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Abstract

Motivation: Identifying and prioritizing disease-related proteins is an important scientific problem to develop proper
treatments. Network science has become an important discipline to prioritize such proteins. Multiple sclerosis, an auto-
immune disease for which there is still no cure, is characterized by a damaging process called demyelination.
Demyelination is the destruction of myelin, a structure facilitating fast transmission of neuron impulses, and oligoden-
drocytes, the cells producing myelin, by immune cells. Identifying the proteins that have special features on the net-
work formed by the proteins of oligodendrocyte and immune cells can reveal useful information about the disease.

Results: We investigated the most significant protein pairs that we define as bridges among the proteins providing
the interaction between the two cells in demyelination, in the networks formed by the oligodendrocyte and each
type of two immune cells (i.e. macrophage and T-cell) using network analysis techniques and integer programming.
The reason, we investigated these specialized hubs was that a problem related to these proteins might impose a big-
ger damage in the system. We showed that 61%–100% of the proteins our model detected, depending on parameter-
ization, have already been associated with multiple sclerosis. We further observed the mRNA expression levels of
several proteins we prioritized significantly decreased in human peripheral blood mononuclear cells of multiple
sclerosis patients. We therefore present a model, BriFin, which can be used for analyzing processes where interac-
tions of two cell types play an important role.

Availability and implementation: BriFin is available at https://github.com/BilkentCompGen/brifin.

1 Introduction

Oligodendrocytes, which are specialized glial cells of the central ner-
vous system, surround axons with their plasma membrane and form
the myelin sheath required for the proper functioning of the verte-
brate nervous system. By virtue of the insulation supplied by myelin
sheath, action potentials propagate faster along myelinated axons
than on non-myelinated axons (Hartline and Colman 2007). In add-
ition, oligodendrocytes provide metabolic support to neurons

promoting long-term neuronal survival and function (Fünfschilling
et al. 2012, Saab and Nave 2017). Loss of myelin (demyelination)
triggers a neurodegeneration cascade causing the disruption of elec-
trical signal transmission, deprivation of oligodendroglial support,
and thus further damage to neurons. Demyelination occurs in sev-
eral neurological diseases, one of the most prevalent being multiple
sclerosis (MS) (Traka et al. 2016, Kipp 2020).

Affecting over 2 million people, MS is a chronic, inflammatory,
and neurodegenerative disease in which demyelination is observed
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in the various regions of the brain and spinal cord (SC) (Garg and
Smith 2015, Stadelmann et al. 2019, Walton et al. 2020). The eti-
ology of the disease is thought to be immune dysregulation resulting
from the interactions of genetic and environmental factors (Olsson
et al. 2017). Abnormally activated immune cells attack and damage
myelin. Due to the impairments of interneuronal communication
and signal transmission, physical and cognitive symptoms are
observed in MS patients. Clinically, the majority of patients exhibit
a relapsing-remitting phenotype of MS (RRMS) characterized by
episodes of reversible neurological attacks followed by total or local
recovery. In time, in patients diagnosed with RRMS, neurologic def-
icits become permanent, and secondary progressive MS develops
(Lucchinetti et al. 2008, Rajendran et al. 2021).

Inflammation, axonal loss, and oligodendrocyte and neuronal
cell death are the hallmarks of MS lesions. Lymphocytes, microglia,
and macrophages are the main immune cell types that contribute to
inflammation in the lesion areas (Garg and Smith 2015). Therefore,
it is important to reveal the cell-to-cell interaction mechanisms be-
tween oligodendrocytes and immune cells to understand MS disease
mechanisms.

In the last decade, network medicine has become an important
discipline to analyze disease etiology. Network medicine (Barabási
et al. 2011) focuses on analyzing biological networks with a holistic
view instead of analyzing a single gene or a mechanism to find mech-
anisms or important actors of diseases. Diverse biological networks
are analyzed for different purposes. In this study, we focus on pro-
tein–protein interaction (PPI) networks formed between two cells,
the target and the perpetrators of demyelination since PPI networks
may provide the necessary information to identify the key interact-
ing proteins that are involved in demyelination. For a PPI network,
the question to which network medicine seeks an answer is whether
the disease-associated proteins carry special attributes on the net-
work. One of the current research directions for this question is to
predict new disease-associated proteins using the existing knowledge
on disease-associated proteins and machine learning-based algo-
rithms (Tieri et al. 2019). Several studies try to find associations be-
tween genes or proteins and diseases through genomic and
transcriptomic data that is included in a gene expression or a protein
interaction network, and previously identified disease-associated
genes or proteins. For example, HIT’nDRIVE, proposed by Shrestha
et al. (2017) is a comprehensive computational method that integra-
tes transcriptomic and genomic data and it aims to find the smallest
set of patient-specific altered genes on the network that can cause
transcriptional perturbations.

