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Abstract: The emergence of health informatics opens new opportunities and doors for different
disease diagnoses. The current work proposed the implementation of five different stand-alone
techniques coupled with four different novel hybridized paradigms for the clinical prediction of
hepatitis C status among patients, using both sociodemographic and clinical input variables. Both
the visualized and quantitative performances of the stand-alone algorithms present the capability
of the Gaussian process regression (GPR), Generalized neural network (GRNN), and Interactive
linear regression (ILR) over the Support Vector Regression (SVR) and Adaptive neuro-fuzzy inference
system (ANFIS) models. Hence, due to the lower performance of the stand-alone algorithms at
a certain point, four different novel hybrid data intelligent algorithms were proposed, including:
interactive linear regression-Gaussian process regression (ILR-GPR), interactive linear regression-
generalized neural network (ILR-GRNN), interactive linear regression-Support Vector Regression
(ILR-SVR), and interactive linear regression-adaptive neuro-fuzzy inference system (ILR-ANFIS),
to boost the prediction accuracy of the stand-alone techniques in the clinical prediction of hepatitis
C among patients. Based on the quantitative prediction skills presented by the novel hybridized
paradigms, the proposed techniques were able to enhance the performance efficiency of the single
paradigms up to 44% and 45% in the calibration and validation phases, respectively.

Keywords: hepatitis C status; machine learning; artificial intelligence; clinical variables; hybrid paradigms

1. Introduction

Liver diseases are mostly caused by hepatitis C virus (HCV) infections worldwide.
HCV is mostly transmitted prenatally, sexually, and parenterally. This virus equally in-
duces immune-mediated chronic and acute necroinflammatory liver diseases, which, in
turn, makes HCV account for about 60–80% of chronic hepatitis in infected adults, with
a relatively high clearance rate, which is reported in most African countries [1]. Owing
to the fact that both the vaccine and the cure for most hepatitis, such as hepatitis B, is
of paramount significance, the study of various components of the successful immune
responses, strategies of viral immune evasion, as well as the disease pathogenesis mecha-
nisms are necessary [1]. Recently, the understanding of HCV infection at the early stage has
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been achieved based on a study conducted on chimpanzees, which are considered to be the
only animal that can be infected with HCV and HBV at the same time. Moreover, a strategy
based on an infectious molecular clone, which is related with the HCV GB virus isolated
from GB patients, as well as infectious to tamarins, has been developed recently in order
to provide an in vivo surrogate model for HCV, and hence will aid in the understanding
of its mechanism effectively. Furthermore, in view of in vivo analysis of this virus, differ-
ent experimental techniques are readily available recently, which enable the elucidation
of HCV replication as well as the processing polyprotein infection of hepatoma and the
neutralization of pseudotype-particle infections by antibodies [2].

In addition, the computational health informatics (CHI) is a branch of medical in-
formatics that couples the application of artificial intelligence (AI) and medical science
towards understanding and the elucidation of various diseases, viral routes, bacterial infec-
tion mechanisms, and their medical complications [3]. Moreover, CHI is seldom referred to
as clinical AI, which subsists within the interface of health informatics and machine learn-
ing (ML). Furthermore, the implementation of CHI in understanding the mechanisms and
behaviours of HCV is of paramount importance [4]. Hence, various studies have reported
the application of ML in the predicting, modelling, simulation and estimation of HCV. For
instance, Haga et al. [5] employ the applications of various AI models for identifying HCV
variant resistance through whole genome sequencing. Based on the performance of both
the training and validation datasets, the support vector regression (SVR) depicts higher
prediction performance than other AI models used in the study. Moreover, Robert et al. [6]
reported the application of multivariate techniques in modelling HCV/HIV infected pa-
tients using liver biopsy. The performance results of the techniques indicate the feasibility
of the application of these techniques in understanding HIV and HCV. Recently, Safdari
et al. [7] reported the feasibility of implementing different ML classifiers for classifying
patients as positive and negative based on the presence of HCV in the subjects’ blood
serum. The obtained results indicates the feasibility of using ML in classifying the patients’
statuses based on the training data.

