decreased fat mass. SR1078 activates ROR-dependent transcription and
lowers aerobic glycolysis. Nobiletin enhances the amplitude and lengthens the period of
the circadian clock, restoring energy homeostasis and improving metabolic fitness. These
small molecules offer potential therapeutic strategies for metabolic diseases by targeting the
circadian clock and modulating metabolic processes. Recent evaluations of these molecules
were conducted by Kavakli et al. [214], Chen et al. [215], and Rodrigues et al. [216]. Here,
we provide a summary of the molecules associated with only metabolic diseases in Table 1.

Table 1. Small molecules targeting circadian clock proteins may have therapeutic potential in
metabolic diseases.

Compound Effects on the Circadian Clock Mechanism of Action Metabolic Effects Refs.

KL001 Period lengthening
Amplitude dampening CRY stabilizer Represses the induction of gluconeogenesis by

glucagon [217,218]

KL101 Period lengthening CRY1-selective stabilizer Increases brown adipocyte differentiation [219]

TH301 Period lengthening CRY2-selective stabilizer Increases brown adipocyte differentiation [219]

TW68 Period lengthening CRY Stabilizer Blood glucose lowering effect in ob/ob mice [220]

GSK4112
Altering circadian gene

expression
Represses transcription of Bmal1

REV-ERBα agonist Inhibits gluconeogenesis [221]

SR8278
Altering circadian gene

expression
Increases BMAL1

REV-ERBα antagonist Inhibits glucagon secretion [204,222]

SR9009
and SR9011

Altering circadian gene
expression

Represses transcription of Bmal1
REV-ERBα agonists

Increases energy expenditure and decreases fat
mass, plasma triglycerides, and cholesterol
levels in diet-induced obesity mouse model.

SR9009 inhibits de novo lipogenesis.

[203,223]

SR1078 Activating ROR
dependenttranscription RORα agonist

Lowers aerobic glycolysis.
Lowers expression of pyruvate dehydrogenase
kinase 2. Inhibits phosphorylation of pyruvate
dehydrogenase and promotes the full oxidation

of pyruvate.

[224,225]

SR3335 NA RORα inverse agonist Inhibits gluconeogenesis and reduces glucose
plasma levels. [226]

SR1555 NA RORc inverse agonist

Improves insulin sensitivity and decreases food
intake in obese diabetic mice.

Induces thermogenic gene expression in fat
depots, inhibits hormone-sensitive lipase

activation, and increases fatty acid oxidation.

[227]



Biology 2023, 12, 1077 16 of 27

Table 1. Cont.

Compound Effects on the Circadian Clock Mechanism of Action Metabolic Effects Refs.

Nobiletin Amplitude enhancer
Period lengthening ROR agonist

Restores energy hemostasis and prevents
metabolic syndrome in mice with diet-induced

obesity and db/db mutations.
Restores energy hemostasis, improves
metabolic fitness, and increases energy

expenditure, cold tolerance, exercise endurance,
grip strength, and inflammatory markers in

aged mice fed a high-fat diet.

[228,229]

Nobiletin Amplitude enhancer ROR agonist Enhances basal and stimulated insulin
secretion by T2D islets. [230]

T2D: type 2 diabetes, NA: not applicable.