An alternative network analysis strategy is detecting hubs, which
are the nodes that are few in number, yet have the highest degrees in
the network. Hub proteins are not necessarily disease-associated
proteins; however, the reason why they should be investigated is the
fact that they are involved in many interactions in the network.
Therefore, a change in their interactions results in relatively more
significant biological alterations. In this study, we detected the hubs
in the PPI networks formed within and between the cells that play a
role in demyelination for further biological research. Here, the hubs,
we refer to are “specialized” hubs, which connect two cells and we
call ‘bridges’ in the remainder of this article. Since we analyzed a
network by combining two different networks through intercellular
PPIs, we identified these bridges as the protein pairs that had the
highest ‘intracellular importance scores’ (IIS) (see Section 2), and
that are involved in the highest number of the intercellular interac-
tions. In this study, our aim is to detect bridges on the demyelination
PPI network that might likely play a role in the development of MS.

In contrast to analyzing a PPI network generated from healthy
cells, analyzing the PPI network generated from disease-carrying
cells is also a promising way to understand disease etiology. For ex-
ample, Yurduseven et al. (2022) identified MS biomarkers by per-
forming interactome analysis using an MS-specific brain PPI
network that they constructed using transcriptome data.
Yurduseven et al. (2022) analyzed cell-type-specific and cell-to-cell
bridges by considering the degrees of the proteins on the MS-specific
brain PPI networks.

Here, we introduce Bridge Finder (BriFin) to detect the bridges
in a cell-to-cell protein interaction network that consists of both in-
ter- and intracellular interactions between two cell types. Using
BriFin, we identify proteins that may be associated with MS, specif-
ically through playing key roles in immune cell–oligodendrocyte
communications.

Revealing the proteins that take part in the disease mechanism is
not an easy task due to the difficulty of obtaining biological samples
from the brain and SC where MS involvements are observed.
Therefore, we evaluated BriFin by investigating some MS-associated
potential biomarkers in easily available peripheral blood mono-
nuclear cell (PBMC) samples, which may contribute to the under-
standing of the disease mechanism, as well as being used in the
diagnosis and follow-up of the disease. Among the proteins with the
highest scores, we selected four that are likely important in MS
pathogenesis and verified the expression levels of the genes that code
these proteins in PBMCs of MS patients using quantitative real-time
PCR (qRT-PCR). We showed that the expression levels of two out
of four genes that code the suspect proteins were significantly
decreased in MS patients, which suggests disrupted downstream net-
works. In addition, we showed that the rate of the MS-associated
proteins BriFin detected varies between 61% and 100% depending
on the parameterization regarding the desired prioritization level.
Furthermore, we showed that the MS-associated protein detection
rate of BriFin increases by the ascending prioritization level.

2 Materials and methods

2.1 Dataset and network construction
Recent advances in sequencing technologies and increasing biologic-
al data available in public databases enable us to better model and
understand cell-to-cell interactions and protein networks (Armingol
et al. 2021). In this study, we obtained the proteome data for the
three different cell types from several articles (Dupont et al. 2004,
Slomianny et al. 2006, Ishii et al. 2009, Raposo et al. 2011, de
Monasterio-Schrader et al. 2012, Lichtenfels et al. 2012, Iwata et al.
2013, Eligini et al. 2015, Graessel et al. 2015, Mitchell et al. 2015,
Pagani et al. 2015, Joshi et al. 2019) and publicly available data-
bases [UniProt (Bairoch et al. 2005) and The Human Protein Atlas
(Uhlén et al. 2015)]. Next, we downloaded the PPI network data for
the intracellular interactions from the IntAct Molecular Interaction
Database (Hermjakob et al. 2004). We identified the probable con-
tact proteins (membrane and secreted proteins) and the intercellular
interactions for each cell using the data of ligand–receptor pairs
from the cell-to-cell communication databases [CellTalkDB (Shao
et al. 2021) and BaderLab ligand–receptor interaction set (https://
baderlab.org/CellCellInteractions)], since cell-to-cell interactions
generally involve ligand–receptor pairs. These databases that include
curated data from diverse resources aim at presenting the protein
pairs that involve in human cell-to-cell protein interactions. After
identifying the contact proteins, we removed the unconnected nodes
from the network and finally calculated PageRank and Betweenness
Centrality scores for all nodes (i.e. proteins) using the Gephi net-
work analysis tool (Bastian et al. 2009). All edges are undirected in
the constructed networks. In Fig. 1, we present a visual of the con-
structed network and the problem terms.

2.2 Network pruning and IIS
We initially compiled data for two large interacting PPI networks,
namely oligodendrocyte–macrophage and oligodendrocyte–T-cell
networks, where all intra- and intercellular interactions are
included. However, both of these PPI networks were very large: the
oligodendrocyte–macrophage network contained 3574 nodes and
33 399 edges, while the oligodendrocyte–T-cell network contained
11 813 nodes and 152 396 edges. To reduce the problem size and to
be able to solve it efficiently, we assigned an ‘intracellular import-
ance score (IIS)’ to each contact protein expressing its importance
for the intracellular network of the cell it belongs to. To do this, we
first determined each contact protein’s direct and indirect interac-
tors, and their distances using a breadth first search strategy. We
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evaluated the importance of the individual proteins in the intracellu-
lar network based on their PageRank centrality values. We used the
default parameters in Gephi to calculate the PageRank scores, which
are 0.85 for damping factor, and 0.001 for epsilon.

