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Abstract: The eye is generally considered to be the most important sensory organ of humans. Diseases
and other degenerative conditions of the eye are therefore of great concern as they affect the function
of this vital organ. With proper early diagnosis by experts and with optimal use of medicines
and surgical techniques, these diseases or conditions can in many cases be either cured or greatly
mitigated. Experts that perform the diagnosis are in high demand and their services are expensive,
hence the appropriate identification of the cause of vision problems is either postponed or not done at
all such that corrective measures are either not done or done too late. An efficient model to predict eye
diseases using machine learning (ML) and ranker-based feature selection (r-FS) methods is therefore
proposed which will aid in obtaining a correct diagnosis. The aim of this model is to automatically
predict one or more of five common eye diseases namely, Cataracts (CT), Acute Angle-Closure
Glaucoma (AACG), Primary Congenital Glaucoma (PCG), Exophthalmos or Bulging Eyes (BE) and
Ocular Hypertension (OH). We have used efficient data collection methods, data annotations by
professional ophthalmologists, applied five different feature selection methods, two types of data
splitting techniques (train-test and stratified k-fold cross validation), and applied nine ML methods
for the overall prediction approach. While applying ML methods, we have chosen suitable classic
ML methods, such as Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), AdaBoost (AB),
Logistic Regression (LR), k-Nearest Neighbour (k-NN), Bagging (Bg), Boosting (BS) and Support
Vector Machine (SVM). We have performed a symptomatic analysis of the prominent symptoms of
each of the five eye diseases. The results of the analysis and comparison between methods are shown
separately. While comparing the methods, we have adopted traditional performance indices, such
as accuracy, precision, sensitivity, F1-Score, etc. Finally, SVM outperformed other models obtaining
the highest accuracy of 99.11% for 10-fold cross-validation and LR obtained 98.58% for the split ratio
of 80:20.

Keywords: eye disease; machine learning; ranker-based feature selection; symptomatic analysis;
support vector machine

1. Introduction

The eye is considered to be the most important sensory organ for humans and it plays
a vital role in the overall ability of humans to interact with the world. Unfortunately many
individuals in both rural and urban areas suffer from eye conditions such as cataracts,
glaucoma, ocular hypertension, bulgy vision, etc. that affected their vision. There are a
variety of causes for this such as age, diabetes, genetic and inheritance. Modern lifestyles,
which have led to increased use of displays for digital devices, are also a factor affecting
the vision.
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These eye problems have a particularly high occurrence in many South Asian countries.
As an example, in Bangladesh 1.5% of the adult population is blind and 21.6% of the
population has low vision according to a survey presented in [1]. There are various reasons
for this including the lack of vision care by individuals, pollution and excessive use of
digital devices [1].

We chose individuals assumed to have one of the five eye diseases that are currently
prevalent in Bangladesh and collected datafor the diseases (biomarkers and disease symp-
toms). These data are very important for any ophthalmologist or clinical professional
since it is used to guide the treatment of the disease. It can also be used to train artificial
intelligence algorithms that can ensure that the correct disease has indeed be diagnosed
and provide automated recommendations for how to treat the disease.

From a literature search one finds that classic machine learning algorithms, especially
classification algorithms, are the most appropriate for the detection and recommendation
of the five eye diseases considered in this paper [2–4].

A dataset of eye-disorder-related data was compiled. This dataset will be used to
make the eye disease classification easier and and it may also be used for further studies of
eye diseases. Multiple machine learning techniques were applied to this dataset to test its
applicability to the detection and classification tasks considered in this paper. The dataset
can also be used to test other platforms such as Chabot, web apps, etc. which in turn can
help the world with more accurate information about eye disease issues. One of the goals
in this paper is also to make relevant and accurate medical information about eye diseases
available to the medical community.

In the case of machine learning algorithms, it is also important that predictions can be
explained since this provides insights into the predicted phenomena. Hence the explainable
artificial intelligence (XAI) methods used here are of great help for the understanding of
the eye disease symptoms for a given disease prediction.

The main contributions of this study are:

• Creating a benchmark dataset in the domain of eye diseases validated by professional
ophthalmologists, that cam be applied to test ML, AI and Symptomatic analyses.

• Utilizing ranker-based feature selection methods to identify highly ranked symptoms
among the five diseases.

• Experimenting with scenarios both with and without splitting the dataset and with
several feature selection methods for better predictions.

• Compare the performance of classic ML methods to efficiently predict the occurrence
of eye diseases.

For the remainder of the paper, Section 2 provides an overview of the five eye diseases
that are considered in this study. Section 3 describes the existing related studies performed
on these diseases. The proposed methodology along with detailed descriptions of each
of the methodological steps are described in Section 4. The measurement indices used to
measure the performance of the applied machine learning models are given in Section 5
and the experimental results are discussed in Section 6. A constructive discussion regarding
the results and comparison of the model performances are presented in Section 7, and
finally Section 8 concludes with suggestions for future improvements.

2. Overview of Five Eye Diseases

In this section, a brief overview of the five eye diseases that we have worked on
is presented. For each disease, we describe the disease conditions, disease symptoms
and disease risk factors. The images of the selected five categories of eye diseases are
shown in Figure 1, however we have not used image data to identify or to annotate the
dataset. Therefore, the sources or the images are referenced in the footnotes. The next five
subsections describe the diseases worked on.
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Figure 1. Typical images of eye diseases. (a) Cataracts, (b) Acute angle-closure glaucoma, (c) Primary
congenital glaucoma, (d) Exophthalmos or bulging eyes, and (e) Ocular hypertension.