Furthermore, a scan of 1142 document results (see Figure 1) demonstrates the major
keywords used in the literature regarding HCV modelling. The results demonstrate that
there is a need for work on CHI for HCV elucidation, owing to its simplicity, quickness,
and cost-effectiveness.

Figure 1. A scan of 1142 document results from the published technical literature based on major
keywords used in HCV modelling (source, Scopus 2022).

Recently, computational approaches play a significant role, with remarkable capability
in simulation and modelling of highly chaotic medical processes and phenomena. Indeed,
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ML depicts a promising ability in managing large amounts of non-linear, complex, and
complicated datasets. A large number of articles have been developed using various ML
techniques in order to demonstrate the success of various ML predictive skills in CHI and
bioinformatics [8–10]. Hence, artificial neural network (ANN) and SVR have emerged
as the most frequently and widely employed techniques among the ML techniques in
bioinformatics in recent years. Their increasing popularity may be attributed to their
promising performance, as well as to their robustness in modelling highly stochastic
and complex medical patterns [11]. In addition, other advanced techniques, such as
polysomnography (PSG), which is considered as a gold standard tool for diagnosing
sleep apnea (SA), can equally be used as a reliable computational tool for diagnostics [12].
Moreover, Chuma et al., reported the application of a convolutional neural network (CNN)
combined with other sensors to create a new solution to fight COVID-19 transmission. The
findings of their study demonstrates that the proposed method has a cough detection test
accuracy of 88.0% using Alex Net CNN with people 1 m away from the microwave radar
sensor; a test accuracy of 80.0% with people 3 m away from the radar sensor; and test
accuracy of 86.5% with a single mixed dataset with people 1 m and 3 m away from the
radar sensor [13]. More information can equally be found in [14].

Based on the above-mentioned literature, it is clear that the implementation of ML in
various medical studies is significant, for example, in understanding the HCV status of a
patient. Nonetheless, the predictive performance generated by some of these techniques
still encountered different inadequacies, imprecision, and a lack of accuracy, especially
in the presence of highly non-stationary and chaotic medical datasets, despite the robust
merits of the ML techniques. In this kind of scenario, this kind of single model could
not meet the needed outcomes, especially if there is no strong pre-processing technique
before starting the simulation [11]. Therefore, it is necessary, in order to overcome the
above mentioned drawbacks, to develop a well-trained novel hybridized technique that
will couple the interactive linear regression (ILR) and the ML approaches. Based on
Zang [15], the major concept regarding model hybridization in different fields is to improve
the prediction performance of the existing single models, which is possible, owing to
the fact that each approach has its own peculiar, exceptional and unique features with
quite different prediction patterns. The implementation of ILR in bioinformatics was first
introduced in the current study as a linear prediction technique. Moreover, the integration
of ILR with SVR, generalised neural network (GRNN), Gaussian process regression (GPR),
and adaptive neuro-fuzzy inference system (ANFIS) was proposed in order to enjoy the
merits of the prime strengths of ILR and the non-linear techniques. Based on the previous
research conducted in the published literature, to the best knowledge of the researchers of
the current work, no study thus far has reported on the integration of ILR technique with
non-linear approaches in modelling HCV.

The major motivation of this study is to integrate the abilities of various rugged AI-
based techniques including; SVR, GRNN, ANFIS, GPR, and ILR linear technique for the
simulation of patients’ HCV infection statuses. Before the modelling step, using the single
models, the descriptive statistics and correlational matrix were conducted to understand
the behaviour and relationship between the variables. Moreover, the second step proposes
hybrid learning techniques that integrate both the ILR linear model and the AI-based
techniques (ILR-SVR, ILR-GRNN, ILR-ANFIS and ILR-ANFIS) to take advantage of both
non-linear and linear patterns of the approaches. Hence, both empirical and theoretical
findings indicate that coupling different techniques can serve as an efficient and effective
method of improving performance prediction of different parameters [15].

