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A B S T R A C T

The main goal of this study is to evaluate the impact of population mobility on electricity generation in Russian
cities in the conditions of the spread of COVID-19, and identify hotspots. Furthermore, the evaluation is also
conducted using hybrid fuzzy decision-making modelling. In this context, q-ROF DEMATEL and TOPSIS methods
are taken into consideration. Additionally, a comparative evaluation is also performed with the help of Intui-
tionistic and Pythagorean fuzzy sets. The results are quite similar that allows to conclude that the findings are
reliable and coherent. The study proves the hypothesis that human behavior changed during the COVID-19
pandemic, and electricity consumption is declining in major cities around the world. The biggest fall in energy
generation was in Moscow and Yekaterinburg. In St. Petersburg and Nizhny Novgorod, the fall in energy gen-
eration is no so crucial because these cities have low building density. The study uses Long Short-Term Memory
models with many different parameters. The Q-Rung Orthopair Fuzzy Sets model forecasts new COVID-19 using
ten parameters. This study identifies factors influencing the spread of COVID-19 based on the theory of "broken
windows" and outlines directions in limiting population mobility, which can form the basis of state policy. Ac-
cording to the analysis the air temperature is the variable that most affects this process.
1. Introduction

The coronavirus pandemic has been actively spreading throughout
the world since December 2019, forcing the World Health Organization
to declare a global pandemic (Hosseini, 2020; Bhuiyan et al., 2021). As of
November 2021, Russia is among the leaders in countries with the most
deaths and new identified cases per day. In order to reduce the rate of
new infections, the Ministry of Health employed strategies, which con-
sisted of restricting mass gatherings, quarantining, wearingmasks, gloves
and other protective equipment. The immediate decrease in mobility led
to an increase in the number of people staying in their living quarters for
longer than usual, leading to changing behavior habits. This, in turn,
affects the dynamics and volumes of electricity consumption in Russian
cities (Statdata, 2020; Russian Ministry of Health, 2020).

The novelty of this study is the evaluation of the impact of COVID-19
on electricity energy generation and production. This paper proves the
idea that electricity energy consumption is more dependent on economic
sustainable growth and efficient resources policy (Huang et al., 2020). It
identifies factors influencing the spread of COVID-19 based on the theory
v).
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of "broken windows" and outlines directions in limiting population
mobility, which can form the basis of state policy. Amongst cities most
affected by the pandemic are Moscow, St. Petersburg, Yekaterinburg, and
Nizhny Novgorod.

These cities have a population of over 0.5 million, along with high
housing density, which may explain the prevalence of COVID-19. How-
ever, some outbreaks do not correlate with these factors and may be
associated with the population's seasonal travel. Uncertainty over Rus-
sia's economic state remains, despite the fact that general restrictive
measures began to be lifted in early June of 2021. The estimate of the
International Monetary Fund shows a decline in Russia's GDP of 5.5% in
2020 and subsequent growth of 3.5% in 2021. Estimates of the spread of
COVID-19, based on official statistics, indicate a large number of in-
fections with a strong downward trend even after the peak. Italian re-
searchers also suggest maintaining partial restrictive and supervisory
measures at a level that prevents a possible resumption of the infection's
spread for many years (Bertuzzo et al., 2020).

The short-term state policy in the field of energy has changed in
connection with the measures taken in the country and its partners.
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Existing studies reflect changes in the generation and consumption of
electricity in territories subject to COVID-19-related restrictions. This
research paper aims to develop tools for forecasting the impact of urban
mobility in large cities prone to high rates of COVID-19 infections on
electricity generation and consumption in Russia. The model uses open
data to successfully forecast future changes in energy consumption and
production (Yandex, 2021; Statdata, 2020; Russian Ministry of Health,
2020; Shea and Poast, 2018; Sun and Hong, 2017; Tintelnot et al., 2017;
Tomar and Gupta, 2020; Valta, 2012; Wei and Yermack, 2011).

Furthermore, another evaluation is conducted using hybrid fuzzy
decision-making modelling. Within this framework, q-ROF DEMATEL
and TOPSIS methods are taken into consideration. Additionally, a
comparative evaluation is also performed with the help of Intuitionistic
and Pythagorean fuzzy sets. The data, related to the buyer and seller,
allow to conduct a detailed analysis of energy companies and macro-
economic effects associated with them and their industry.

The paper has some novelties. SWARA method has two new appli-
cations have an influence on the originality of the proposed model. On
the other side, considering q-ROFSs in the analysis process brings some
advantages. Because a wider space is used with q-ROFSs by comparing
with IFSs and PFSs, more precise results can be reached. The paper is
organized as follows: there are six different parts in this study. In the
following part, the review of literature is shared. The third part is related
to the methods of research. The results are given in the fourth part. The
fifth part includes the discussion. The final section presents the conclu-
sions of the study.

2. Literature review

The world is experiencing the effects of the coronavirus infection. As
a result, various international, state, and private organizations are
developing solutions to assess the damage to the population's health and
the economy of the world and in Russia. According to the WHO, the
number of confirmed cases of COVID-19 infections in Russia is 8,5
million as of November 2021 (WHO, 2021). On January 23, 2020,
Russia began to introduce the first restrictive measures, which initially
concerned only border crossing. From March 25 to May 11, 2020
quarantine measures were introduced in regions of Russia, which
implied restrictions on mass gatherings, including those in specific
workplaces. The efficiency of the adopted measures is confirmed by
studies of monitoring hospitalization, as well as the impact of quaran-
tine measures based on empirical evidence from the United States
(Fowler et al., 2021). The article also takes into account existing
methods for forecasting COVID-19-related statistics to increase the ac-
curacy of the models by Fowler. Many researchers found the impact of
COVID-19 pandemic on oil consumption in the United States, China and
developing countries (S�anchez-Úbeda et al., 2022; Ashkanani et al.,
2022; Lazo et al., 2022; Ku et al., 2022).