2.1. Cataracts

A dense and cloudy area that is usually formed on the lens of the eye is called a cataract.
This cataract is an agglomeration of proteins situated in the eye that forms a lump-like mass
which prevent the normal transmission of light through the lens to the retina. Some of the
major symptoms appearing due to cataracts include degradation of night vision, blurry vision,
faded colors and double vision. The different sub-types of cataracts are nuclear, cortical,
posterior, congenital, senile, traumatic, bilateral as well as other subtypes. These sub-types
are grouped into one disease category for this study to minimize the complexity of asociating
the cataract with a specific sub-type. Smoking, older age, obesity, increased blood pressure,
history of the same disease in family members, diabetes, exposure to radiation from X-ray
and cancer treatments are the main risk factors associated with cataracts [5]. Cataracts are one
of the common eye diseases in low and middle-income countries [6].

2.2. Acute Angle-Closure Glaucoma (AACG)

AACG is caused by a sudden increase in the intra-ocular pressure (IOP) which causes
a displacement of the apposition of the iris to the trabecular meshwork. In acute angle-
closure (AAC), the common symptoms are blurred vision, red eye, pain, headache, nausea
and vomiting [7]. The process of AAC occurs suddenly with a dramatic onset of symptoms.
Because of premorbid comorbidities, severely ill patients may encounter the risk of a sight-
threatening condition. The drainage of the aqueous humor may be restricted causing high
interior pressure that can result in critical damage to the optic nerve [7].

2.3. Primary Congenital Glaucoma (PCG)

PCG is another type of glaucoma caused by damage to the optic nerve [8]. High intra-
ocular pressure in the eye is the main cause of the damage. It is identified when excessive
tearing, light sensitivity, hazy cornea, redness of the eye, the closing of the eyelid and
cloudy cornea symptoms are present. For this study, data for PGG patients are separated
from the data for Secondary Congenital Glaucoma (SCG) patients. Having a previous
related medical history in the family is considered one of the risk factors for PCG [9].

2.4. Exophthalmos or Bulging Eyes

Bulging eyes (BE) which is also known as exophthalmos, the medical term for BE. It is not
a condition by itself, but a symptom of other conditions. Symptoms of BE include excessive
dryness, visible whiteness, double vision and throbbing sensation in the eyes [10]. One or both
eyes of a patient can be affected by BE and when it is present it may cause blinking problems.

2.5. Ocular Hypertension

Ocular hypertension (OH) is caused by poor drainage of the aqueous humor, the fluid
inside the eye. Risk factors for developing OH are patients having a previous family history
of ocular hypertension, glaucoma, diabetes, and age over 40. Patients having unbalanced
diabetes or high blood pressure may be exposed to ocular hypertension [11].
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3. Related Works

Papers relating to the prediction of eye diseases using artificial intelligence and machine
learning are reviewed in this section since these areas discuss the tools that are used for the
proposed method for efficiently predicting the five eye diseases discussed above. Some papers
discussing explainable artificial intelligence methods are also included since some results from
these paper are used for better interpretation of the results from the proposed method.

The few works that have been performed in the area of eye disease prediction using
symptomatic data are also considered here.

One study assessed the prevalence of eye diseases in a certain low-income community
in Bangladesh. The study was performed using in-person surveys and the results showed
a higher prevalence of eye diseases than the world average. This reflects the difference in
eye disease prevalence and diagnosis between individuals in low-income individuals and
individuals with higher standards of living [1]. The study found that there is a funding
and communication gap between vision related support for slum dwellers of Bangladesh
and the Bangladesh community in general.

Ref. [12] is an epidemiology study of eye diseases that targets the Shahjadpur Chil-
dren’s Cohort (SCC), a very interesting population-based cohort including only children
with disabilities [12]. A chi-squared test, Fisher’s exact test and the binomial test were
performed to find significant variations among the SCC. Sociodemographic details and the
prevalence of childhood disabilities in the cohort study were included in the study.

Kadir et al. [13] performed a cross-sectional study of vision among 252 primary school-
going children of the southern region of Bangladesh. The study was performed to assess
the refractive errors (Myopia, Ametropia and Hyperopia) in the cohort and it was found
that myopia is a common occurrence (50%).

We found some articles presenting methodologies to address eye disease classification
using image processing techniques and ML algorithms. For these methodologies it is
important for classification to have a large enough set of image data to run the models
with image processing abilities that detect the region of interest (ROI) in the image. One
article, Sakri et al. [14], presented an automated classification framework using image
processing to classify diabetic eye disease (DED). Image enhancement techniques such as
contrast limited adaptive histogram equalization (CLAHE), illumination correction and
image segmentation techniques such as finding blood vessels, macular region and optic
nerve were applied before applying the pre-trained model (VGG-16, Xception, ResNet50,
CNN). All the models performed well with accuracies over 90% correct recognition. Similar
image processing-based articles with different datasets can be found in [15–18].

Neural network based approach using the image dataset is a very common scenario in
detecting eye diseases. Nazir et al. [19], extracted features using DenseNet-100 and applied
improved CenterNet method on Aptos-2019 and IDrID dataset. The highest accuracy
obtained in this method are 97.93% using the Aptos-2019 dataset and 98.10% using the
IDrID dataset. The same dataset of Aptos-2019 has been used in [20], with feature fusion
techniques and a deep neural network. The accuracy obtained in this method is 84.31%.
Khan et al. [21] tried to manually extracted the retinal features with no feature-selection
algorithms applied. The combination of CNN with VGG-19 has been proposed in this
paper and accuracy obtained is 97.47%. Sarki et al. [22] and Pahuja et al. [23] also applied
CNN for the image datasets and obtained accuracy less thatn 90% in both the case.