2. Materials and Methods
2.1. Proposed Model Development Method

The need for understanding the science and knowledge of data is of paramount impor-
tance recently in medical informatics, CHI, and bioinformatics. The data used in the current
study contains 615 observations with 13 attributes of the blood donors, subjects, and the
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hepatitis C patient’s laboratory, as well as demographic variables, which are composed
of: age, sex, albumin (ALB), alkaline phosphatase (ALP), alanine transaminase (ALT), as-
partate aminotransferase (AST), basal insulin level (BIL), cholinesterase (ChE), cholesterol
(CHOL), creatinine (CREA), gamma-glutamyl transferase (GGT) and protein (PROT). In
addition, the dataset is equally obtained from UCI Machine Learning, and for more de-
tailed information, it can be found at https://archive.ics.uci.edu/ml/datasets/HCV+data,
accessed on 6 October 2022. Moreover, five different single models informing on GPR,
SVR, ANFIS, GRNN, and ILR were used in predicting the hepatitis status. These tech-
niques were composed of four non-linear (GPR, SVR, ANFIS, and GRNN) and one classical
linear method to inform of ILR. Furthermore, based on different researches depicted in
the recent technical literature for simulation, modelling, prediction and forecasting, the
AI-based models usually demonstrate higher performance than the classical linear method,
as demonstrated by [16–19].

Moreover, based on the limitations of the single data-driven approaches in capturing
the HCV status, four different novel hybrid techniques, namely, the ILR-SVR, ILR-ANFIS,
ILR-GRNN, and ILR-GPR techniques, were proposed to improve and boost the performance
of the single models.

2.2. Gaussian Process Regression (GPR)

This technique is considered to be a robust non-linear regression approach, prediction,
nonparametric, probabilistic, unsupervised and supervised learning technique, which
generalizes the complex and non-linear function mapping within the hidden function of
the datasets. In recent years, GPR is obtaining more popularity in different fields related
to computational techniques. GPR has the ability to handle highly stochastic non-linear
behaviour due to its use of kernel functions. Furthermore, another advantage of a GPR
model is that it can provide a satisfactory response to the training data.

2.3. Support Vector Regression (SVR)

This model was developed based on the concept of support vector machine (SVM),
which is generally used in solving problems through regression and classification ap-
proaches [9,20–23]. SVR is an established computational technique with various merits,
such as good noise-toleration, superior generalization ability, and high learning speed [24].
Generally, the input variables from the datasets were mapped into a high dimensional
feature filter architecture via a kernel operator using the SVR [24–26]. This regression
technique has the ability of converting a non-linear problem into a linear problem via
understanding the learning complexity of the relationship between the input and output
variables [27,28]. The structure of SVM can be found in Figure 2.

Figure 2. Structure of the SVR model.

https://archive.ics.uci.edu/ml/datasets/HCV+data
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2.4. Interactive Linear Regression (ILR)

In general, linear regression (LR) is one of the most widely used computational
methods for modelling a wide range of input and output variables. It is worth noting that
there is a link connecting both the simple and the complex variables when it comes to
determining the best combination of parameters for the best prediction efficiency, which
is tied to the output variable [29]. Systematic regression has been defined by several
modellers as an advanced option that uses the best set of input data by eliminating or
inserting variables under the impact of the residual sum of the squares [30].

By examining the effects of the variables, the ILR adheres to their consistent variations.
Each factor that fails to make contributions to and meet the model’s procedure might be
removed, one by one, to minimize their influences [31]. The principle of ILR might be
shown using MLR [32–36]. The method of integrating or interacting a fixed input from LR
is known as interactive regression [37].

2.5. Generalized Regression Neural Network (GRNN)

The generalized regression neural network (GRNN), also known as the lazy training
method model, was developed by Specht [38] to behave in the manner of a regression
method for generating a relationship between the independent variable (X) and the depen-
dent variable (Y) with a nonlinear regression estimation for a smaller group of data. The
input layer is similar to that of a conventional neural network, in that its main purpose is to
train the input data, and the size of the input vectors is the main determinant of the number
of neurons required for training. The model training begins immediately in the pattern
layer due to the Gaussian kernel’s conversion of previously input data. The smoothing
parameter (σ) is used to calculate the weight of each neuron in this layer. This parameter
is known as the “hyper-parameter of the GRNN model,” and it contributes to the GRNN
model’s prediction accuracy [39]. Its general form is depicted below.