There are various strategies to assess the importance of a node of
the network, such as using one of the centrality metrics, using a com-
bination of them or designing a new problem-specific metric. As previ-
ously mentioned, we chose to use PageRank centrality to measure the
importance of an individual node. We assumed that all intracellular
biological interactions are equally important, and we aim to identify to
what extent an intracellular protein is involved in these interactions.
We therefore use PageRank that assumes a random surfer on the net-
work, and measures the likelihood of being visited of a node.

Combining the connection and score information, we assigned
scores for each contact protein using Equation (1). Similarly, Al-
Fatlawi et al. (2022) used PageRank metric in their network-based
predictor NetRank to detect robust cancer biomarkers and showed
their method had a strong prediction performance.

IISi ¼
X

j2NCi

PRj

dij
þ
X

k2Ci

PRk

dik
8i 2 C: (1)

In Equation (1), C denotes the set of contact proteins of the cell
in question. Ci denotes the set of contact proteins to which contact
protein i is directly or indirectly connected, and NCi denotes the set
of intracellular proteins to which contact protein i is directly or in-
directly connected in the cell. PRj denotes PageRank centrality score
of protein j, while dij denotes the length of the shortest path between
contact protein i and cell protein j in the cell PPI network.

Since PPI networks have the small world phenomenon feature,
which causes most of the proteins to have similar attributes, we devel-
oped a scoring method that can differentiate the scores of the proteins
as much as possible. To this end, we calculated the IIS for each protein
by evaluating the interactions between the contact proteins separately
and using a distance metric to measure the scores more sensitively.
We used the network by removing the edges between the contact pro-
teins to obtain the distance parameters in the first component of
Equation (1), and we only used the network of the contact proteins to
obtain the distance parameters in the second component. Fig. 2 shows
a small example of the initial and pruned PPI networks.

2.3 Finding the bridges
Assigning scores to the contact proteins considerably reduces the
problem size, and yields a bipartite network where only contact pro-
teins exist with node scores. Using integer linear programming
(ILP), we determined the bridges on these bipartite networks.

We define the most significant protein pairs (i.e. bridges) as the
minimum number of contact protein pairs that can cover a certain
majority (specified using a parameter named a) of the cell-to-cell
interactions and have the highest total IIS for the two intracellular
networks. This problem is a variation of the ‘set cover with pairs
problem’ (Hassin and Danny 2005). The main difference is that our
aim is not necessarily to cover all elements (edges) by minimum cost-
ly pairs of objects (nodes/proteins) in our problem, while in the set

cover with pairs problem the goal is to cover all elements by the
selected pairs. The purpose of setting an a parameter instead of solv-
ing the set cover with pairs problem is to better prioritize the pro-
teins, i.e. to find a smaller set of proteins to be focused on in the
further biological research. Therefore our formulation becomes an
extension to the maximum quasi-clique problem (Pattillo et al.
2013), which asks to find a subgraph with the edge density of c 2 (0,
1) in a graph G=(V, E). In addition, we select the pairs among only
the connected pairs instead of all possible pairs of nodes. This selec-
tion method provides biologically more meaningful protein pairs,
since each selected pair is an intercellular interacting pair meaning
that they play a role in the cell-to-cell interaction of the two cells,
and they may be involved in demyelination.

Our ILP model collectively evaluates the effect of the selected protein
pairs on the network. It is also possible to evaluate the protein pairs sep-
arately. This can be done by sorting the nodes in descending order by the
sum of the normalized degree of coverage (i.e. the number of edges a
pair covers) and the normalized score of the pair. This sum is the ‘overall
importance score (OIS)’ of a protein pair. We calculate the score of a
pair by summing the normalized IIS of each protein in the pair.

2.3.1 ILP model

We define P as the set of contact protein pairs (i.e. pairs of con-
nected nodes) and E as the set of interactions (i.e. edges) in the net-
work. Since we evaluate only the connected protein pairs, these two
sets are equivalent in our implementation. We further define cij as
the binary parameter that indicates whether pair i covers interaction
j: If one of the proteins in the pair is included in an interaction, it
means that the pair covers that interaction. si is the parameter that
indicates the inverse of the sum (i.e. 1/sum) of the normalized IIS of
each protein in pair i. Since this is a minimization problem where we
want to find the minimum number of proteins with highest scores
that cover the highest number of the edges, we assign a score to each
pair which is equal to the inverse of the sum of the scores of the pro-
teins in that pair. Finally, a parameter expresses the minimum
desired coverage rate of the interactions in the network. When a¼1,
the problem becomes finding protein pairs that cover all of the inter-
actions in the network (the set cover with pairs problem).

In the ILP model, we have two binary decision variables x and y. xi

expresses if pair i is selected, while yj expresses if interaction j is covered
by the selected protein pairs. Formulation of the problem is as follows:

min
P

i2P xisi

subject to

xicij � yj 8i 2 P; j 2 E
P

j2E yj � a Ej j

yj �
P

i2P xicij 8j 2 E

xi; yj 2 0; 1f g 8i 2 P; j 2 E:

The first constraint ensures that an edge is covered if a pair cov-
ering it is selected. The second constraint provides that the number

Figure 1. Constructed network and problem terms.
Figure 2. Small illustrations that show the initial and pruned PPI networks of two

cells.
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of the covered interactions satisfies the minimum desired coverage
rate. Finally, the third constraint ensures an edge cannot be covered
if a pair covering it is not selected. We solved the ILP using the
Python Gurobi Solver (https://www.gurobi.com).