A data-driven approach for eye disease classification was adopted by Malik et al. [24].
The authors prepared a dataset having ten (10) attributes including age, gender and com-
plaint (pain or blurred vision). Visual acuity of the right and left eye, pinhole value of the
left and right eye, symptoms obtained from a slit lamp test (lids, upper lid, site, swelling),
and posterior segment test are the overall symptoms considered in this study to determine
the diagnosis glaucoma vs unspecified primary angle-closure glaucoma. NB (81.53%), DT
(85.81%), Neural Network (86.98%) and RF (86.63%) models were applied to predict the
diagnosis, and neural networks outperformed the other models.
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A recent work [25] presented a multi-categorical common eye disease detection
method using CNN. They prepared their own hand-crafted dataset which had 2250 images
of cataracts, conjunctivitis and normal eyes. Three transfer learning models (VGG-16,
Resnet-50 and Inception-v3) were applied, where the class-wise performance evaluation
was shown for each model. Inception-v3 (97.08%) outperformed VGG-16 (95.48%) and
Resnet-50 (95.78%) in the experiments and they claimed the results to be the highest among
the other image-based eye disease classification approaches [26–29].

From the review of the existing works, we found a gap in finding the most relevant
symptoms for different types of eye diseases as well as the lack of a benchmark dataset
with symptomatic data of eye diseases. In this study, we have focused on these gaps and
we have designed a research methodology to fill the gaps.

4. Research Methodology

An overview of the research methodology adopted for eye disease predictions in this
study is shown diagrammatically in Figure 2. The steps of the process are highlighted,
starting from the data collection from patients to the application of ML and XAI methods.
The remainder of this section elaborates on the steps of the proposed methodology.

Figure 2. Overview of working diagram of the proposed eye disease prediction method.
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4.1. Data Collection

Data collection processes have in general to be executed rigorously in order to create a
valid and useful dataset. The data collected has to include both symptoms and biomarker
data for each patient included in the dataset. For this study, we have included real-world
patients data collected when they were present during a referral to an ophthalmologist.
Since it can be very difficult to track the symptoms by the ophthalmologist during a short
visit, there were two interviewers (ophthalmologist and one of the author) collecting the
data. The statistical properties of the dataset acquired are presented in Table 1.

Table 1. Statistical Properties of Dataset.

Properties Amount/Values

No. of patients 563

Age group of patients 23–65

Gender of patients Male or Female

No. of instances in the dataset 563

Data collection process In-person interview with patients

Type of interview Semi-structured interviews

Type of pre-defined questionnaire Binary closed questions (Yes/No)

Types of eye diseases Cataracts (236 instances)
Acute Angle-Closure Glaucoma (AACG)
(59 instances)
Primary Congenital Glaucoma (PCG)
(57 instances)
Exophthalmos/Bulging Eyes (BE) (41 instances)
Ocular Hypertension (170 instances)

The patients were examined by a practicing ophthalmologist while checking the
conditions and biomarkers listed in Table 2 for each of the patients. The dataset collected
contains 563 patients data having any one of the eye diseases mentioned in Section 2.
The data collection was also conducted in a closed-room environment during one-to-one
appointments and the attributes noted in Table 2 were collected. A value, either 0 or 1 has
been assigned for each attributes based on the observation of the ophthalmologist to avoid
a missing value in the dataset. This makes it a robust dataset having no missing values.

Table 2. Attributes used for data collection.

No. Attributes Properties

a1 Cloudy, blurry or foggy vision

The values are either 0 or 1

a2 Pressure in eye
a3 Injury to the eye
a4 Excessive dryness
a5 Red eye
a6 Cornea increased in size
a7 Problem in identifying color
a8 Double vision
a9 Myopia
a10 Trouble with glasses
a11 Hard to see in the dark
a12 Visible whiteness
a13 Mass pain
a14 Vomiting
a15 Water drops from eyes continuously
a16 Presence of light when eye lid closes
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Table 2. Cont.

No. Attributes Properties

a17 Family history of similar disease
Biomarker (0 or 1)a18 Age +40

a19 Diabetes

4.2. Data Annotation

Data annotation or labeling of the dataset used for the training of a methodology that
is based on supervised machine learning algorithms is the most critical and important step
in the development of the methodology. If the annotation or labeling of the data is not
performed properly then the acceptability of the whole methodology might be questioned.
In this case, the data collection was performed very carefully. While collecting the data, the
ophthalmologist played the role of an interviewer and the patients played the role of an
interviewee. Questions associated with the 19 attributes were asked and properly examined
by the ophthalmologist to determine the right kind of eye disease that the patient had.
Hence, the ophthalmologist worked as the annotator of the dataset. Therefore, the dataset
created for the study has been validated by domain experts, hence it can be considered as a
benchmark dataset in this domain. Each attribute is labeled either zero (0) or one (1) based
on the examination performed by the ophthalmologist. The annotated dataset contains
19 attributes/symptoms and one (1) class label indicating the eye disease. This annotated
dataset was forwarded to the next step in the feature selection process.

4.3. Feature Selection Methods

For the feature selection step, we considered ranker-based feature selection methods,
so that we got a list of attributes, in this case, symptoms. It is expected that this selected
symptom list may be significant for predicting a particular eye disease more efficiently.

The ranker-based methods utilized in this study are Pearson Correlation (PC), Infor-
mation Gain (IG), Principal Component Analysis (PCA), Relief-based Ranking (RR) and all
features. The methods were applied directly to the annotated data and the ranking scores
of each attribute were determined. Brief descriptions of the feature selection methods are
given next.

The Pearson Correlation (PC)-based feature selection [30] method is widely used in
machine learning problems. The (ρX,Y) is calculated using Equation (1) where cov(X, Y) is
the covariance between the X and Y and σ the standard deviations (SDs) on the X and Y:

ρX,Y =
cov(X, Y)

σXσY
(1)

The X and Y can be considered as class-feature or feature-feature relationships. X
can be the class and Y can be the feature or X can be the feature and Y can be another
feature. The ρX,Y value is between the −1 and +1, where −1 means a negative correlation
between X and Y where 0 means no correlation between X and Y and +1 means a positive
correlation between X and Y. The higher the ρX,Y-value the higher the correlation between
X and Y is. Therefore, for our study, we have chosen the class-feature relationship. We
calculated the class-feature correlation values for all the features and ranked them by the
correlation values from high to low. Depending on the ranking, we selected some of the
features to run further steps of the ML models.