Factors determining the diffusion of COVID-19 and suggested stra-
tegies to prevent future accelerated viral infectivity similar to the
ongoing pandemic are discussed in many studies (Askitas et al., 2021; Liu
et al., 2022; S�anchez-L�opez et al., 2022).

Influence of population density, temperature, and absolute humidity
on the spread and decay durations of COVID-19 are discussed in
comparative studies of scenarios in Europe, Malaysia, China, England,
Germany and Japan (Flaxman et al., 2020; Diao et al., 2021; Toosty et al.,
2022; Wen et al., 2022; Ueno, 2022).

The general situation could undoubtedly affect consumption and,
accordingly, electricity generation in Russia. According to one of the
latest reports from the Russian Ministry of Energy, the volume of de-
mand for electricity in Russia has not decreased as much as in other
European countries (Ero�glu, 2020). In the period from March 30 to May
25, the demand for electricity in the Unified Energy System (UES) of
Russia decreased by 3.9% relative to the same period in 2019, and by
3.5% relative to the average value in 2017–2019. According to the
report, the largest decline was recorded in the first week of
2

self-isolation, which partially coincides with a high level in the "self-
isolation index" in Russia (Yandex, 2021). Furthermore, following a
decrease in consumption, the production of electricity subsequently
declined. This fact had the greatest impact on electricity generation at
thermal power stations. Their capacities fell on average by 15%, while
the capacities of some other types of power plants increased, specifically
in hydroelectric power plants due to the high-water hydrological situ-
ation (Happle et al., 2020).

Research on the impact of COVID-19 on the energy markets and FX
market has mainly focused on changes in the amount of direct and in-
direct carbon dioxide production, as well as developing new strategies to
begin the active adoption of renewable energy sources (RES) policies and
prospects of their further expansion in the face of declining demand
(Ero�glu, 2020; Rugani and Caro, 2020). In 2020 particularly, a reduction
in the implementation of new renewable energy sources in the world is
already noticeable and to be expected, due to an overall decrease in
demand for electricity, which is confirmed by different studies (Ero�glu,
2020; Rugani and Caro, 2020). They also describe a reduction of carbon
dioxide emissions in France and Italy due to reduced mobility and tem-
porary suspension of the activities of certain sectors of the economy
(Schwert, 1981; Ahn et al., 2017).

Moreover, the mobility of people during and after the easing of
quarantine measures will still be lower than it was before the coronavirus
outbreak. Lee et al. (2015) cites the increasing share of teleworking in
various sectors of employment and the decrease in international travel,
especially for recreational purposes, as the main reasons for this phe-
nomenon (Hong and Lin, 2013).

Population mobility figures are prominent in the context of the
broken window theory. The negative impact on public health under this
concept is confirmed by recent work (Chen and Ban, 2018). It has also
been observed that government policies have a large impact on reducing
the perception of risk among the population. In this case, the population
mobility index may reflect the perception of risk in relation to COVID-19.
This results in the aggravation of the overall epidemiological situation
and, subsequently, energy consumption (Chen et al., 2017; Das and
Kjærgaard, 2019).

Forecasting electricity demand using regression models and neural
networks has been a fairly popular topic for researchers lately. Long
Short-Term Memory (LSTM) models are exceptionally accurate in this
regard, but more complex structures and approaches to solving multi-
variate time series sets also show promising results (Chen et al., 2019).
Models like these have also been used with great success in forecasting
the future spread of COVID-19. For example, researchers have already
presented a neural network based on Keras LSTMs to accurately forecast
new cases of the coronavirus infection in India (Beltran and Cerpa, 2014;
Bollinger and Evins, 2019).

This article aims to study the factor of urban population mobility in
the context of measures introduced in Russia due to the threat of the
virus’ spread. Reduced human mobility is assumed to lead to a decrease
in electricity consumption, and this effect is also supported by enterprises
through compliance with regulatory measures and reduced demand in
some sectors of the economy. As more precautions to ease restrictive
measures or decrease the number of people infected in a city are taken,
more people tend to increase their mobility and, as a consequence, in-
crease the overall urban electricity consumption.

This concept reflects the provisions of the broken windows theory,
according to which, if someone broke a glass window in a house and no
one fixed it, then soon all of the windows in the house will be broken as
well (Engel et al., 2014).

3. Methods

In this study, a comparative evaluation is performed by using long
short-term memory and hybrid fuzzy decision-making models (Lin et al.,
2020; Liu et al., 2022; Mao et al., 2020; Meshram et al., 2020). In this
section, the theoretical background of these models is defined.
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3.1. Sample and data

The main goal of this study is to determine the degree of influence of
the restrictive measures introduced in connection with COVID-19 on
energy consumption and production. Moreover, during the analysis,
additional results may arise, and new hypotheses may appear, which will
be confirmed or refuted (Akhavan et al., 2018). Two different models are
generated by considering the Keras LSTM. The first model forecasts
power generation and uses 76 parameters. The second LSTM model es-
timates new COVID-19 cases across countries. It involves 10 parameters,
the data for which are publicly available (Keras model, 2020). This model
is already actively used for forecasting energy consumption (Bouktif
et al., 2018).
Figure 1. Membership and non-membership degrees of IFS, PFS, and q-ROFSs.

Table 1. T-statistics for Long Short-Term Memory model.