Pi = exp

(
− (X− Xi)

T(X− Xi)

2σ2

)
(1)

where X is the input data of the testing dataset, Xi is the ith input of training dataset, and σ

is the smoothing parameter.

2.6. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive Neuro-Fuzzy Inference System (ANFIS) is an integrated tool that uses the
fuzzy Sugeno model approach that derives the benefit of both ANN and fuzzy logic in a
single framework. Recently, ANFIS has been utilized in predicting and modelling complex
datasets, such as in hydrological applications and wastewater modelling [40]. ANFIS has
the ability to approximate the real functions, and therefore is regarded as the real-world
estimator [41]. Fuzzy logic involves transforming input data values into fuzzy values
through the application of membership functions (MFs). The values range between 0 and 1.
Likewise, in ANFIS, model nodes work as MFs, as well as permit the modelling between
the relations of the input and the output.

Assume the FIS contains two inputs, ‘x’ and ‘y’, and one output, ‘f’; a first order
Sugeno fuzzy has following rules.

Rule 1 if : µ(x) is A1 and µ(y) B1 then f1 = p1x + q1y + r1 (2)

Rule 2 if : µ(x) is A2 and µ(y) is B2 then f2 = p2x + q2y + r2 (3)

A1, B1, A2, B2 parameters are membership functions for x and y inputs, and p1, q1, r1, p2, q2, r2,
are the outlet function’s parameters. The structure and formulation of ANFIS follow a five-
layer neural network arrangement. For more detail of the ANFIS model refer to [40,42,43].
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2.7. Hybrid Techniques Development

The predictive efficiency of various computational techniques is generally linked with
different factors, such as time scaling, determination of the input and output variables,
and the model setup. All of these depict an impact on the overall performance of the
computational technique. Therefore, AI-based drawbacks could be managed by exploring
unique approaches that capture both simple linear and complex non-linear connections
among the input-output variables. As indicated in the previous chapter, ML algorithms
such as ANFIS, GRNN, SVR, and GPR depict a promising ability in various computational
fields. Based on Olson et al. [9], both the non-linear techniques (such as ANFIS, GRNN, SVR,
and GPR) and the linear approaches (such as MLR, SWLR, ILR, RLR, and MVR) have shown
reliable prediction performances. Nevertheless, combining the two approaches in a highly
stochastic and complex dataset will result in enjoying the benefits of the two domains,
which in turn lead to the boosting of performance efficiency of the single models. Moreover,
the “no free lunch” theory suggested that there is no single technique that can be used
in all kinds of datasets, due to the fact that the performance efficiency of any model is
heavily influenced by data qualities such as linearity, size, and normality. Aside from
that, several types of research have demonstrated that effectiveness indexes for distinct
models might fluctuate even when using the same dataset [44–48]. As a result, five different
single data-intelligence techniques are used in modelling the hepatitis status: ANFIS,
GRNN, SVR, GPR, and ILR in the first scenario. Moreover, the second scenario involves
the boosting of the first scenario performance through integrating the linear ILR and the
non-linear techniques (ILR, ANFIS, GRNN, SVR, and GPR) to benefit the advantage of the
remarkable features and strengths of both ILR and non-linear approaches in predicting
multiple data patterns.

2.8. Performance Objectives

The use of statistical metrics for evaluating the performance objectives of the tech-
niques/models used in any computational approach is of paramount importance. These
performance objectives mostly checked the performance of the models based on the com-
parative performance of the simulated and observed clinical values. In the current study,
we employed two statistical fitness determinants, namely: determination co-efficient (DC)
and Pearson correlation co-efficient (PCC), and two statistical error indices in the forms of
mean-squared error (MSE) and root-mean-squared error (RMSE).