In Fig. 3, a small example of how selected contact protein pairs
and covered interactions change based on the a parameter is shown.

2.4 Evaluating BriFin with MS patient data
2.4.1 Subjects and isolation of PBMCs

We included eight RRMS patients and seven age and gender-
matched healthy individuals as controls in this study. All patients
are currently treated with immunomodulatory drugs. We presented
the demographic and clinical features as well as immunomodulatory
drugs of patients and healthy controls in Supplementary Table S1.
After receiving written informed consent from all participants, we
collected venous blood samples using tubes containing ethylene di-
amine tetra-acetic acid. We separated PBMCs from venous blood
via density gradient centrifugation using lymphocyte separation me-
dium, density 1.077 g/ml (Capricorn). Finally, we pelleted the iso-
lated PBMCs and stored them at �80�C for further use.

2.4.2 Total RNA isolation and qRT-PCR

Total RNA was isolated from PBMCs with TriGent reagent (Biomatik)
according to the manufacturer’s instructions. Quantification of RNA
samples was conducted using the Nanodrop Spectrophotometer
(ThermoFisher Scientific). RNA samples were reverse transcribed using
the Advanced cDNA Synthesis Kit (Wisent Bioproducts) as recom-
mended by the manufacturer. qRT-PCR was conducted on Bio Rad
CFX Connect using The SensiFAST SYBRVR No-ROX Kit (Meridian
Bioscience) with the primer pairs of Heat Shock Protein 90-alpha
(HSP90AA1), HSP90B1, CALR, and Transferrin Receptor Protein 1
(TFRC) (for list of the primer sets, see Supplementary Table S2). The
relative expression levels of each transcript were calculated by normal-
izing them against the expression of the housekeeping gene ß-actin
(ACTB). For the fold change analysis, transcript levels were compared
to the control group.

2.4.3 Statistical analysis

We performed the statistical analysis of the results using GraphPad
Prism version 8.0.0 (GraphPad Software, San Diego, California,
USA). We used the non-parametric Mann–Whitney unpaired test to
analyze the data, and we considered P< .05 to be statistically
significant.

3 Results

3.1 Constructed networks
We ran BriFin on the networks that we constructed using PPI inter-
action data, cell-to-cell communication data, and proteome data
downloaded from different sources as explained in Section 2. The
numbers of all proteins and contact proteins (those involved in inter-
cellular interactions) of each cell type in our study are given in
Table 1.

The first step of BriFin, network pruning, is run on the cell PPI
networks shown in Table 1. The second step, ILP model, is run on
the combined and pruned networks of two cells, oligodendrocyte–
macrophage and oligodendrocyte–T-cell networks. The sizes of
these networks are 2191 edges (i.e. contact protein pairs) for the

oligodendrocyte–macrophage network, and 5983 edges for the
oligodendrocyte–T-cell network.

3.2 Detected bridges by BriFin
After constructing the PPI networks summarized in Table 1, we cal-
culated the IIS for each contact protein of the two cells. We reduced
the intracellular network connections to these scores to be able to
solve the problem efficiently, and obtained a bipartite network with
node scores. We then assigned a score to each contact protein pair,
and investigated the bridges among the contact protein pairs, each
of which consists of one contact protein from Cell 1 and one contact
protein from Cell 2, using the ILP model defined in Section 2.

To prioritize the contact protein pairs, we used different thresh-
olds for a, which denotes the minimum ratio of cell-to-cell interac-
tions covered by the selected contact protein pairs. Table 2 presents
the number of the selected protein pairs for each setting of a for the
two networks, we analyzed in this study.

We identified that some of the selected proteins by the model
have been associated with MS, other autoimmune diseases and
neurological diseases in the literature. Here, we present the results
for the two smallest a values: 0.1 and 0.2, based on the PageRank
scores, and the relevant MS associations. For the oligodendrocyte–
macrophage network, two bridges were selected by BriFin for
a ¼ 0:1. These bridges are Integrin Beta-1 (ITGB1)—Heat Shock
Protein 90-alpha (Heat Shock Protein 90-alpha) and HSP90AA1—
TFRC, where the first protein belongs to oligodendrocyte and the se-
cond to macrophage. In the relevant literature, variants of ITGB1
are found being associated with MS (Dardiotis et al. 2019). In a
study where MS-specific membrane-associated biomarkers were
investigated in experimental autoimmune encephalomyelitis (EAE),
an animal model of MS, it was shown that TFRC protein expression
was down-regulated in PBMCs (Dagley et al. 2014). In our study,
we experimentally tested TFRC in blood samples of MS patients,
and found that its mRNA expression is decreased in MS patients
compared to healthy individuals. It is also important to observe that
HSP90AA1 is important for both the immune cells and the oligo-
dendrocyte cell. In a transcriptomic study (Schirmer et al. 2019), the
up-regulation of HSP90AA1 was shown in myelinating oligoden-
drocytes at MS periplaque white matter tissue. We also show in this
study its association with MS on PBMCs of a group of MS patients.
To the best of our knowledge, a PBMC association of HSP90AA1
with MS was not shown in the literature.