City T-Statistics
(99% confidence level)

T-statistics (95%
confidence level)

Probability
3.2. Measures of variables

For the LSTM expansion function, SELU is used on the first layer. The
SELU activation function multiplies the scale (>1) by the output of the
tf.keras.activations.elu function to provide a slope greater than one for
positive inputs. ELU is utilized on the second layer. ELUs have negative
values that bring the average activations closer to zero. Average activa-
tion values close to zero allow faster learning as they bring the gradient
closer to a natural gradient. ELUs saturate to a negative value when the
argument gets smaller. Saturation refers to a small derivative that re-
duces variation and information that extends to the next level (Bedi and
Toshniwal, 2019).

Furthermore, to solve the problem of training on a set of time series
with multivariate values, weights are applied from previous trainings to
all subsequent values in a cumulative effect. Some parameters that show
little importance for the model are eliminated. The importance in this
case is calculated as the difference in Root Mean Square. To measure the
importance of the variable, a large sample (150 time series) of x̂ data is
taken and the forecast of the ŷ model is calculated. Then, each variable xi
is measured (and only this variable) by a random normal distribution
centered at 0 on a scale of 1000 and the forecast yî is calculated. The final
effect of this disturbance is measured in terms of the RMS difference
between the original ŷ and the modified ŷ. The greater the difference in
RMS, the greater the importance of the variable. This improves the ac-
curacy of earlier models (Shea and Poast, 2018; Sun and Hong, 2017;
Tintelnot et al., 2017; Tomar and Gupta, 2020; Valta, 2012; Wei and
Yermack, 2011).

Electricity consumption in the UES of Russia in April 2020 decreased
by 2.9% (relative to April 2019). The article uses open statistics on
COVID-19 infections, data on the generation and consumption of elec-
tricity, as well as other related parameters to estimate future consump-
tion and production of electricity in Russia and its regions
(Mosteiro-Romero et al., 2017; Ni, 2019; Norouzi et al., 2020; O'Brien
et al., 2019; Oberfield, 2018).

The model is in two parts. The first model forecasts future quarantine
measures, which are tentatively expected to have the greatest impact on
electricity generation data. It is worth noting that in the case of a low
RMS difference for the quarantine measures index; this parameter can be
supplemented or replaced by another more significant one to improve the
forecasting accuracy. The secondmodel combines the data obtained from
the first and historical data on the energy industry in Russia and esti-
mates with some certainty the further actual and planned production of
electricity (Miller, 2007; Mohammadi and Taylor, 2017). It is proposed to
use open data and developments from Yandex as additional indexes of
mobility.
Moscow –3.60 –2.22 .46

St.
Petersburg

–1.16 –3.67 .89

Ekaterinburg –3.61 –3.67 .89

Nizhniy Novgorod –3.62 –2.00 .57

Source: Author calculation.
3.3. Models and data analysis procedure

Intuitionistic fuzzy sets (I) identify the membership (μIðϑÞÞ and non-
membership (nIðϑÞÞ degrees. Hence, more effective solutions can be
provided. These sets are shown in Eq. (1) (Alcantud et al., 2020).
3

I¼f〈ϑ; μIðϑÞ; nIðϑÞ〉 =ϑεUg (1)
In this context, the condition that should be satisfied is 0 � μIðϑÞþ
nIðϑÞ � 1.

Pythagorean fuzzy sets (P) demonstrate an extended fuzzy member-
ship grade as stated in Eq. (2) (Gao and Deng, 2021).

P¼f〈ϑ; μPðϑÞ; nPðϑÞ〉 =ϑεUg (2)

For this purpose, the condition in Eq. (3) should be met.

0�ðμPðϑÞÞ2 þðnPðϑÞÞ2 � 1 (3)

Q-rung orthopair fuzzy sets (q-ROFSs) is an extension of P and I. They
are often used in the case of an uncertainty problem in the complex
decision-making process. Eq. (4) explains these sets and Eq. (5) gives
information about the condition (Ali and Mahmood, 2020).

Q¼�
〈ϑ; μQðϑÞ; nQðϑÞ〉

�
ϑεU

�
(4)

0� �
μQðϑÞ

�q þðnQðϑÞÞq �1; q � 1 (5)

Figure 1 compares these fuzzy sets.
Eq. (6) indicates the degree of indeterminacy.

πQðϑÞ¼
��
μQðϑÞ

�q þ ðnQðϑÞÞq �
�
μQðϑÞ

�qðnQðϑÞÞq�1=q (6)

Themathematical details of these fuzzy sets are shown in Eqs. (7), (8),
(9), (10), and (11) (Lin et al., 2020).

Q1¼
�
〈ϑ;Q1ðμQ1

�
ϑ
�
;nQ1

�
ϑ
��
〉
�
ϑεU

�
andQ2¼

�
〈ϑ;Q2ðμQ2

�
ϑ
�
;nQ2

�
ϑ
��
〉
�
ϑεU

�
(7)

Q1�Q2 ¼
��

μqQ1
þ μqQ2

� μqQ1
μqQ2

	1=q
; nQ1nQ2



(8)

Q1�Q2 ¼
�
μQ1

μQ2
;
�
nqQ1

þ nqQ2
� nqQ1

nqQ2

	1=q



(9)



Table 2. Model performance for Long Short-Term Memory model.

RMSE MAPE PCC Accuracy (%) Horizon, days

1985 17.05 .01 82 30

2461 20.80 .24 79 60

2386 18.87 -.41 81 90

2584 40.70 -.21 59 120

2848 63.47 -.32 36 150

Source: Author calculation.

Table 3. Performance metrics of the LSTM model.