MSE =
1
N

N

∑
i=1

(
HS(p) − HS(o)

)2
(4)

RMSE =

√√√√ 1
N

N

∑
i=1

(
HS(p) − HS(o)

)2
(5)

DC = 1−
∑N

i=1

(
HS(p) − HS(o)

)2

∑N
i=1

(
HS(p) − HS′

(o)

)2 (6)

PCC =
∑N

i=1

[
HS(t),i − HS(t)

][
ĤS(t),i − H̃S(t)

]
√

∑N
i=1

[
HS− HS(t)

]2[
H̃S(t) − H̃S(t)

]2
(7)

2.9. Description of the Data Set and Model Validation

The basic goal of good data-driven techniques is for the system to give a collection of
data from the indicators in use as a basis for correctly predicting unknown variables [49–51].
The data used in the current study contains 615 observations and with 13 attributes of
the blood donor subjects and the hepatitis C patient’s laboratory, as well as demographic
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variables, which are composed of: age, sex, ALB, ALP, ALT, AST, BIL, ChE, CHOL, CREA,
GGT, and PROT, as mentioned in the previous chapter. In addition, the dataset is equally
obtained from UCI Machine Learning, and for more detailed information, it can be found
at https://archive.ics.uci.edu/ml/datasets/HCV+data, accessed on 6 October 2022.

Moreover, consider the fact that various constraints, such as overfitting, result in
good training results that may not always match the testing results. Validation techniques
include k-fold cross-validation, holdout, leaving one out, and others. The fact that the
evaluation and training datasets are independent is the most significant advantage of the
k-fold cross-validation procedure [52–57].

According to the k-fold cross-validation, the data have been divided into 65% for the
calibration stage and 35% for the validation stage in this study. As a result, it is critical to
understand that various validation models might be used for data testing [58–62].

Moreover, regarding the imbalance in informatics analysis, actual case validation can
be solved via data elaboration from experiments or clinical findings using an exploratory
analysis method in addition to the internal and external validation methods employed
in the current study. Moreover, other simulation techniques, such as standardization,
outliers sieving, normalization, and feature scaling can be employed in addressing these
drawbacks. Furthermore, electronic health record data, which is expanding to support
quality improvement and research, can be used; however, this requires standardization
of the data and validation within and across organizations. Information models (IMs) are
created to standardize data elements into a logical organization that includes data elements,
definitions, data types, values, and relationships. To be generalizable, these models need to
be validated across organizations using different internal and external validation processes,
such as the k-fold cross-validation, which is employed in the current study.

The structures of the techniques as well as their properties indicating the comparative
advantages and disadvantages of the simulation process are indicated in Table 1.

Table 1. Computational performance power for the parameters used in the algorithms.

GRNN GPR SVR ILR

Network type: Generalized regression Cross Validation: 10-folds Cross Validation: 10-folds Cross Validation: 5-folds

Spread Constant: 1.0 Regression Learner View:
Exponential GPR

Regression Learner View:
Medium Gaussian SVR

Regression Learner View:
Interaction linear

Epoch: 200 iterations Feature selection:
PCA deactivated

Feature selection:
PCA deactivated

Feature selection:
PCA deactivated

Learning time: 0.000001
Training: Levenberg–Marquardt

Validation checks: 8

3. Results

Computational techniques used in CHI and medical informatics such as AI are re-
garded as robust and complex paradigms in recent times, owing to the fact that they have
the ability to integrate more variables, which can be employed in fine-tuning the models.
Hence, the more the complexity, the higher the uncertainty of the models’ outcomes. An ex-
ploratory technique based on a correlation matrix is presented in Figure 3, which indicates
the relation and connection among the variables used in the current research, especially the
input–output variables.

According to the correlation matrix shown in Figure 3, it can be seen that AST showed
a strong correlation against the target hepatitis status, with the PCC-value equal to 0.65,
while BIL and GGT showed relatively intermediate relation with the target, with both PCC
values equal to 0.47. Moreover, all the other input variables depict a weak correlation, with
PCC-value <0.4.

https://archive.ics.uci.edu/ml/datasets/HCV+data
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Figure 3. Correlation matrix of the input–output for the first 6–6 parameters.