For the same network, five bridges were selected by BriFin for
a ¼ 0:2; which are High Mobility Group Box 1 (HMGB1)—
Vascular Cell Adhesion Molecule 1 (VCAM1), HSP90AA1—TFRC,
ITGB1— Annexin A2 (ANXA2), Fibronectin 1 (FN1)—Pyruvate
Kinase M1/2 (PKM), and Amyloid Beta Precursor Protein (APP)—
HSP90AA1. We see that some proteins are again selected for the
higher a value either in the same or in different bridges. All of these
selected proteins are associated with MS in the literature in studies
focusing on different mechanisms and cells.

Regarding associations of these proteins related to the cells be-
long to in our study, it was shown that HMGB1 expression levels
were increased in PBMCs of MS patients significantly (Malhotra
et al. 2015, Paudel et al. 2019), and various VCAM1 positive micro-
glia/macrophages exist at the edges of MS lesions (Peterson et al.
2002). Also, VCAM1 and its variants are associated with MS in sev-
eral studies (Dardiotis et al. 2019). That APP plays a role in MS was
shown in several studies (Gehrmann et al. 1995, Mat�ıas-Guiu et al.
2016). Gehrmann et al. (1995) showed that the level of APP expres-
sion is correlated with histopathological lesion development; there-
fore, APP is an important biomarker for the progression of MS.
Also, Mat�ıas-Guiu et al. (2016) stated APP has a role in both demye-
lination and remyelination. Variants of FN1 are shown to be associ-
ated with MS in the study of Dardiotis et al. (2019).

For the oligodendrocyte–T-cell network, three bridges are
selected by BriFin for a ¼ 0:1. These are APP—APP, HSP90AA1—
Epidermal-Growth Factor Receptor (EGFR), and FN1—ITGB1 in
the respective order of the cells. There are some proteins selected in
common with the oligodendrocyte–macrophage network, such as
APP, HSP90AA1, FN1, and ITGB1. Scalabrino (2021) stated that

Figure 3. A small example of the selected proteins by BriFin based on different a val-

ues. Selected proteins and covered interactions are shown in red.
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recent findings show that EGF expression was significantly
decreased in the cerebrospinal fluid (CSF) and SC of the MS
patients, and the new information about the role of EGF in MS
required a critical reassessment of the MS pathogenesis.

For the same network, seven bridges are detected by BriFin
a ¼ 0:2: Clusterin (CLU)—EGFR, PKM—ANXA2, ANXA2—
PKM, ITGB1—FN1, HSP90AA1—HSP90AA1, APP—APP, and
FN1-ITGB1. That the similar proteins are detected and there are
bridges consisting of the same protein is worth mentioning. While
PKM was not associated with macrophages in the relevant litera-
ture, a study based on an EAE model (Seki et al. 2020) emphasizes
the therapeutic potential of PKM2 activators in MS-like diseases
since they change T-cell function, and shows how these activators
change T-cell function. In Fig. 4, the selected bridges for a ¼ 0.1
and a ¼ 0.2 values for the two networks are visualized.

For larger a values, there are also MS-associated proteins, such as
CD44 Antigen (CD44), Apolipoprotein E (APOE), Aldolase A (ALDOA),
Interleukin-7 Receptor (IL7R), and Major Histocompatibility Complex,
Class II, DR Beta 1 (HLA-DRB1) among the selected proteins by BriFin.
In the domain of MS research, there are many studies that demonstrate
the role of IL7R for the disease. For instance, Lei et al. (2017) showed that
IL7R is down-regulated during demyelination, and by targeted knock-
down experiments, they also showed that IL7R is crucial for myelination
in embryonic and larval zebrafish. Barcellos et al. (2006) reported that
there is a strong association between certain variants of HLA-DRB1 and
MS in a comprehensive study that includes data from diverse populations.
Farias et al. (2014) reported that ALDOA and APOE genes are up-
regulated in CSF of MS patients. In addition, Guan et al. (2011) showed
that CD44 controls the development of EAE.

Selected bridges where both involved proteins are MS-associated
may provide useful information about the disease mechanism. Thus,
we mention some of these bridges, where the first protein belongs to
oligodendrocyte, the second to immune cell: APOE—VCAM1,
HLA-DRB1—PKM, APOE—ALDOA, and FN1—CD44.

The full lists of the selected proteins for all a values are given in
Supplementary Tables S3–S12. We also report the selected protein
pairs when the Betweenness Centrality scores are used as an alterna-
tive to the PageRank scores to calculate the IIS for each protein,
along with the betweenness-based OIS for each protein pair since it
is a commonly used metric. This analysis yields similar results to the
PageRank-based analysis with some changes in the prioritization
order or in the proteins. Similarly, we give the complete lists of the
betweenness-based results in Supplementary Tables S13–S22, and
we show top 10 highest-scoring (in terms of OIS) bridges among the
selected ones by BriFin for all tested values in Table 3.

It is important to note that, due to the protein pairs that have
similar scores, many alternative optimal solutions exist for some a
values. However, these solutions include mostly the same proteins.
In addition, the BriFin model evaluates the collective effect of the
protein pairs on the network, which means that it chooses the

highest-scoring protein pairs whose interactions are complementary.
We list the individual scores for the protein pairs (OIS) in
Supplementary Tables S23–S26. Table 4 shows the top 10 bridges
for the two networks according to this scoring metric (with
PageRank-based scores).