Parameter Coefficient SE z P>|z|

L1 ,3722 ,631 ,59 ,555

L2 -,1261 ,228 -,554 ,58

L3 -,8193 ,217 -3,776 0

L4 -,2614 ,39 -,671 ,502

L12 ,3132 ,167 1,878 ,06

L24 ,2908 ,219 1,325 ,185

L36 ,2798 ,233 1,201 ,23

Source: Author calculation.

Table 4. Model testing.

Ljung-Box (L1) (Q) ,12 Jarque-Bera (JB) ,09

Probability (Q) ,73 Probability (JB) ,96

Heteroskedasticity (H) 1,83 Skew -,06

Probability (H) (two-sided) ,1 Kurtosis 3,09

Source: Author calculation.
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λQ¼
�
1� �

1� μqQ
�λ	1=q

; ðnQÞλ ; λ > 0 (10)

� 


Qλ ¼
� �

μQ
�λ
;
�
1� �

1� nqQ
�λ 	1=q



; λ > 0 (11)

Eq. (12) is also considered for defuzzification.

SðϑÞ¼ �
μQðϑÞ

�q � ðnQðϑÞÞq (12)

The DEMATEL methodology calculates the items’weights. Therefore,
Figure 2. Actual vs. predicted forecast by the LSTM
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more essential factors can be identified. Firstly, the direct-relation matrix
is constructed by comparing the items with each other. Eq. (13) identifies
this matrix (Braga et al., 2021).

A¼

2
66664

0 a12 a13 ⋯ a1n
a21 0 a23 ⋯ a2n
a31 a32 0 ⋯ a3n
⋮ ⋮ ⋮ ⋱ ⋮
an1 an2 an3 ⋯ 0

3
77775 (13)

Secondly, this matrix is normalized by Eqs. (14) and (15) (Mao et al.,
2020).

B¼ A

max1�i�n
Pn
j¼1

aij
(14)

0� bij � 1 (15)

The total relation matrix is generated in the next step with the
following Eq. (16).

lim
k→∞

�
Bþ B2 þ…þ Bk� ¼ BðI � BÞ�1 (16)

The sums of rows and columns that are D ¼ ½dij�n�1 and E ¼ ½eij�1�n are
computed by Eqs. (17) and (18).

D¼
"Xn

j¼1

eij

#
nx1

(17)

E¼
"Xn

i¼1

eij

#
1xn

(18)

The sum of these values is used to define the significance of the items.
However, the causal relations are determined by considering the differ-
ence of these values and Eq. (19).

α¼

Pn
i¼1

Pn
j¼1

�
eij
�

N
(19)

TOPSIS makes an evaluation regarding the ranking of different al-
ternatives. Firstly, normalized values are calculated by Eq. (20) (Sałabun
et al., 2020).
model, MWh. Source: calculated by the authors.



Table 5. The criteria of COVID-19 and electricity generation.

Criteria of Energy Generation Definition

C1 Population

C2 Air Temperature

C3 Capacity of energy production

C4 Capacity of manufacturing industry

Criteria of COVID-19 Definition

C5 New Cases

C6 Total Infected People

C7 Death Rate

C8 Variants

Source: Author calculation.

C
7

C
8

M
3

D
M
1

D
M
2

D
M
3

D
M
1

D
M
2

D
M
3

H
H

H
M

M
M

H
H

H
H

H
H

M
M

M
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

M
H

H
M

H
H

M
M

M

H
H

H

J. An et al. Heliyon 8 (2022) e12345
rij ¼ XijffiffiffiffiffiffiffiffiffiffiffiffiPms (20)
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Secondly, the weighted values are computed with Eq. (21).

vij ¼wij � rij (21)

Then, the positive (Aþ) and negative (A�) ideal solutions are defined
with Eqs. (22) and (23).

Aþ ¼�
v1j; v2j;…; vmj

�¼�
max v1j for8j2 n

�
(22)

A� ¼�
v1j; v2j;…; vmj

�¼�
min v1j for8j2 n

�
(23)

Eqs. (24) and (25) are used to compute the distances to the best (Dþ
i )

and worst alternatives.

Dþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

�
vij � Aþ

j

	2

vuut (24)

D�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

�
vij � A�

j

	2

vuut (25)

In the final stage, the relative closeness to the ideal solutions (RCi) is
defined with Eq. (26) (Meshram et al., 2020).

RCi ¼ D�
i

Dþ
i þ D�

i
(26)

The proposed model has some novelties. In this model, SWARA
method is improved with the name of M-SWARA. With the help of this
improvement, impact relation map can be created. In addition to this
issue, in this proposed model, golden ratio is taken into consideration to
calculate the weights in bipolar q-ROFSs. Hence, these two new appli-
cations have an influence on the originality of the proposed model. On
the other side, considering q-ROFSs in the analysis process brings some
Table 6. Linguistic scales, membership and non-membership degrees for criteria
and alternatives.

Linguistic Scales
for Criteria

Linguistic Scales for
Alternatives

Membership
Degrees

Non-membership
Degrees

no (n) worst (w) .10 .90

some (s) bad (p) .30 .70

normal (m) normal (f) .60 .40

high (h) well (g) .80 .20

very high (vh) perfect (b) .90 .10

Source: Author calculation. Ta
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Table 8. Average fuzzy preferences for direct relation matrix.

- C1 C2 C3 C4 C5 C6 C7 C8

C1 .80 .80 .80 .67 .80 .80 .60

C2 .80 .60 .80 .60 .80 .80 .80

C3 .60 .87 .80 .80 .60 .60 .80

C4 .80 .80 .80 .60 .60 .80 .80

C5 .60 .80 .80 .60 .80 .80 .80

C6 .73 .80 .80 .60 .80 .73 .73

C7 .73 .73 .60 .73 .77 .80 .60

C8 .67 .80 .80 .67 .80 .67 .80

C: criterion.
Source: Author calculation.