Information Gain (IG) is another widely accepted feature selection method for var-
ious research problems for example where text categorization is used [31,32]. This is
evidenced by the use of IG in several research domains, such as computer vision [32] and
text classification [33]. IG is a ratio value calculated by Equation (2).

IG(T, a) = H(T)− ∑
v∈values(a)

|x ∈ T|xa = v|
|T| · H(x ∈ T|xa = v) (2)



Bioengineering 2023, 10, 25 8 of 20

Here, values(a) is the set of all possible values of features a ∈ Attr where Attr is the
set of all features, H is the entropy, and x ∈ T denotes the value of specific example x for
a ∈ Attr. The largest IG is the smallest entropy.

Principal Component Analysis (PCA) was invented by Karl Pearson, see [34,35],
initially as an analog of the principal axis theorem in mechanics. After the development
of eigenvalue decomposition and other related theorems, the use of PCA became more
popular. PCA is the method for calculating the principal components of a dataset. This
multivariate technique tries to analyze the data in which the observations are kept by
several inter-correlated quantitative variables, which are dependent [36]. PCA can be used
as a method to reduce the dimension of the data to handle high dimension data for a given
process [37]. The dimensionality reduction is performed by choosing an optimal number of
eigenvectors to account for some percentage of variance in the original data.

Relief is a filter-based feature selection algorithm presented by Kira and Rendell in
1992 [38]. The algorithm takes a data set with p instances of n number of features. The
method iterated m times starting with a n-long weight vector W. In each iteration the
weight vector is updated as in Equation (3).

Wi = Wi − (xi − nearHiti)
2 + (xi − nearMissi)

2 (3)

For each iteration, the feature vector (X) is assigned to one random instance, and the
closest same-class instance is called ‘near-hit’. Similarly, the closest different-class instance
is called ‘near-miss’. Therefore, the weight of any given attribute will decrease if it differs
from that feature and increase in the reverse case.

An associated ranker method ranking the features by their individual evaluators (Cor-
relation, GainRatio, Components and Relief) was implemented with the feature selection
methods. The method may choose a specific number of features to be retained for the
remainder of the process. We have kept the default value (−1) to find the ranking over all
the features. No initial set of features was chosen to bias the whole process. Therefore, all
of the features are considered as initial inputs to the methods.

4.4. Data Splitting Strategies

For the ML algorithms, especially when applying classifiers, it is very important to
perform data splitting for the train-test mechanism [39]. One part of the data is used
for training the models and the rest of the data are used for testing the performance of
the model. Therefore, the choice of what percentage should be used for training and
what percentage should be used for testing can be critical. In this study, we adopted two
data-splitting strategies: Train-Test and k-fold Cross Validation.

For the Train(%)-Test(%) technique, we split the data using 66–34% , 75–25% and
80–20%. Using the different splits we ran the same models on the data, to find the perfor-
mance of the ML algorithm.

The second data splitting strategy is k-fold Cross Validation [40]. Though it is a kind of
sampling method, it has been found to be effective in the area of ML while doing the Train–
Test split. In a single fold of cross-validation, the data are partitioned into two parts (training
and testing) and in the second fold, the same data are partitioned randomly. In this paper,
k-fold was used, which means that the original data sample was randomly partitioned into
k equal-sized sub-samples. Among those k sub-samples, one sub-sample was considered
for testing and the rest of the sub-samples were considered for training and the same
process was run k-times. In the same manner, as for the Train-Test strategy, we chose 3-fold,
5-fold and 10-fold Cross Validation for finding the best-performing ML algorithm.

4.5. Machine Learning Methods

The naive Bayes classifier simplifies the classifying process considerably by assuming
that the presence of a particular feature in a class is not related to any other feature in
the class [41]. Although this independence is generally a poor assumption, in practice
naive Bayes often competes well with more sophisticated classifiers [41]. Our broad



Bioengineering 2023, 10, 25 9 of 20

goal was to understand the data characteristics which affect the performance of naive
Bayes [41]. Our approach used Monte Carlo simulations that allow a systematic study
of classification accuracy for several classes of randomly generated problems [41]. The
success of naive Bayes in the presence of feature dependencies can be explained as follows:
optimality in terms of zero-one loss (classification error) is not necessarily related to the
quality of the fit to a probability distribution (i.e., the appropriateness of the independence
assumption). Rather, an optimal classifier is obtained as long as both the actual and
estimated distributions agree on the most probable class [41]. For example, naive Bayes
optimality can be proven for some problem classes that have a high degree of feature
dependencies, such as disjunctive and conjunctive concepts [41].

The k Nearest Neighbor (k-NN) method is a popular classification method in data
mining and statistics because of its simple implementation and excellent classification
performance [42]. However, it is impractical for traditional k-NN methods to assign a fixed
k value (even if it is set by experts) to all test samples [42]. Previous solutions assigned
different k values to different test samples by the cross-validation method but this was
usually time-consuming [42]. This paper proposes a k-Tree method to learn different
optimal k values for different test/new samples, by involving a training stage in the k-NN
classification [42].

For a simplified description, decision tree analysis is a divide-and-conquer approach
to classification (and regression which is not covered within the scope of this review) [43].
Decision trees can be used to discover features and extract patterns in large databases
that are important for discrimination and predictive modeling [43]. These characteristics,
coupled with their intuitive interpretation, have been some of the reasons for the extensive
use of decision trees for both exploratory data analysis and predictive modeling applications
for more than two decades [43]. Decision trees have an established foundation in both the
machine learning and artificial intelligence literature and a niche in the use of decision trees
in both the chemical and biochemical sciences is slowly developing [43].