In our analysis, we also identified the top contributors to the
scores of the selected contact proteins among the intracellular pro-
teins to prioritize the intracellular proteins. Proteins connected with
shorter paths on the network are likely to contribute more because
of the formula we used to calculate the IIS. However, individual
PageRank scores are also effective on the IIS. That is, the top con-
tributors for a contact protein may be interpreted as the ones having
the highest centrality scores among the proteins close to it on the
network. For each cell, we identified the top 20 score contributors
for the selected highest scoring 10 proteins. We show the most fre-
quent intracellular contributors among the top 20 in Supplementary
Table S27, for each cell.

3.3 Experimental validation of several proteins detected

by BriFin
To experimentally validate our predictions, we selected four pro-
teins among the proteins in the highest-scoring pairs that likely play
a role in demyelination and investigated their mRNA expression

Table 1. Sizes of the proteomes of each cell type used in this study.

Cell type Number of the contact

proteins

Total number of the

proteins

Oligodendrocyte 282 2846

T-cell 647 8967

Macrophage 210 728

Table 2. Number of the selected bridges by BriFin for different a
values for the two networks.

Network\a 0.1 0.2 0.4 0.6 0.8

Oligodendrocyte-

macrophage

2 5 11 21 36

Oligodendrocyte-T-

cell

3 7 18 35 62

Figure 4. Visualizations of the selected PPI bridges for (a) the oligodendrocyte–macro-

phage network for a ¼ 0.1 (top) and a ¼ 0.2 (bottom), and for (b) the oligodendro-

cyte–T-cell network for a ¼ 0.1 (top) and a ¼ 0.2 (bottom).
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levels in the blood samples obtained from MS patients. These pro-
teins are HSP90AA1, HSP90B1, CALR, and TFRC. The expression
levels of the selected proteins’ transcripts in PBMCs were deter-
mined by qRT-PCR. Our results showed that the expression levels
of the HSP90AA1, and TFRC reduced significantly in the MS group
when compared to the control group (Fig. 5).

3.4 Statistical evaluation
To statistically evaluate the performance of BriFin, we compared
BriFin results with random selection results. Since there is no
disease-association database that includes specific information
about the associations, such as cell types and mechanisms for MS,
we conducted a literature search for the distinct contact proteins in
the oligodendrocyte–macrophage network, which is relatively
smaller. We investigated 392 distinct proteins, involved in the oligo-
dendrocyte–macrophage contact, through evaluating the first 5–10
PubMed articles for each protein, and detected the MS-associations
based on the cell type where the association was shown. We also
added the associations we experimentally validated. For some pro-
teins, we found no studies that include associations regarding the
protein–cell combinations. Therefore, for these cases, we determined
associations based on studies that show the association on analyzed
EAE and MS samples, such as PBMC, serum, plasma, CSF, brain,
and SC lesions, or show the association for some variants of the pro-
tein. In these cases, if the association has the potential to be related
to the cell in question, we also considered that protein to be associ-
ated with MS.

There exist 232 contact proteins for oligodendrocyte and 208
contact proteins for macrophage that are involved in the intercellu-
lar interactions in the oligodendrocyte–macrophage PPI network.
We identified that 82 of the oligodendrocyte contact proteins and
124 of the macrophage contact proteins are associated with MS in
studies that are related to the cell they belong to in our study.

There are also several studies that list the other proteins as asso-
ciated with MS, which we accepted as non-associated for oligoden-
drocytes and macrophages, since they were reported in experiments

that use other types of cells, such as astrocyte, T-cell, B-cell, and
microglia. Since we evaluated the predictions of important actors in
the oligodendrocyte–macrophage network, we ignored them to pro-
vide cell-type-specific statistics. Complete lists of the proteins associ-
ated with MS and the related references used in this study are given
in Supplementary Tables S28 and S29 for oligodendrocyte and
macrophage proteins, respectively.

To measure the performance of BriFin based on the a values, we
randomly selected as many proteins as the number of contact pro-
tein pairs selected by BriFin for each a value among the contact pro-
tein pairs that we determined for the oligodendrocyte–macrophage
network. We repeated this random selection 10 000 times. Based on
the MS-associated proteins, we found by our literature search, we
calculated the rate of MS-associated proteins among the selected
proteins by BriFin and random selection. In Table 5, we compare

Table 3. Top 10 bridges selected by BriFin for all tested a values sorted by highest OIS (proteins in respective order).

A Pair in oligodendrocyte–macrophage network a Pair in oligodendrocyte–T-cell network

0.2 APP HSP90AA1 0.1 FN1 ITGB1

0.2 FN1 PKM 0.1 APP APP

0.1 HSP90AA1 TFRC 0.4 FN1 ITGAV

0.1 ITGB1 HSP90AA1 0.1 HSP90AA1 EGFR

0.2 ITGB1 ANXA2 0.8 FN1 ITGA4

0.4 PKM HSP90AA1 0.2 ITGB1 FN1

0.4 FN1 CD44 0.4 APP TFRC

0.4 HSP90AA1 CTSD 0.2 HSP90AA1 HSP90AA1

0.4 APP CALR 0.4 ITGB1 C1QBP

0.4 CTSD PKM 0.2 CLU EGFR

Table 4. Top 10 bridges for each network based on the OIS (proteins in respective order).