Table 10. Score function values of q-rung orthopair fuzzy sets for the criteria.

C1 C2 C3 C4 C5 C6 C7 C8

C1 .000 .504 .504 .504 .259 .504 .504 .152

C2 .504 .000 .152 .504 .152 .504 .504 .504

C3 .152 .649 .000 .504 .504 .152 .152 .504

C4 .504 .504 .504 .000 .152 .152 .504 .504

C5 .152 .504 .504 .152 .000 .504 .504 .504

C6 .375 .504 .504 .152 .504 .000 .375 .375

C7 .375 .375 .152 .375 .438 .504 .000 .152

C8 .259 .504 .504 .259 .504 .259 .504 .000

C: criterion.
Source: Author calculation.

Table 11. Normalized relation matrix.

C1 C2 C3 C4 C5 C6 C7 C8

C1 .000 .172 .172 .172 .088 .172 .172 .052

C2 .172 .000 .052 .172 .052 .172 .172 .172

C3 .052 .221 .000 .172 .172 .052 .052 .172

C4 .172 .172 .172 .000 .052 .052 .172 .172

C5 .052 .172 .172 .052 .000 .172 .172 .172

C6 .128 .172 .172 .052 .172 .000 .128 .128

C7 .128 .128 .052 .128 .149 .172 .000 .052

C8 .088 .172 .172 .088 .172 .088 .172 .000

C: criterion.
Source: Author calculation.

Table 12. Total relation matrix.

C1 C2 C3 C4 C5 C6 C7 C8

C1 1.578 2.379 1.917 1.800 1.725 1.866 2.111 1.827

C2 1.685 2.166 1.779 1.749 1.652 1.821 2.064 1.863

C3 1.493 2.228 1.622 1.656 1.647 1.622 1.858 1.783

C4 1.672 2.306 1.858 1.605 1.643 1.715 2.050 1.859

C5 1.563 2.296 1.850 1.635 1.594 1.805 2.037 1.858

C6 1.618 2.292 1.849 1.635 1.733 1.655 2.000 1.818

C7 1.431 1.976 1.537 1.485 1.503 1.592 1.647 1.533

C8 1.580 2.279 1.837 1.656 1.723 1.728 2.025 1.697

C: criterion.
Source: Author calculation.

J. An et al. Heliyon 8 (2022) e12345
advantages. Because a wider space is used with q-ROFSs by comparing
with IFSs and PFSs, more precise results can be reached. Moreover, a
comparative evaluation has been performed by considering both IFSs,
PFSs and q-ROFSs.

4. Results

4.1. Analysis results for forecasting the energy generation

Themodel for forecasting electricity generation uses the time series of
each individual powerplant, consisting of 36 parameters, including:
installed capacity at the end of the reporting period, Gcal/hour; Fuel
consumption for production, thousand cubic meters; Natural gas; Cost of
fuel burned, thousand rubles; Coal, etc. Each of these parameters is
duplicated by its own data from the beginning of the year. As a result, the
model processes 76 parameters.

This model forecasts new cases of infections using 10 parameters,
including: new cases of infections (together with data for the last 1, 7 and
14 days), the index of quarantine measures (together with data for the
last 1, 7 and 14 days), the population of the country and its annual
growth.

The Quarantine Measures Index consists of the following data set,
collected from open sources, regarding the quarantine measures intro-
duced in each individual country, where:

0 – No restrictions on movement;
1 – Full or partial closure of borders with other countries;
2 – Restriction on mass gatherings and/or introduction of wearing

protective equipment;
3 – Restriction of being in living quarters.

The model for forecasting the impact of quarantine measures on the
number of new COVID-19 infections showed that there was no serious
slowdown in the spread of the pandemic in Russian cities in 2020 (Ap-
pendix A2-D2). Table 1 gives information about the t-statistics.
Table 9. Membership and non-membership degrees for the criteria.

- C1 C2 C3 C4

- μ v μ V μ V μ v

C1 .80 .20 .80 .20 .80 .20

C2 .80 .20 .60 .40 .80 .20

C3 .60 .40 .87 .13 .80 .20

C4 .80 .20 .80 .20 .80 .20

C5 .60 .40 .80 .20 .80 .20 .60 .40

C6 .73 .27 .80 .20 .80 .20 .60 .40

C7 .73 .27 .73 .27 .60 .40 .73 .27

C8 .67 .33 .80 .20 .80 .20 .67 .33

C: criterion.
Source: Author calculation.
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The model performance can be varied in short time (1–6 months)
periods. The random sample was selected from various term horizons
from one month to four months as in Table 2. The results show that error
values (1 month forecast) are consistent with low standard deviation. The
C5 C6 C7 C8

μ v μ v μ v μ v

.67 .33 .80 .20 .80 .20 .60 .40

.60 .40 .80 .20 .80 .20 .80 .20

.80 .20 .60 .40 .60 .40 .80 .20

.60 .40 .60 .40 .80 .20 .80 .20

.80 .20 .80 .20 .80 .20

.80 .20 .73 .27 .73 .27

.77 .23 .80 .20 .60 .40

.80 .20 .67 .33 .80 .20



Table 13. Criteria weights.