In the same manner, as contingency table analyses and two tests, Logistic Regression
(LG) allows the analysis of dichotomous or binary outcomes with two mutually exclusive
levels and it allows the use of continuous or categorical predictors and provides the means
for adjusting for multiple predictors [44]. This makes LG especially useful for the analysis
of observational data when adjustments are needed to reduce the potential bias resulting
from differences in the groups being compared [44].

5. Performance Measurement Indices

We adapted the widely accepted measurement tools accuracy, precision, recall and
F1-score for evaluating the performance of the applied ML methods. Usage of these
measurement indices can be found in many existing works, including [45,46]. While
calculating these indices, the positive or negative classification of the diseases is taken into
account. The following Equations (4)–(7) were used for generating the measurements.

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Sensitivity(SEN) =
TP

TP + FN
(6)

F1− score =
2(Precision× Recall)
(Precision + Recall)

(7)

Here, TP is True Positive (when the ML model correctly classifies a patient as having
a particular eye disease), TN is True Negative (when the ML model correctly classifies
a patient as having a different eye disease), FP is False Positive (when the ML model
incorrectly classifies a patient as having one particular disease when the patient actually
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has another disease) and FN is False Negative (when the Ml model incorrectly classifies a
patient as not having a disease when the patient actually has the disease).

6. Experimental Results

In this section, we show the detailed results of the experiments. After applying the
feature selection methods the selected features along with their ranking values are given
in this section. The experiments were executed based on splitting and feature selection.
The performance measurement indices mentioned in Section 5 were used to describe the
outcomes of the experiments.

6.1. Applying Feature Selection Methods

We applied multiple ranker-based feature selection techniques and the ranking score
of the features is therefore important when choosing the high-scored features for the further
process. The ranking score, attribute names and numbers are shown for PC, IG and RR
in Table 3, Table 4 and Table 5, respectively. PCA on the other hand gives a ranking with
associated attributes for obtaining the best results based on the outcome or class. Therefore,
it only ranked the first sixteen (16) features, as shown in Table 6. After applying the FS
methods, the first ten attributes were selected and considered for the next steps.

6.2. Experiments on Data Splitting and FS Methods

We devised four (4) experiments to test multiple data-splitting strategies and feature
selection techniques. All of the ML methods were applied in these experiments. For the first
two experiments, we considered splitting with and without the feature selection applied.
For the next two experiments, cross-validation was applied with and without feature
selection methods. As described in Section 4, subsection D, 66–34%, 75–25% and 80–20%
are the splitting criteria used and 3-fold, 5-fold and 10-fold cross-validations are applied.

Table 3. Ranking of Features and associated correlation coefficient values from PC-based FS method.

Ranking Score Attributes (Attribute Number)

0.6218 Cloudy, blurry or foggy vision (a1)

0.5583 Problem in identifying color (a7)

0.5340 Double vision (a8)

0.5148 Water drops from eyes continuously (a15)

0.5114 Pressure in eye (a2)

0.5073 Hard to see in the dark (a11)

0.4991 Myopia (a9)

0.3052 Injury to the eye (a3)

0.2403 Mass pain (a13),

0.2279 Red eye (a5)

0.2258 Vomiting (a14)

0.2225 Cornea increased in size (a6)

0.2225 Presents of light when eyelid close (a16)

0.2061 Visible whiteness (a12)

0.2023 Excessive dryness (a4)

0.1539 40+ Age (a18)

0.1531 Family history of similar disease (a17)

0.1525 Diabetes (a19)

0.0524 Trouble with glasses (a10)
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Table 4. Ranking of Features from Information Gain-based FS method.

Ranking Score Attributes (Attribute Number)

0.8000 Cloudy, blurry or foggy vision (a1)

0.6182 Problem in identifying color (a7)

0.5587 Water drops from eyes continuously (a15)

0.5434 Double vision (a8)

0.5430 Pressure in eye (a2)

0.5216 Myopia (a9)

0.4848 Hard to see in the dark (a11)

0.3477 Injury to the eye (a3)

0.2326 Mass pain (a13)

0.2293 Visible whiteness (a12)

0.2196 Excessive dryness (a4)

0.2130 Cornea increased in size (a6)

0.2130 Presents of light when eyelid close (a16)

0.2108 Red eye (a5)

0.2004 Vomiting (a14)

0.0749 40+ Age (a18)

0.0730 Family history of similar disease (a17)

0.0718 Diabetes (a19)

0.0000 Trouble with glasses (a10)

Table 5. Ranking of Features from Relief-based FS method.

Ranking Score Attributes (Attribute Number)

0.6194 Cloudy, blurry or foggy vision (a1)

0.4196 Pressure in eye (a2)

0.4181 Problem in identifying color (a7)

0.3682 Injury to the eye (a3)

0.3383 Myopia (a9)

0.3253 Double vision (a8)

0.3186 Water drops from eyes continuously (a15)

0.3137 Hard to see in the dark (a11)

0.1129 40+ Age (a18)

0.1032 Visible whiteness (a12)

0.1024 Red eye (a5)

0.1013 Cornea increased in size (a6)

0.0952 Diabetes (a19)

0.0915 Mass pain (a13)
0.0875 Excessive dryness (a4)

0.0826 Vomiting (a14)

0.0773 Presents of light when eyelid close (a16)
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Table 5. Cont.

Ranking Score Attributes (Attribute Number)

0.0616 Family history of similar disease (a17)

0.0218 Trouble with glasses (a10)

Table 6. Ranking of Features from PCA-based FS method.