Order Pair in oligodendrocyte–macrophage network Pair in oligodendrocyte–T-cell network

1 APP PKM FN1 EGFR

2 APP HSP90AA1 FN1 APP

3 HSP90AA1 PKM FN1 HSP90AA1

4 HSP90AA1 HSP90AA1 FN1 FN1

5 FN1 PKM FN1 ITGB1

6 FN1 HSP90AA1 FN1 PKM

7 APP TFRC FN1 TFRC

8 HSP90AA1 TFRC FN1 ANXA2

9 FN1 TFRC APP EGFR

10 APP ANXA2 FN1 ALDOA

Figure 5. HSP90AA1, HSP90B1, CALR, and TFRC mRNA expressions in PBMCs

of control and MS patients. Selected genes were analyzed by qRT-PCR. Fold

changes in expression levels of MS patients (n¼8, green bars) compared with the

healthy controls (n¼ 7, gray bars) were shown in the graph bar. qRT-PCR analysis

indicates that the mRNA levels of the HSP90AA1 and TFRC were significantly low

in the MS group relative to healthy controls. The error bars are presented as means

6 SEM, P-values; *<0.05, ***<0.001, Mann–Whitney U-test.
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the rate of MS-associated proteins detected by BriFin with the aver-
age rates of the MS-associated proteins selected randomly for each a
value.

As seen in Table 5, BriFin detects more MS-associated proteins
from the contact protein pairs for all a values. Random selection has
a similar rate of MS-associated proteins for all a values, while BriFin
has a higher rate of MS-associated proteins for lower a values,
which supports our assumption that the lower a values provide pro-
tein bridges with higher importance.

3.5 BriFin run time
BriFin consists of a network pruning heuristic in which the IIS score
is calculated for each contact protein of the two cells, and an ILP
model to detect the bridges on the reduced network with contact
protein pair scores. When a ¼ 1, our bridge finding problem is a de-
rivative of the set cover with pairs problem, which is NP-Complete
[36]. For lower a values, the bridge finding problem becomes a de-
rivative of the quasi-clique problem, which is also NP-Complete
[37]. Because of the network pruning heuristic of BriFin, which sim-
plifies the graph into a bipartite graph, the run time becomes feasible
for the ILP problem. To demonstrate the network pruning run time,
we randomly subsampled the T-cell network based on the number
of edges (i.e. interactions). We present the network pruning run
times for the T-cell case based on the network size in terms of the
edges in Table 6.

To demonstrate the ILP run time, we ran the ILP model on the
oligodendrocyte–T-cell network using different a values.
Additionally, we subsampled the network to analyze the ILP run
time with respect to the network size, by halving the number of pro-
tein pairs and setting a to 0.4. We observe that the ILP run time
scales with a values, as well as the network size. We provide the run
time analysis for the ILP problem in Tables 7 and 8. As shown in
Tables 6 and 7, the cell network pruning heuristic takes considerably
more time than the ILP problem.

4 Discussion

Network science is an essential tool to infer physiological interpret-
ation from biological networks since it evaluates the networks with
a holistic view, and also a good way to support biological studies
since the resources are limited and there is a great deal of relevant
data to eliminate and prioritize. Here, we presented the BriFin
model to detect bridges, key protein–protein pairs, between oligo-
dendrocytes and macrophages or T-cells. We showed that the
detected proteins by our model were associated with MS, and two
detected proteins were differentially expressed in MS patients in an
application of network analysis. That the hubs detected by the
model are also important proteins to investigate because of the bio-
logical mechanisms they are involved in is a meaningful result, and
proteins/genes that are both biologically and mathematically pointed
out might be good starting points to do more research on.

There are many proteins that are associated with MS in the pro-
tein group that we grouped as “contact proteins.” However, this in-
formation makes it harder to choose a research target. Most
probably, some proteins are the causes that originate the demyelin-
ation problem and the others are the consequences of them. So pri-
oritization, even among disease-associated proteins, is important,
and our aim was to prioritize the proteins and present important in-
formation that could lead to the exploration of new disease
proteins.

Among the selected protein pairs for all the tested a values, there
are pairs whose both proteins are MS-associated. Investigating the
biological mechanisms behind the interaction of the proteins in these
pairs may yield useful information to understand MS better. In add-
ition, proteins that are the matches of the proteins associated with
MS are good research targets for further studies. Also, research on
selected proteins that are associated with autoimmune diseases and
other neurodegenerative diseases may yield useful information about
MS. Finally, the selected proteins and the highest-scoring pairs that
have not been associated with any disease yet might be potential re-
search directions.

The provided results are based on the collected interaction and
proteome data. Therefore, the quality of the results depends on the
quantity and the quality of the data. These computational results
can become more reliable and quality by more data and more bio-
logical expertise. The distance of the biological assumptions from
reality and the level of the inclusion of these assumptions are im-
portant for computational studies, and improvements on these
topics might be new research directions.

Our network analysis approach might be useful for other dis-
eases where two cell types interact, such as autoimmune diseases,
cancer, many neurological diseases, and for research areas in which
cell-to-cell interactions are dominant, such as immunotherapy and
microbiome–host interaction.