Criteria q-ROF DEMATEL DEMATEL

D E D þ E D-E Weighting
Results

D E D þ E D-E Weighting
Results

C1 15.204 12.621 27.825 2.583 .121 50.411 46.663 97.075 3.748 .122

C2 14.779 17.922 32.701 -3.144 .142 49.652 54.935 104.587 -5.282 .132

C3 13.910 14.249 28.159 -.339 .122 49.685 50.083 99.768 -.398 .126

C4 14.708 13.221 27.929 1.487 .121 49.619 47.481 97.100 2.138 .122

C5 14.639 13.219 27.858 1.420 .121 49.620 48.853 98.473 .767 .124

C6 14.599 13.804 28.402 .795 .123 50.434 48.238 98.672 2.195 .124

C7 12.704 15.792 28.497 -3.088 .124 47.374 51.166 98.540 -3.792 .124

C8 14.524 14.238 28.762 .286 .125 49.607 48.984 98.591 .624 .124

Criteria IF DEMATEL PF DEMATEL

D E D þ E D-E Weighting
Results

D E D þ E D-E Weighting
Results

C1 16.269 13.761 30.031 2.508 .121 16.269 13.761 30.031 2.508 .121

C2 15.820 18.909 34.729 -3.088 .140 15.820 18.909 34.729 -3.088 .140

C3 14.765 15.303 30.069 -.538 .122 14.765 15.303 30.069 -.538 .122

C4 15.724 14.317 30.040 1.407 .122 15.724 14.317 30.040 1.407 .122

C5 15.670 14.310 29.980 1.360 .121 15.670 14.310 29.980 1.360 .121

C6 15.765 14.848 30.613 .916 .124 15.765 14.848 30.613 .916 .124

C7 13.911 16.870 30.781 -2.959 .125 13.911 16.870 30.781 -2.959 .125

C8 15.685 15.290 30.975 .394 .125 15.685 15.290 30.975 .394 .125

C: criterion.
Source: Author calculation.
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accuracy for 1 month forecast in the RMSE is 81% and MAPE is at its
lowest level. It is clear that the LSTM model is accurate and stable in this
term.

The Random Forest regression model is supposedly effective in
forecasting the time series of electricity generation. Its estimation capa-
bilities are at least comparable with the ones achieved in other studies.
But its main advantage for this paper is the ability to indicate low-impact
datasets, which might be as important for forecasting electricity gener-
ation on the base of mobility impact as a complex multi-layer structure of
the tree-based ensemble. The most influential feature of urban mobility
in this study are COVID-19 measures.

Since the paper uses LTSM as the base classifier, it would be necessary
to pay attention to the selection and optimal final tuning hyper-
parameters (Table 2), such as:

1. number of trees,
2. levels,
3. cases in the leaves,
4. number of features in random subsample.

Various combinations of L1-L4, L12, L24, L36 time lags were improved
for the Trees Regressor model by training the LSTM models (Table 3).
Results suggest using only 7 lagged variables as features or a combination
of lagged features with similar performance for the LSTM model.

To investigate the parameters of the model, a set of statistical tests
and additional parameters can be used (Table 4): the Ljung-Box, Jarque-
Bera, Probability, Heteroskedasticity, Skew and Kurtosis.
Table 14. Alternative cities for evaluating the COVID-19 and electricity gener-
ation criteria.

Alternative Set Cities

Alternative 1 (A1) Moscow

Alternative 2 (A2) St. Petersburg

Alternative 3 (A3) Nizhny Novgorod

Alternative 4 (A4) Yekaterinburg

Source: Author calculation.
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The Ljung-Box, Jarque-Bera, Skew and Kurtosis tests can characterize
a significant level of model accuracy during instability. Table 2 shows the
average values of the tests. In addition, the indicators of Probability and
Heteroskedasticity prove the stability of modeling, confirming the results
[31, 32].

The selection approach may not have the biggest advantage in terms
of error, accuracy, and overall specification. However, it provides a good
measure of the mobility data influence on energy generation and helps to
improve the efficiency of forecasting models, which may be used in the
future to estimate the urban mobility impact on energy generation.

The comparison of actual energy data against the predicted energy
value by the LSTMmodel for the period from 2012 to 2019 for a 1-month
prediction can prove high quality of validation. Figure 2 shows good
accuracy and good fine tuning for the 1-month term horizon.

If a country does not have its own energy resources, it is forced to
import it from abroad. This situation creates other problems for the
country's economy. A country forced to import energy from abroad faces
political risks. In addition to the aforementioned issue, payment for en-
ergy purchased from abroad is made in foreign currency.

This situation leads to the country accepting currency risks. Finally,
the increase in energy imports negatively affects the country's trade
balance. Subsequently, the country's economic fragility is increased.
Therefore, solving this problem is vital for the country's sustainable
economic development against the backdrop of COVID-19. Given this
information, it is clear that the subject of the project is of high scientific
quality (Oksuz and Ugurlu, 2019; Ortigueira-S�anchez, 2016; Pappalardo
et al., 2015; Pierce and Schott, 2016; Reinhart et al., 2013).
4.2. Q-ROF hybrid decision making approach for the validation

Firstly, the criteria of pandemics and electricity generation are
weighted with Q-ROF DEMATEL. For this purpose, the criteria of COVID-
19 and electricity generation are defined as in Table 5.

The population has an increasing impact on energy generation.
Moreover, the capacity of energy production and manufacturing industry
is quite significant with respect to the energy generation. Table 5 also
indicates that the COVID-19 process affects this situation. Within this
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framework, new cases, total infected people, death rate and variants are
taken into consideration. Linguistic scales are defined in Table 6 and
evaluations for the criteria are given in Table 7.