The current section presents the quantitative and graphical performance of the single
models employed in the first scenario. According to Nourani et al. [63] for a model to be
accepted as a reliable computational tool, it should have a minimum DC-value of 0.8 in
both phases.

Figure 4 represents the graphical comparative performance of the models based on
their respective RMSE values. It is noteworthy that the higher the error values, the lower
the performance of the models, and vice-versa.

Figure 4. Comparative error performance of the single paradigms based on their RMSE.

4. Discussion

The quantitative performance of the models demonstrates that the non-linear tech-
niques GRNN and GPR, as well as the linear ILR approach, were able to predict the
hepatitis C status of the patients with a minimum DC-value of 0.8 in both the calibration
and validation stages, while the ANFIS and SVR methods showed a DC-value > 0.8. This
indicates that the GRNN, GPR, and ILR models has fulfilled the minimum requirements of
HCV prediction from the patients’ blood serum, while ANFIS and SVR failed. The success
of the ILR technique, even though it is a linear approach, is not surprising, owing to its high
computational robustness which involves complex interaction between the input–output
variables as compared with other classical linear techniques, such as MLR and SWLR.
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Furthermore, the predictive skills of the techniques can be visualized in order to graphically
compare the performance of the techniques.

Based on the graphical performance, indicated in Figure 4, it can be understood that
ILR, GPR, and GRNN demonstrated higher performance accuracy compared to SVR and
ANFIS. Moreover, more information regarding RMSE metrics can be found in [64,65].
Furthermore, the fitness of the techniques can equally be graphically compared using both
a scatter plot and a response plot (see Figures 5 and 6). Based on Figures 5 and 6, the
goodness-of-fits indicated in both the response and scatter plot performance are in line
with the results demonstrated in Table 2. The performance skills of the single paradigms
shown in the first scenario, in terms of quantitative and visualization format, depicts that
the models failed at a certain stage in modelling the patients’ HCV statuses. Therefore,
this led to the development of novel hybridized paradigms by coupling the linear and
non-linear behaviour of the single paradigms in order to capture and simulate the complex
behaviour of the hepatitis C status.

Figure 5. Response plot performance of the single paradigms.

Table 2. Results of the ANFIS, GRNN, SVR, GPR and ILR models.

Calibration
Models DC PCC RMSE MSE

ANFIS 0.70 0.84 0.58 0.33
GRNN 0.82 0.90 0.45 0.20

GPR 0.86 0.93 0.40 0.16
SVR 0.55 0.74 0.70 0.49
ILR 0.86 0.92 0.40 0.16

Validation

ANFIS 0.69 0.82 0.60 0.34
GRNN 0.92 0.95 0.31 0.11

GPR 0.81 0.89 0.51 0.27
SVR 0.53 0.69 0.88 0.53
ILR 0.81 0.87 0.43 0.19
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Figure 6. Scatter plot performance of the single paradigms.

According to the prediction skills presented by the novel hybridized paradigms shown
in Table 3, it can be seen that the proposed techniques were able to enhance the performance
efficiency of the single paradigms up to 44% and 45% in the calibration and validation
phases, respectively. Though all of the four proposed paradigms were able to predict the
highly stochastic, complex, and chaotic HCV data in both the calibration and validation
stages, the ILR-GPR and ILR-GRNN showed superior performance to the ILR-ANFIS and
ILR-SVR, as shown in Figures 7 and 8, respectively.

Table 3. Results of the hybridized paradigms for hepatitis C status modelling.

Calibration
Techniques DC PCC RMSE MSE

ILR-ANFIS 0.84 0.92 0.42 0.17
ILR-GRNN 0.95 0.98 0.23 0.05

ILR-GPR 0.99 0.99 0.00662 0.00004
ILR-SVR 0.82 0.90 0.45 0.20

Validation

ILR-ANFIS 0.83 0.91 0.44 0.21
ILR-GRNN 0.96 0.99 0.02 0.00

ILR-GPR 0.98 0.99 0.01 0.00006
ILR-SVR 0.80 0.85 0.83 0.55
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Figure 7. Response plot performance of the novel hybrid paradigms.