Ranking Score Attributes (Attribute Number)

0.7619 Cloudy, blurry or foggy vision (a1)

0.5981 Injury to the eye (a3)

0.5054 Excessive dryness (a4)

0.4171 Presents of light when eyelid close (a16)

0.365 Trouble with glasses (a10)

0.3175 Pressure in eye (a2)

0.2719 40+ Age (a18)

0.2306 Family history of similar disease (a17)

0.1976 Vomiting (a14)

0.1678 Mass pain (a13)

0.1389 Red eye (a5)

0.1136 Double vision (a8)

0.09 Cornea increased in size (a6)

0.0719 Problem in identifying color (a7)

0.0549 Myopia (a9)

0.0388 Hard to see in the dark (a11)

6.2.1. Experiment-1: Splitting + FS Applied

Data splitting was performed and five feature selections were applied for this experi-
ment. The effect of the selection features can be found in this experiment. Comparison of
precision and recall/sensitivity values are shown in Figure 3.

Figure 3. Precision and Recall values of ML methods with 66–34% split and PC-based FS method.
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The accuracy values for each of the models for different train-test split scenarios are
shown in Figures 4 and 5. The highest accuracy obtained for XGBoost is 98.23%.

Figure 4. F1-score and Accuracy values of DT, NB, RF, AB and LR with 80%–20% split and five FS method.

Figure 5. F1-score and Accuracy values of k-NN, Bagging, XGBoost and SVM with 80–20% split and
five FS method.

6.2.2. Experiment-2: Splitting + No FS Applied

For experiment-2, splitting was applied, but the FS methods were not applied. Pre-
cision, recall, F1-score and accuracy of the ML models are shown in Table 6. XGBoost
performs better overall showing more than 98% accuracy for all types of splits. The highest
accuracy reported was 98.582% when LR was used in a 75–25% split.

6.2.3. Experiment-3: Cross-Validation + FS Applied

In experiment-3, we applied a cross-validation technique instead of a split with the
application of five feature selection strategies. This resulted in a total of one hundred and
thirty-five (135) runs of the ML models with different setups. This rigorous experiment
gave us the most suitable ML model among all the models chosen for the study. The
precision, recall, F1-score and accuracy values are presented in Table 7. Among all the
models, LR outperformed other models showing 98.94% accuracy.
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Table 7. Performance of ML models in experiment-2 (Splitting + No FS Applied).

Model 66–34% Split 75–25% Split 80–20% Split

Name PR SEN F1-Score ACC PR SEN F1-Score ACC PR SEN F1-Score ACC

DT 0.97 0.97 0.97 96.875% 0.97 0.97 0.97 97.163% 0.97 0.96 0.96 96.460%

NB 0.95 0.94 0.94 94.271% 0.96 0.95 0.95 95.035% 0.95 0.94 0.94 93.805%

RF 1.00 0.81 0.88 81.25% 1.00 0.82 0.89 81.56% 1.00 0.78 0.87 77.876%

AB 0.98 0.98 0.98 97.51% 0.98 0.98 0.98 98.05% 0.98 0.98 0.98 97.69%

LR 0.98 0.98 0.98 97.917% 0.99 0.99 0.99 98.582% 0.97 0.97 0.97 97.345%

k-NN 0.97 0.97 0.97 96.875% 0.97 0.97 0.97 97.163% 0.96 0.96 0.96 96.46%

Bagging 0.91 0.91 0.91 91.513% 0.91 0.84 0.82 91.56% 0.80 0.90 0.89 90.088%

XGBoost 0.98 0.98 0.98 98.579% 0.99 0.99 0.99 98.581% 0.98 0.98 0.98 98.23%

SVM 0.64 0.74 0.65 74.479% 0.63 0.74 0.64 73.759% 0.59 0.70 0.59 69.912%

6.2.4. Experiment-4: Cross-Validation + No FS Applied

In experiment-4, we applied three different cross-validation methods, but this time
without selecting any particular features coming from the FS methods. This method can
be easily compared to experiment-2 to compare the percentage split and cross-validation
methods. Table 8 shows the precision, sensitivity, F1-score and accuracy values for each
of the ML models. SVM showed the highest accuracy of 99.11% in this experimental
setup. Table 9 shows the same measurements as Table 8 for cross-validation without the FS
methods. And SVM outperforms the other algorithms in 10-fold cross-validation obtaining
99.110% accuracy.

Table 8. Performance of ML models in experiment-3 (Cross Validation + FS Applied).

Cross Fold Validation with FS Method

Methods Feature
Selection
Methods

3-fold 5-fold 10-fold

P R F1 ACC P R F1 ACC P R F1 ACC

DT PC 0.914 0.892 0.892 89.17% 0.918 0.899 0.900 89.88% 0.913 0.897 0.896 89.70%

IG 0.902 0.893 0.896 89.34% 0.906 0.897 0.899 89.70% 0.907 0.899 0.899 89.88%

PCA 0.925 0.911 0.912 91.12% 0.926 0.913 0.914 91.30% 0.926 0.913 0.914 91.30%

Relief 0.916 0.899 0.899 89.88% 0.921 0.899 0.899 89.88% 0.918 0.899 0.899 89.88%

All * 0.960 0.950 0.950 94.85% 0.960 0.960 0.960 96.81% 0.930 0.930 0.920 96.98%

NB PC 0.920 0.909 0.907 90.94% 0.923 0.909 0.907 90.94% 0.922 0.909 0.907 90.94%

IG 0.924 0.915 0.913 91.47% 0.910 0.909 0.909 90.94% 0.898 0.899 0.898 89.88%

PCA 0.924 0.911 0.913 91.12% 0.925 0.911 0.913 91.12% 0.926 0.911 0.913 91.12%

Relief 0.916 0.904 0.902 90.41% 0.912 0.901 0.899 90.05% 0.916 0.902 0.901 90.23%

All * 0.960 0.960 0.960 95.56% 0.960 0.960 0.950 95.92% 0.950 0.930 0.390 95.74%

RF PC 0.920 0.906 0.905 90.59% 0.923 0.911 0.910 91.12% 0.919 0.908 0.907 90.76%

IG 0.908 0.902 0.901 90.23% 0.923 0.915 0.915 91.47% 0.918 0.909 0.909 90.94%

PCA 0.911 0.899 0.901 89.88% 0.895 0.890 0.890 88.99% 0.899 0.892 0.893 89.17%

Relief 0.923 0.904 0.902 90.41% 0.924 0.904 0.904 90.41% 0.923 0.904 0.903 90.41%

All * 0.990 0.990 0.990 98.40% 1.000 1.000 1.000 98.58% 1.000 1.000 1.000 97.87%
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Table 8. Cont.