There are four classification parameters for proposed modelling: lin-
guistic scales degrees for criteria and alternatives, membership and non-
membership degrees. In Table 7, the linguistic evaluations are obtained
with the values stated in Table 6.

Average fuzzy preferences for direct relation matrix are stated in
Table 8.

Average fuzzy preferences for direct relation matrix show that Pop-
ulation, Air Temperature, Capacity of energy production, Capacity of
manufacturing industry, New Cases, Total Infected People, Death Rate,
Variants are in corridor from 0.60 to 0.80. Membership and non-
membership degrees are shown in Table 9 for the criteria.

Membership and non-membership degrees for Population, Air Tem-
perature, Capacity of energy production, Capacity of manufacturing in-
dustry, New Cases, Total Infected People, Death Rate, Variants show that
are in corridor from 0.20 to 0.80. The score function values of q-rung
orthopair fuzzy sets are demonstrated in Table 10.

Score function values of q-rung orthopair fuzzy sets for Population,
Air Temperature, Capacity of energy production, Capacity of
manufacturing industry, New Cases, Total Infected People, Death Rate,
Variants are in corridor from 0.152 to 0.649. Normalized matrix is
computed as in Table 11.

Normalized relation matrix shows the power of connection between
Population, Air Temperature, Capacity of energy production, Capacity of
manufacturing industry, New Cases, Total Infected People, Death Rate,
Variants. Total relation matrix is constructed as in Table 12.

Criteria weights are computed in the final stage, and they are given in
Table 13.

DEMATEL matrix shows the criteria weights between Population,
Air Temperature, Capacity of energy production, Capacity of
manufacturing industry, New Cases, Total Infected People, Death Rate,
Variants. Table 13 indicates that air temperature has the highest
weight regarding energy generation. This result is the same for all
different analyses. Therefore, it is concluded that the analysis results
are coherent and reliable. It is very important to determine the amount
of energy to be produced. Otherwise, the energy that meets the de-
mand will not be produced and this will lead to a decrease in energy
efficiency. According to the analysis results obtained in this study, the
air temperature is the variable that most affects this process. In this
context, future forecasts for air temperature should be taken into
consideration. This will contribute to a more accurate determination of
the amount of energy production. In the second stage, alternative cities
are ranked with respect to the COVID-19 and electricity generation
criteria using QROF-TOPSIS. In the first stage, alternative cities are
defined in Table 14.

Linguistic evaluations for the alternative cities are given in Table 15.
Thirdly, the membership and non-membership degrees for the deci-

sion matrix are indicated in Table 16.
Table 17 explains the details of the score functions.
Normalized decision matrix is constructed as in Table 18.
Weighted decision matrix is constructed as in Table 19.
Table 20 indicates the important values of Q-ROFSs.
Comparative ranking results of the alternative cities are identified in

Table 21.
St. Petersburg is ranked first whereas Yekaterinburg takes the second

place. The findings are the same for all different evaluations. This situ-
ation demonstrates that the analysis results are quite reliable.

5. Discussion

This paper proves that automated mobility forecasting via machine
learning algorithms is very effective for sustainable energy production in
Russia (O'Brien et al., 2019; Oberfield, 2018). Thus, the article de-
termines the impact of the population's mobility within each individual



Table 16. Membership and non-membership degrees for the decision matrix.

C1 C2 C3 C4 C5 C6 C7 C8

μ v М v μ v μ v μ V μ V μ v М v

A1 .67 .33 .73 .27 .60 .40 .80 .20 .60 .40 .60 .40 .83 .17 .67 .33

A2 .77 .23 .73 .27 .60 .40 .67 .33 .73 .27 .67 .33 .60 .40 .80 .20

A3 .80 .20 .80 .20 .60 .40 .60 .40 .60 .40 .80 .20 .67 .33 .60 .40

A4 .83 .17 .67 .33 .50 .50 .83 .17 .67 .33 .90 .10 .80 .20 .60 .40

C: criterion; A: alternative.
Source: Author calculation.

Table 17. Score function values with q-rung orthopair fuzzy sets for the
alternatives.

C1 C2 C3 C4 C5 C6 C7 C8

A1 .259 .375 .152 .504 .152 .152 .574 .259

A2 .438 .375 .152 .259 .375 .259 .152 .504

A3 .504 .504 .152 .152 .152 .504 .259 .152

A4 .574 .259 .000 .574 .259 .728 .504 .152

C: criterion; A: alternative.
Source: Author calculation.

Table 19. Weighted decision matrix.

Criteria/
Alternatives

C1 C2 C3 C4 C5 C6 C7 C8

A1 .034 .069 .071 .075 .036 .020 .087 .053

A2 .058 .069 .071 .038 .090 .034 .023 .104

A3 .066 .092 .071 .022 .036 .067 .039 .031

A4 .076 .047 .000 .085 .062 .096 .076 .031

C: criterion; A: alternative

Source: Author calculation.

Table 20. The values of Dþ, D-, RCi with Q-ROFSs.

Alternatives Dþ D- RCi

A1 .117 .113 .492

A2 .105 .121 .536

A3 .123 .102 .453

A4 .115 .122 .515

A: alternative.
Source: Author calculation.
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city on the local spread of COVID-19. After the validation of this model, it
becomes possible to add several new parameters, such as movement
between settlements and the associated forecast of new outbreaks of the
coronavirus infection.

Firstly, this paper fills the gap of the problem of determining the most
important factors consequential to human mobility and energy con-
sumption in Russian cities. To achieve this goal, machine learning
techniques are considered. As a result, the analysis identifies the key
problems that affect people's mobility during a pandemic. Thus, this
paper proves the present proposals for solving the problems of this
research (Remmen et al., 2018).