6. Non-Pharmacological Approaches: Time-Restricted Feeding and Light Therapy

The recent research has demonstrated the tremendous effects of circadian rhythms
on metabolic state, the benefits of intermittent fasting, and their relation to the timing
of energy intake [231,232]. Through synergistic interactions between the circadian os-
cillator and feeding–fasting signals, anabolic and catabolic processes are coordinated in
accordance with the animal’s activity and rest cycle [233]. Time-restricted feeding, which
means limiting eating to the active phase may decrease the predisposition to metabolic
diseases and was demonstrated as a nonpharmacological strategy against obesity and
diabetes [234–236]. However, eating at the “wrong time of day” can have a reverse impact
on weight gain and overall metabolic health [237]. Time-restricted feeding, i.e., 8–9 h
of food access during the active phase, in C57BL/6 male mice decreased adipose tissue
inflammation and changed adipokine levels while reducing and reversing the adiposity
caused by obesogenic diets [235]. In a study, mice were subjected to either unrestricted or
temporally restricted feeding of a high-fat diet over a duration of 8 h daily, the mice that
underwent time-restricted feeding exhibited an augmentation in thermogenesis. Addition-
ally, there was an observed enhancement in the circadian rhythms of core clock genes such
as PER2, BMAL1, REV-ERBA, CRY1, as well as their target genes. This improvement in
circadian rhythms was associated with a protective effect against obesity, hyperinsulinemia,
and inflammation [236]. The results of animal studies on time-restricted eating showing
increased metabolic health, including lipid parameters and blood glucose, as well as sig-
nificant weight loss, are also supported by clinical studies in human subjects [238]. In a
study in humans, overweight adults under early time-restricted feeding between 8 a.m. to
2 p.m. showed improved 24-h glucose levels, lipid metabolism, and circadian clock gene
expression compared to control subjects who ate between 8 a.m. and 8 p.m. [239].

Light therapy, which involves exposing patients to bright light in the early morning for
several days, is thought to work by entraining the sleep–wake cycle by ocular stimulation
of the suprachiasmatic nucleus and is expected to alleviate sleep disturbances and improve
circadian rhythmicity [240,241]. However, in some clinical studies, light therapy was not
found to be superior regarding insulin sensitivity, glucose tolerance, and inflammatory
parameters, although the peripheral blood mononuclear cells of patients under light therapy
showed a significant alteration in the circadian clock gene expressions [241,242].

7. Conclusions

In conclusion, CTS plays a crucial role in regulating the functions of adipose tissue
and maintaining energy homeostasis. This review has highlighted the significant impact of
the circadian rhythm on various processes within adipose tissue, including adipogenesis,
lipolysis, adipokine secretion, browning, and non-shivering thermogenesis. Disruptions
in these circadian rhythms are associated with metabolic diseases such as obesity and
type 2 diabetes. Understanding the intricate relationship between circadian rhythm and
adipose tissue function provides valuable insights into the pathogenesis of these disorders.
Furthermore, the concept of chronotherapy, which utilizes the knowledge of circadian
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rhythms to optimize therapeutic interventions, holds promise for the treatment of metabolic
diseases. By targeting the circadian clock through chronotherapy approaches, including the
timing of antidiabetic and anti-obesity medications, it may be possible to enhance treatment
efficacy and improve patient outcomes. Additionally, clock genes emerge as potential
therapeutic targets, offering new avenues for intervention in metabolic disorders. Further
research and clinical studies are warranted to explore the full potential of chronotherapy
and clock gene modulation in the management of metabolic diseases.
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International Bahçeşehir University (BAU) Drug Design Congress, Istanbul, Turkey, 15 December 2022.

221. Grant, D.; Yin, L.; Collins, J.L.; Parks, D.J.; Orband-Miller, L.A.; Wisely, G.B.; Joshi, S.; Lazar, M.A.; Willson, T.M.; Zuercher, W.J.
GSK4112, a Small Molecule Chemical Probe for the Cell Biology of the Nuclear Heme Receptor Rev-Erbα. ACS Chem. Biol. 2010,
5, 925–932. [CrossRef]

222. Kojetin, D.; Wang, Y.; Kamenecka, T.M.; Burris, T.P. Identification of SR8278, a Synthetic Antagonist of the Nuclear Heme Receptor
REV-ERB. ACS Chem. Biol. 2011, 6, 131–134. [CrossRef]

223. Woldt, E.; Sebti, Y.; Solt, L.A.; Duhem, C.; Lancel, S.; Eeckhoute, J.; Hesselink, M.K.C.; Paquet, C.; Delhaye, S.; Shin, Y.; et al.
Rev-Erb-αModulates Skeletal Muscle Oxidative Capacity by Regulating Mitochondrial Biogenesis and Autophagy. Nat. Med.
2013, 19, 1039–1046. [CrossRef] [PubMed]