Cross Fold Validation with FS Method

Methods
Feature
Selection
Methods

3-fold 5-fold 10-fold

P R F1 ACC P R F1 ACC P R F1 ACC

AB PC 0.913 0.901 0.900 90.05% 0.923 0.908 0.908 90.80% 0.921 0.908 0.907 90.76%

IG 0.911 0.902 0.901 90.23% 0.913 0.904 0.905 90.41% 0.925 0.913 0.913 91.30%

PCA 0.895 0.890 0.890 88.99% 0.909 0.901 0.901 90.05% 0.905 0.897 0.898 89.70%

Relief 0.920 0.902 0.901 90.23% 0.926 0.909 0.908 90.94% 0.920 0.904 0.903 90.41%

All * 0.975 0.975 0.975 97.51% 0.980 0.980 0.980 98.05% 0.977 0.977 0.977 97.69%

LR PC 0.919 0.902 0.904 90.23% 0.924 0.911 0.911 91.12% 0.922 0.909 0.909 90.94%

IG 0.921 0.909 0.910 90.94% 0.913 0.908 0.908 90.76% 0.927 0.917 0.917 91.65%

PCA 0.900 0.893 0.895 89.34% 0.904 0.899 0.900 89.88% 0.911 0.902 0.904 90.23%

Relief 0.927 0.911 0.912 91.12% 0.926 0.909 0.909 90.94% 0.930 0.913 0.913 91.30%

All * 0.990 0.980 0.950 98.58% 1.000 1.000 1.000 98.94% 1.000 1.000 1.000 98.94%

k-NN PC 0.930 0.915 0.913 91.47% 0.929 0.917 0.915 91.65% 0.926 0.915 0.912 91.47%

IG 0.908 0.908 0.907 90.76% 0.912 0.906 0.907 90.59% 0.926 0.915 0.915 91.47%

PCA 0.892 0.886 0.887 88.63% 0.906 0.899 0.899 89.88% 0.901 0.895 0.896 89.52%

Relief 0.929 0.908 0.908 90.76% 0.925 0.906 0.906 90.59% 0.922 0.902 0.902 90.23%

All * 0.960 0.960 0.950 96.45% 0.980 0.970 0.970 96.27% 1.000 1.000 1.000 96.63%
Bagging PC 0.914 0.897 0.896 89.70% 0.926 0.909 0.907 90.94% 0.925 0.911 0.910 91.00%

IG 0.909 0.892 0.889 89.17% 0.898 0.897 0.894 89.70% 0.897 0.895 0.893 89.30%

PCA 0.911 0.899 0.899 89.88% 0.909 0.895 0.895 89.52% 0.905 0.890 0.889 88.99%

Relief 0.905 0.885 0.885 88.45% 0.911 0.897 0.893 89.70% 0.914 0.897 0.896 89.70%

All * 0.930 0.940 0.970 95.06% 0.940 0.960 0.950 95.58% 0.940 0.950 0.890 95.58%

XGBoost PC 0.920 0.904 0.905 90.41% 0.926 0.911 0.912 91.12% 0.926 0.911 0.911 91.12%

IG 0.929 0.917 0.917 91.65% 0.920 0.911 0.913 91.12% 0.924 0.913 0.915 91.30%

PCA 0.916 0.906 0.907 90.59% 0.915 0.906 0.907 90.59% 0.918 0.908 0.909 90.76%

Relief 0.929 0.913 0.913 91.30% 0.923 0.908 0.908 90.76% 0.927 0.909 0.910 90.94%

All * 0.980 0.980 0.980 98.58% 0.990 0.990 0.990 98.58% 0.980 0.980 0.980 98.05%

SVM PC 0.934 0.911 0.907 91.12% 0.935 0.913 0.907 91.30% 0.928 0.911 0.905 91.12%

IG 0.917 0.909 0.911 90.94% 0.913 0.906 0.907 90.59% 0.898 0.890 0.891 88.99%

PCA 0.904 0.888 0.888 88.81% 0.902 0.890 0.888 88.99% 0.899 0.892 0.891 89.17%

Relief 0.935 0.911 0.909 91.12% 0.932 0.908 0.906 90.76% 0.931 0.908 0.906 90.76%

All * 0.980 0.980 0.980 98.76% 1.000 1.000 1.000 98.94% 1.000 1.000 1.000 99.11%

* All features, P: Precision, R: Recall, F1: F1-score, ACC: Accuracy.

Table 9. Performance of ML models in experiment-4 (Cross-validation + No FS Applied).

Model 3-fold 5-fold 10-fold

Name PR SEN F1-Score ACC PR SEN F1-Score ACC PR SEN F1-Score ACC

DT 0.96 0.95 0.95 94.850% 0.96 0.96 0.96 96.805% 0.93 0.93 0.92 96.980%

NB 0.96 0.96 0.96 95.561% 0.96 0.96 0.95 95.915% 0.95 0.93 0.93 95.742%

RF 0.99 0.99 0.99 98.402% 1.00 1.00 1.00 98.581% 1.00 1.00 1.00 97.870%
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Table 9. Cont.