Figure 8. Scatter plot performance of the novel hybrid paradigms.
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The visualizations presented in both Figures 7 and 8, regarding the graphical goodness-
of-fits of the novel hybridized paradigms, demonstrate superior and improved performance
over the single paradigms. Moreover, the performance skills of the models can equally be
compared based on their respective error performances and therefore inform of RMSE and
MSE statistical metrics, as shown in Figure 9. Moreover, the performance of the models
can be compared based on their PCC metrics in both the calibration and validation phases,
respectively (see Figure 10).

Figure 9. Comparative error performance of the novel hybridized paradigms based on their RMSE
and MSE-values.

Figure 10. Comparative PCC-values using radar plot of the novel hybridized paradigms.

Moreover, the performance of the novel hybrid algorithms can be presented using
a new two-dimensional visualization called the Taylor diagram (see Figure 11). The
Taylor diagram is used in presenting the performance metrics of various computational
approaches in two-dimensional patterns, using different objectives such as RMSE, MSE,
PCC, DC, mean absolute percentage error (MAPE), mean absolute error (MAE), kurtosis,
standard deviation, skewness, etc. The current study employs the use of PCC against
the standard deviation to indicate the performance skills of the novel hybridized data
intelligent algorithms, as in presented in Figure 11. The visualizations demonstrated from
Figures 7–11 depict an improved performance of the novel hybridized algorithms over the
single paradigms.
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Figure 11. Taylor diagram performance of the novel hybridized techniques in both the calibration
and validation steps.

5. Conclusions

Health informatics is an emerging area of study that involves an intersection between
different domains, such as epidemiology, health care, computer information systems and
bioinformatics, which is mostly applied in early diagnosis of different deadly diseases as
well providing an alternative medication to the patients. This novel technique is regarded
as a cost-effective approach that employs minimum or fewer resources, which can help
medical doctors, policy makers, and other health professionals in decision-making. There-
fore, it is of paramount importance to apply these emerging computational techniques such
as ML, AI, and metaheuristic approaches in diagnosing various diseases such as HBV and
HCV infections, owing to the fact that these techniques were not well established in the
technical literature. Among the major motivations of this work is the implementation of
multi-model single paradigms, coupled with novel hybridized data intelligent algorithms,
for hepatitis status modelling of various patients. Moreover, the overall findings of the
current study can be summarized as follows:

1. Based on the correlation matrix result, AST showed a strong correlation against the
target hepatitis status, with a PCC-value equal to 0.65, while BIL and GGT showed rel-
atively intermediate relation with the target, with both PCC values equal to 0.47. More-
over, all the other input variables depicts a weak correlation with PCC-value <0.4.

2. The quantitative performance of the models demonstrates that the non-linear tech-
niques GRNN and GPR, as well as the linear ILR approach, were able to predict the
hepatitis C status of the patients with a minimum DC-value of 0.8 in both the calibra-
tion and validation stages, while the ANFIS and SVR methods showed a DC-value
lower than 0.8. This indicates that the GRNN, GPR, and ILR models have fulfilled
the minimum requirements of HCV prediction from the patients’ blood serum, while
ANFIS and SVR failed.

3. The performance skills of the single paradigms shown in the first scenario in terms
of quantitative and visualization formats depict that the models failed at a certain
stage in modelling the patients’ HCV statuses. Therefore, this led to the development
of novel hybridized paradigms by coupling the linear and non-linear behavior of
the single paradigms in order to capture and simulate the complex behavior of the
hepatitis C status.

4. Based on the quantitative prediction skills presented by the novel hybridized paradigms,
it can be seen that the proposed techniques were able to enhance the performance
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efficiency of the single paradigms up to 44% and 45% in the calibration and validation
phases, respectively.

5. The findings of the study also recommend and open a new door for the applica-
tions of recent and robust techniques, such as non-linear ensemble paradigms and
metaheuristic approaches, for the prediction of hepatitis C status.
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