Supplementary data

Supplementary data is available at Bioinformatics online.

Conflict of interest: None declared.

Funding

This work has been supported by the Scientific and Technological Research

Council of Turkey (TUBITAK). GY was supported under the 2210-A

Table 5. Performance of BriFin compared to random selection for

different a values.

a Random selection—average rate

of disease associated proteins

among the selected ones (%)

BriFin—rate of disease associated

proteins among the selected ones

(%)

0.1 58 100

0.2 57 80

0.4 55 64

0.6 52 62

0.8 48 61

Table 6. Run time of the network pruning heuristic for the T-cell

proteome based on the number of edges.

Number of edges Run time (s)

29 423 3003.17

58 846 11 810.75

117 691 55 569.09

Table 8. Run time of the BriFin ILP model based on the network

size.

Number of contact protein pairs Time (s)

748 0.9

1496 11.65

2992 174.22

5983 1685.68

Table 7. Run time of the BriFin ILP model based on the value of a.

a Run time (s)

0.1 177.04

0.2 213.4

0.4 1685.68

0.6 1292.92

0.8 2982.23

BriFin (Bridge Finder) 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/4/btad175/7108774 by guest on 15 M
ay 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad175#supplementary-data


program, BKV under the 2211-C program, and BEK was supported by a

TUBITAK grant (1001-218S495).

Data availability

The data underlying this article are available in the article’s online supplemen-

tary material. The time we downloaded data is 19 August 2021 for IntAct,

and 2 November 2021 for BaderLab Cell–Cell Interaction Database and

CellTalkDB.

References

Al-Fatlawi A, Afrin N, Ozen C et al. NetRank recovers known cancer hall-

mark genes as universal biomarker signature for cancer outcome prediction.

Front Bioinform 2022;2:780229.

Armingol E, Officer A, Harismendy O et al. Deciphering cell–cell interactions

and communication from gene expression. Nat Rev Genet 2021;22:71–88.

Bairoch A, Apweiler R, Wu CH et al. The universal protein resource

(UniProt). Nucleic Acids Res 2005;33:D154–9.

Barabási A-L, Gulbahce N, Loscalzo J et al. Network medicine: a network-

based approach to human disease. Nat Rev Genet 2011;12:56–68.

Barcellos LF, Sawcer S, Ramsay PP et al. Heterogeneity at the HLA-DRB1

locus and risk for multiple sclerosis. Hum Mol Genet 2006;15:2813–24.

Bastian M, Heymann S, Jacomy M et al. Gephi: an open source software for

exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media

2009;3:361–2.

Dagley LF, Croft NP, Isserlin R et al. Discovery of novel disease-specific and

membrane-associated candidate markers in a mouse model of multiple scler-

osis. Mol Cell Proteomics 2014;13:679–700.

Dardiotis E, Panayiotou E, Siokas V et al. Gene variants of adhesion molecules

predispose to MS: a case-control study. Neurol Genet 2019;5:e304.

de Monasterio-Schrader P, Jahn O, Tenzer S et al. Systematic approaches to

central nervous system myelin. Cell Mol Life Sci 2012;69:2879–94.

Dupont A, Tokarski C, Dekeyzer O et al. Two-dimensional maps and data-

bases of the human macrophage proteome and secretome. Proteomics 2004;

4:1761–78.

Eligini S, Brioschi M, Fiorelli S et al. Data for proteomic analysis of human

monocyte-derived macrophages. Data Brief 2015;4:177–9.

Farias AS, Pradella F, Schmitt A et al. Ten years of proteomics in multiple

sclerosis. Proteomics 2014;14:467–80.

Fünfschilling U, Supplie LM, Mahad D et al. Glycolytic oligodendrocytes

maintain myelin and long-term axonal integrity. Nature 2012;485:517–21.

Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treat-

ment of multiple sclerosis. Brain Behav 2015;5:e00362.

Gehrmann J, Banati RB, Cuzner ML et al. Amyloid precursor protein (APP)

expression in multiple sclerosis lesions. Glia 1995;15:141–51.

Graessel A, Hauck SM, von Toerne C et al. A combined omics approach to

generate the surface atlas of human naive CD4þ T cells during early T-Cell

receptor activation. Mol Cell Proteomics 2015;14:2085–102.

Guan H, Nagarkatti PS, Nagarkatti M et al. CD44 reciprocally regulates the

differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells

through epigenetic modulation involving DNA methylation of cytokine

gene promoters, thereby controlling the development of experimental auto-

immune encephalomyelitis. J Immunol 2011;186:6955–64.

Hartline DK, Colman DR. Rapid conduction and the evolution of giant axons

and myelinated fibers. Curr Biol 2007;17:R29–35.

Hassin R, Danny S. The Set Cover with Pairs Problem, Lecture Notes in

Computer Science, Vol. 3821, 2005, 164–76.

Hermjakob H, Montecchi-Palazzi L, Lewington C et al. IntAct: an open source

molecular interaction database. Nucleic Acids Res 2004;32:D452–5.

Ishii A, Dutta R, Wark GM et al. Human myelin proteome and comparative

analysis with mouse myelin. Proc Natl Acad Sci USA 2009;106:14605–10.
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