224. Wang, Y.; Kumar, N.; Nuhant, P.; Cameron, M.D.; Istrate, M.A.; Roush, W.R.; Griffin, P.R.; Burris, T.P. Identification of SR1078, a
Synthetic Agonist for the Orphan Nuclear Receptors RORα and RORγ. ACS Chem. Biol. 2010, 5, 1029–1034. [CrossRef] [PubMed]

225. Byun, J.K.; Choi, Y.K.; Kang, Y.N.; Jang, B.K.; Kang, K.J.; Jeon, Y.H.; Lee, H.W.; Jeon, J.H.; Koo, S.H.; Jeong, W.I.; et al. Retinoic
Acid-Related Orphan Receptor Alpha Reprograms Glucose Metabolism in Glutamine-Deficient Hepatoma Cells. Hepatology 2015,
61, 953–964. [CrossRef] [PubMed]

226. Kumar, N.; Kojetin, D.J.; Solt, L.A.; Kumar, K.G.; Nuhant, P.; Duckett, D.R.; Cameron, M.D.; Butler, A.A.; Roush, W.R.; Griffin,
P.R.; et al. Identification of SR3335 (ML-176): A Synthetic RORα Selective Inverse Agonist. ACS Chem. Biol. 2011, 6, 218–222.
[CrossRef] [PubMed]

227. Chang, M.R.; He, Y.; Khan, T.M.; Kuruvilla, D.S.; Garcia-Ordonez, R.; Corzo, C.A.; Unger, T.J.; White, D.W.; Khan, S.; Lin, L.; et al.
Antiobesity Effect of a Small Molecule Repressor of RORγ. Mol. Pharmacol. 2015, 88, 48–56. [CrossRef]

228. He, B.; Nohara, K.; Park, N.; Park, Y.S.; Guillory, B.; Zhao, Z.; Garcia, J.M.; Koike, N.; Lee, C.C.; Takahashi, J.S.; et al. The Small
Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell
Metab. 2016, 23, 610–621. [CrossRef]

229. Nohara, K.; Mallampalli, V.; Nemkov, T.; Wirianto, M.; Yang, J.; Ye, Y.; Sun, Y.; Han, L.; Esser, K.A.; Mileykovskaya, E.; et al.
Nobiletin Fortifies Mitochondrial Respiration in Skeletal Muscle to Promote Healthy Aging against Metabolic Challenge. Nat.
Commun. 2019, 10, 3923. [CrossRef]

230. Petrenko, V.; Gandasi, N.R.; Sage, D.; Tengholm, A.; Barg, S.; Dibner, C. In Pancreatic Islets from Type 2 Diabetes Patients, the
Dampened Circadian Oscillators Lead to Reduced Insulin and Glucagon Exocytosis. Proc. Natl. Acad. Sci. USA 2020, 117,
2484–2495. [CrossRef]

231. De Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551.
[CrossRef]

232. Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. In Ageing Research Reviews;
Elsevier Ireland Ltd.: Dublin, Ireland, 2017; Volume 39, pp. 46–58. [CrossRef]

233. Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016, 23,
1048–1059. [CrossRef]

234. Woodie, L.N.; Luo, Y.; Wayne, M.J.; Graff, E.C.; Ahmed, B.; O’Neill, A.M.; Greene, M.W. Restricted feeding for 9 h in the active
period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metabolism
2018, 82, 1–13. [CrossRef] [PubMed]

235. Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse
nutritional challenges. Cell Metab. 2014, 20, 991–1005. [CrossRef]

236. Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick,
J.A.J.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell
Metab. 2012, 15, 848–860. [CrossRef] [PubMed]

237. Duregon, E.; Pomatto-Watson, L.C.D.D.; Bernier, M.; Price, N.L.; de Cabo, R. Intermittent fasting: From calories to time restriction.
GeroScience 2021, 43, 1083–1092. [CrossRef] [PubMed]

238. Rothschild, J.; Hoddy, K.K.; Jambazian, P.; Varady, K.A. Time-restricted feeding and risk of metabolic disease: A review of human
and animal studies. Nutr. Rev. 2014, 72, 308–318. [CrossRef] [PubMed]