Secondly, the indicators of energy consumption of the countries are
determined. The future energy consumption of countries is estimated
using econometric methods. These estimates are compared with energy
consumption in Russian cities. As a result, this study helps future re-
searchers to determine the amount of additional energy necessary for
recovery. In turn, it becomes possible to develop solutions to meet this
additional energy demand of Russian cities (Remmen et al., 2018).

Furthermore, a high accuracy model for new cases of COVID-19 will
provide insight into the impact on energy efficiency (Huang et al., 2020;
Mikhaylov, 2018, 2021).

As shown in Appendix 3-4, the mobility in Russian cities (Moscow, St.
Petersburg, Nizhny Novgorod, Yekaterinburg) is quantified. The largest
contribution to forecasting dynamic mobility is made by data related to
daily confirmed cases of the disease in Russian cities and the restrictive
policies of the Russian government.

It is possible that people are sensitive to news of confirmed cases of
COVID-19. They themselves actively restrict travel and maintain social
distancing. Among various public policy measures, orders to restrict
restaurant operations and to stay at home make the largest contribution
Table 18. Normalized decision matrix.

Criteria/
Alternatives

C1 C2 C3 C4 C5 C6 C7 C8

A1 .282 .483 .577 .614 .301 .163 .699 .428

A2 .477 .483 .577 .316 .744 .277 .185 .831

A3 .549 .649 .577 .185 .301 .539 .316 .251

A4 .625 .334 .000 .699 .514 .779 .614 .251

C: criterion; A: alternative.
Source: Author calculation.
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to forecasting dynamic mobility indicators. It is worth noting that the
model achieves maximum efficiency when applied in forecasting
regarding a 1-month time period, which imposes difficulty on practical
application (Mosteiro-Romero et al., 2017). Nevertheless, the model does
not find price shocks. It is not able to forecast quick market crashes (e.g.,
the decline in prices related to COVID-19) (Ni, 2019; Norouzi et al.,
2020).

These results contribute to tree-based machine learning forecasting
approaches for energy production.

Furthermore, another evaluation is also conducted by using the
hybrid fuzzy decision-making model. In this regard, q-ROF DEMATEL
and TOPSIS methods are taken into consideration. Additionally, a
comparative evaluation is performed with the help of Intuitionistic and
Pythagorean fuzzy sets. The results are quite similar. This situation gives
information that the findings are reliable and coherent. It is identified
that air temperature has the highest weight regarding the energy gen-
eration. Furthermore, St. Petersburg is ranked first, whereas Yekaterin-
burg takes the second place.
Table 21. Comparative ranking results of the alternative cities.

Alternatives q-ROF
DEMATEL-TOPSIS

PF
DEMATEL-TOPSIS

IF
DEMATEL-TOPSIS

A1 3 3 3

A2 1 1 1

A3 4 4 4

A4 2 2 2

A: alternative.
Source: Author calculation.
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The important issue in energy production is that the amount of pro-
duction is proportional to the demand. If less energy is produced than is
in demand, customer dissatisfaction will occur. However, energy pro-
duced far above the demand will not be purchased by customers. This
situation will cause significant losses and damage to energy companies.
Therefore, it is necessary to determine the energy demand in this process.
For this purpose, it is necessary to predict the energy demand by making
a comprehensive analysis. According to the analysis results of this study,
the amount of COVID-19 cases should be taken into consideration in this
process. In other words, the factor that should be considered the most
when projecting energy demand is the COVID-19 cases expectations for
the future.

These contributions close the gap in creation of effective forecasting
model (during the COVID-19 pandemic) for electricity consumption in
major cities around the world. The models (Askitas et al., 2021; Liu
et al., 2022; S�anchez-L�opez et al., 2022) based on the factors deter-
mining the diffusion of COVID-19 and suggested strategy to prevent
future accelerated viral infectivity. But this model can be used for
created energy consumption scenarios in Europe, Malaysia, China,
England, Germany and Japan like in previous papers (Flaxman et al.,
2020; Diao et al., 2021; Toosty et al., 2022; Wen et al., 2022; Ueno,
2022).

6. Conclusions

As a result of the increased mobility of the population in large cities,
energy consumption is also growing. This situation creates negative
consequences for the country's economy. If the growth in energy con-
sumption exceeds the country's energy supply, then certain problems
may arise. Electricity is an urgent need for any country.

The SWARA method has new applications have an influence on the
originality of the proposed model: (1) considering q-ROFSs in the anal-
ysis process brings some advantages, (2) wider space is used with q-
ROFSs by comparing with IFSs and PFSs, more precise results can be
reached.

This study identifies factors influencing the spread of COVID-19
based on the theory of "broken windows" and outlines directions in
limiting population mobility, which can form the basis of state policy.
This study contributes to scientific literature by examining the negative
impact of the spread of the COVID-19 pandemic on energy markets. The
theoretical basis for this question is as follows: with no restrictions, the
citizens who panicked during the COVID-19 outbreak are increasing
mobility in big cities. This situation causes problems in many aspects.
One such problem concerns the energy sector.

Therefore, the country must meet this excessive energy demand.
This situation causes additional costs. By analyzing the impact on
electricity generation and consumption, this study complements the
analysis of the implications for government authorities. The main
contribution of this study is to conduct an evaluation by using both
quantitative methods and fuzzy decision-making methodology. Hence, it
is possible to test the validity of the analysis results. Nevertheless, the
main limitation of this study is examining only Russia. Hence, in the
future studies, different countries can be taken into consideration. The
area for future research is in the evaluation of the COVID-19 macro
effect for developed and emerging markets and micro effect on energy
companies.
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