Model 3-fold 5-fold 10-fold

Name PR SEN F1-Score ACC PR SEN F1-Score ACC PR SEN F1-Score ACC

AB 0.98 0.98 0.98 97.510% 0.98 0.98 0.98 98.050% 0.98 0.98 0.98 97.690%

LR 0.99 0.98 0.95 98.579% 1.00 1.00 1.00 98.936% 1.00 1.00 1.00 98.938%

k-NN 0.96 0.96 0.95 96.447% 0.98 0.97 0.97 96.271% 1.00 1.00 1.00 96.626%

Bagging 0.93 0.94 0.97 95.062% 0.94 0.96 0.95 95.579% 0.94 0.95 0.89 95.578%

XGBoost 0.98 0.98 0.98 98.579% 0.99 0.99 0.99 98.581% 0.98 0.98 0.98 98.051%

SVM 0.98 0.98 0.98 98.756% 1.00 1.00 1.00 98.936% 1.00 1.00 1.00 99.110%

7. Discussion
7.1. Finding Significant Features

The list of significant features based on the feature selection algorithms is depicted in
Tables 3–6. The selected features or attributes can be considered better choices among the
other symptoms of eye disease. The first ten selected features can be formulated as four
different feature sets outputted from PC-based (FPC), IG-based (FIG), PCA-based (FPCA),
and Relief-based (FRelie f ) feature selection methods, as below.

FPC =< a1, a2, a3, a5, a7, a8, a9, a11, a12, a15 > (8)

FIG =< a1, a2, a3, a7, a8, a9, a11, a12, a13, a15 > (9)

FPCA =< a1, a2, a3, a4, a10, a13, a14, a16, a17, a18 > (10)

FRelie f =< a1, a2, a3, a7, a8, a9, a11, a12, a15, a18 > (11)

7.2. Finding Common Features

Considering the selected feature sets in Equations (8)–(11), the common set can be
found calculating the intersection of the features.

FPC ∩ FIG =< a1, a2, a3, a7, a8, a9, a11, a12, a13 > (12)

FPC ∩ FPCA =< a1, a2, a3 > (13)

FPC ∩ FRelie f =< a1, a2, a3, a7, a8, a9, a11, a12, a13 > (14)

FIG ∩ FPCA =< a1, a2, a3, a13 > (15)

FIG ∩ FRelie f =< a1, a2, a3, a7, a8, a9, a11, a12, a13 > (16)

FPCA ∩ FRelie f =< a1, a2, a3 > (17)

FPC ∩ FIG ∩ FPCA ∩ FRelie f =< a1, a2, a3 > (18)

Considering FPC as A, FIG as B, FPCA as C and FRelie f as D, the Venn diagram in Figure 6
shows the common features among the sets. The numbers inside the elipses shows the
number of features they have in common. For example, AB (9) means there are 3 common
features between A and B. Similarly, ABCD (3) means there are 3 common features between
the A, B, C, and D sets.
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Figure 6. Venn Diagram showing the common features among the feature sets.

7.3. Comparison with Existing Works

In this section, we have compared our proposed work with the existing works on the
same domain focusing on the prediction of eye disease. Most of the works from literature,
used image data to detect eye disease. The images contain the disease region of interest
(RoI) and it is easier to identify the RoI by the experienced ophthalmologists. The challenge
of annotation can be handled easily by the domain experts and then the supervised learning
algorithms would be appropriate for the prediction. The recent advancements of machine
learning and deep learning methods also encouraged the researchers to exploit them for the
eye disease detection. The following Table 10 shows the comparison with the recent existing
works from the literature with our proposed approach. None of the approaches mentioned
in Table 10 have applied feature selection algorithms to find out the significant symptom
features. We have applied several feature selection methods to find out the significant and
common features affecting the organ. Our proposed approach obtained highest accuracy
99.11% (SVM) by exploring the classical ML methods.

Table 10. Comparison with existing works.

Existing Works Features Used Feature Selection
Used Methods Evaluation

Nazir et al. [19] Extracted features
using Densenet-100 No Improved CenterNet

Accuracy (using Aptos-
2019 dataset: 97.93%, using
IDrID dataset: 98.10%)

Bodapati et al. [20] Feature fusion No Deep neural Network Accuracy (using Aptos-
2019 dataset: 84.31%)

Khan et al. [21] Manual extracted
retinal features No CNN with VGG-19 Accuracy (97.47%)

Sarki et al. [22] None No CNN with RM-
Sprop Optmizer Accuracy (81.33%)

Pahuja et al. [23] None No SVM and CNN Accuracy (SVM:87.5% and
CNN: 85.42%)

Malik et al. [24] None No DT, NB, RF and NN Accuracy (RF: 86.63% )

Proposed None Yes (PC, IG,
PCA, Relief)

DT, NB, RF, AB, LR, k-
NN, Bagging, XGBoost
and SVM

Accuracy (Highest
Accuracy Obtained:
99.11% (SVM))

8. Conclusions

This paper presents an efficient approach for predicting five different eye diseases
and shows a comparative analysis among the ML methods for predicting the five common
eye diseases from a benchmark dataset. The most critical issue with suitable dataset for
ML models is annotation or class labelling. For our work, we have annotated the data by
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practicing ophthalmologist, which gives more accurate and validate data for the models.
Therefore, the ML models are showing very satisfactory results in terms of accuracy values,
as most of then showing accuracy above 90% and all the models are showing accuracy
over 70%. The highest accuracy obtained is 99.11% from SVM with cross-validation and
without applying any feature selection methods. The significant features are identified
using feature selection methods and the intersection of the selected features are showing
the common features. From the common features we obtain the understanding of the
symptoms responsible for the eye diseases. One of the shortcomings of the paper is
that we have not used any images for the predictive analysis. Using image data along
with the annotated symptom data would have provide better solution to a multi-model
approach. In future works, a multivariate or uni-variate analysis may be conducted
to identify specific symptoms and acquire insights about a particular eye disease. The
application of explainable artificial intelligence to interpret the best model could be another
improvement of this work.
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