239. Jamshed, H.; Beyl, R.A.; Manna, D.L.D.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves 24-hour
glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients 2019, 11, 1234. [CrossRef]

https://doi.org/10.1016/j.drudis.2021.03.015
https://doi.org/10.1126/science.1223710
https://doi.org/10.1038/nature10700
https://doi.org/10.1038/s41589-020-0505-1
https://doi.org/10.1021/cb100141y
https://doi.org/10.1021/cb1002575
https://doi.org/10.1038/nm.3213
https://www.ncbi.nlm.nih.gov/pubmed/23852339
https://doi.org/10.1021/cb100223d
https://www.ncbi.nlm.nih.gov/pubmed/20735016
https://doi.org/10.1002/hep.27577
https://www.ncbi.nlm.nih.gov/pubmed/25346526
https://doi.org/10.1021/cb1002762
https://www.ncbi.nlm.nih.gov/pubmed/21090593
https://doi.org/10.1124/mol.114.097485
https://doi.org/10.1016/j.cmet.2016.03.007
https://doi.org/10.1038/s41467-019-11926-y
https://doi.org/10.1073/pnas.1916539117
https://doi.org/10.1056/NEJMra1905136
https://doi.org/10.1016/j.arr.2016.10.005
https://doi.org/10.1016/j.cmet.2016.06.001
https://doi.org/10.1016/j.metabol.2017.12.004
https://www.ncbi.nlm.nih.gov/pubmed/29253490
https://doi.org/10.1016/j.cmet.2014.11.001
https://doi.org/10.1016/j.cmet.2012.04.019
https://www.ncbi.nlm.nih.gov/pubmed/22608008
https://doi.org/10.1007/s11357-021-00335-z
https://www.ncbi.nlm.nih.gov/pubmed/33686571
https://doi.org/10.1111/nure.12104
https://www.ncbi.nlm.nih.gov/pubmed/24739093
https://doi.org/10.3390/nu11061234


Biology 2023, 12, 1077 27 of 27

240. Wirz-Justice, A.; Benedetti, F.; Berger, M.; Lam, R.W.; Martiny, K.; Terman, M.; Wu, J.C. Chronotherapeutics (light and wake
therapy) in affective disorders. Psychol. Med. 2005, 35, 939–944. [CrossRef]

241. Brouwer, A.; van Raalte, D.H.; Nguyen, H.T.; Rutters, F.; van de Ven, P.M.; Elders, P.J.M.; Moll, A.C.; Van Someren, E.J.W.; Snoek,
F.J.; Beekman, A.T.F.; et al. Effects of light therapy on mood and insulin sensitivity in patients with type 2 diabetes and depression:
Results from a randomized placebo-controlled trial. Diabetes Care 2019, 42, 529–538. [CrossRef]

242. Rizza, S.; Luzi, A.; Mavilio, M.; Ballanti, M.; Massimi, A.; Porzio, O.; Magrini, A.; Hannemann, J.; Menghini, R.; Cridland, J.; et al.
Impact of light therapy on rotating night shift workers: The EuRhythDia study. Acta Diabetol. 2022, 59, 589–1596. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1017/S003329170500437X
https://doi.org/10.2337/dc18-1732
https://doi.org/10.1007/s00592-022-01956-2

	Introduction 
	Circadian Rhythm 
	The Role of Circadian Rhythm in Adipose Tissue Function 
	The Role of Circadian Rhythm in Adipogenesis 
	The Role of the Circadian Rhythm in Adipose Tissue Lipolysis 
	Adipokine Release 
	Brown Adipose Tissue Non-Shivering Thermogenesis 
	Browning of Adipose Tissue 

	Circadian Rhythm Dysfunction in Obesity and Type 2 Diabetes 
	Chronotherapy Approaches in Metabolic Disorders 
	Chronotherapy of Antidiabetic and Anti-Obesity Drugs 
	Targeting the Circadian Clock in Metabolic Diseases 

	Non-Pharmacological Approaches: Time-Restricted Feeding and Light Therapy 
	Conclusions 
	References

