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ABSTRACT

In every aspect of scientific research, model predictions need calibration and validation as their representativity of the record measurement.

In the literature, there are a myriad of formulations, empirical expressions, algorithms and software for model efficiency assessment. In gen-

eral, model predictions are curve fitting procedures with a set of assumptions that are not cared for sensitively in many studies, but only a

single value comparison between the measurements and predictions is taken into consideration, and then the researcher makes the decision

as for the model efficiency. Among the classical statistical efficiency formulations, the most widely used ones are bias (BI), mean square error

(MSE), correlation coefficient (CC) and Nash-Sutcliffe efficiency (NSE) procedures, all of which are embedded within the visual inspection and

numerical analysis (VINAM) square graph as measurements versus predictions scatter diagram. The VINAM provides a set of verbal interpret-

ations and then numerical improvements embracing all the previous statistical efficiency formulations. The fundamental criterion in the

VINAM is 1:1 (45°) main diagonal along which all visual, science philosophical, logical, rational and mathematical procedures boil down

for model validation. The application of the VINAM approach is presented for artificial neural network (ANN) and adaptive network-based

fuzzy inference system (ANFIS) model predictions.
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HIGHLIGHTS

• Objective assessment of model efficiency is presented by means of a new approach named visual inspection and numerical analysis

method (VINAM).

• The visual inspection and validation are possible by means of square template.

• The VINAM provides a set of verbal interpretations and subsequent significantly numerical improvements.

• The proposed VINAM methodology improves all suggested model efficiency metrics.
LIST OF ABBREVIATIONS

The following symbols are used in this paper:
Acronym
This is an Op
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Definition

ANFIS
 Adaptive network-based fuzzy inference system

ASCE
 American Society of Civil Engineering

ANN
 Artificial neural network

BI
 Bias

R2
 Coefficient of determination

CC
 Correlation coefficient

DWST
 Domestic water storage tank

FR
 Failure Ratio

d
 Index of agreement

KGE
 Kling-Gupta efficiency

MSE
 Mean square error

MPD
 Mean pipe diameter
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Multi-input multi-output

NSE
 Nash-Sutcliffe efficiency

NL
 Network length

NRW
 Non-revenue water

NSCF
 Number of service connection failure

NJ
 Number of junctions

NNF
 Number of network failure

PBI
 Percent Bias

PME
 Persistence model efficiency

RSR
 RMSE-observation standard deviation ratio

RMSE
 Root mean square error

VINAM
 Visual inspection and numerical analysis

WDQ
 Water demand quantity

WM
 Water meter
INTRODUCTION

Models are the reflection tools of the reality for simulation, prediction, automation and optimum management studies at the

service to men, and they are required to produce outputs as close as possible to the measurements in an efficient manner.
Whatever are the model types (analytical, probabilistic, statistical, stochastic or numerical) in practical studies, there are
two sequences for comparison as the measurement series and corresponding model prediction series.

In general, the model predictions are related to measurements through a curve fitting methodology based on the least

square analysis of some type. There are also other versions including empirical relationships, stochastic and more complex
numerical solution algorithms. All these techniques have a visual basis, which can be appreciated by means of shapes in the
forms of mathematical functions, flow charts, geometry, algorithms, and block diagrams. Any idea based on a geometrical

shape provides visual inspections, examinations and inference deductions, perhaps at early stages verbally, but such state-
ments can be converted to mathematical expressions after understanding the science philosophical, logical and rational
fundamentals. Human philosophical thinking and logical rational trimming of blurted ideas lead to a set of logical rule

bases, which are precedencies of mathematical equations and expressions by a set of convenient symbols.
In scientific researches, one is interested in relating measurements to model prediction outputs, which may be in the forms

of single-input single-output (SISO) or various versions as multi-input multi-output (MIMO) models. In the literature, there is
a set of standard coefficients that provides agreement between measurements and predictions through a set of single par-

ameter values. In most of the cases, authors report that their model is suitably based on the comparison of statistical
parameters composed of measurement and model output data series by consideration of one or few of the well-established
agreement or association metrics among which the most commonly used, accepted, and recommended ones are bias (BI),

Percent Bias (PBI), coefficient of determination (R2), mean square error (MSE) or root mean square error (RMSE), corre-
lation coefficient (CC), Nash-Sutcliffe efficiency (NSE) and index of agreement (d) (Pearson 1895; Nash & Sutcliffe 1970;
Willmott 1981; Santhi et al. 2001; Gupta et al. 2002; Moriasi et al. 2007; Van Liew et al. 2007; Özger & Kabatas ̧ 2015;
Tian et al. 2015; Zhang et al. 2016; Dariane & Azimi 2018).

In the literature, there are also other versions such as the modified index of agreement (d1) (Legates & McCabe 1999),
prediction efficiency (Pe) as explicated by Santhi et al. (2001), persistence model efficiency (PME) (Gupta et al. 2002),
RMSE-observation standard deviation ratio (RSR) as given by Moriasi et al. (2007), and Kling-Gupta efficiency (KGE),
measured by Gupta et al. (2009).

As stated by McCuen & Snyder (1975) and Willmott (1981) almost all the models have elusive predictions, which cannot
be covered by the model efficiency measures and even, in general, by significance tests. Freedman et al. (1978) have men-

tioned that the statistical significance tests are concepts that must be viewed with skepticism. Along the same line,
Willmott (1981) stated that it may be appropriate to test an agreement measure and report the value of a test statistic at a
significance level, but the distinction between the significant and insignificant levels is completely unjustified. For instance,

if the significance level is adapted as 0.05 then what are the differences, say, among 0.049, 0.048, 0.047 and 0.051, 0.052 and
0.053? Additionally, such significance levels depend on the number of data for depiction of the most suitable theoretical prob-
ability distribution function (PDF).
line.com/ws/article-pdf/22/1/589/992984/ws022010589.pdf
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Even though ASCE (1993) accentuate the need to explicitly define model evaluation criteria, no widely accepted guidance

has been established, but a few performance ratings and specific statistics have been used (Saleh et al. 2000; Santhi et al.
2001; Bracmort et al. 2006; Van Liew et al. 2007).

For a more objective assessment of model efficiency, calibration and validation, measurement association and comparison

visual inspections must be preliminary conditions for better insights, interpretations and model modification possibilities. The
basic statistical parameters such as arithmetic averages, standard deviations, and regression relationship between the
measurement (independent variable) and model prediction (dependent variable) data through the scatter diagram are very
important ingredients even for visual inspection to identify systematic and random components. Unfortunately, most often

the model efficiency measure is obtained by available software, which does not provide any informative detailed visual
inspection and assessment.

Even though there is extensive literature on model calibration and validation, it is difficult to compare the modeling results

(Moriasi et al. 2012). Numerous models of calibration and validation have been the subject of discussion by scientists and
experts (ASCE 1993; Van Der Keur et al. 2001; Li et al. 2009; Mutiti & Levy 2010; Palosuo et al. 2011; Moriasi et al.
2012; Zhang et al. 2012; Harmel et al. 2013; Ritter & Muñoz-Carpena 2013; Pfannerstill et al. 2014; Larabi et al. 2018;
Rujner et al. 2018; Swathi et al. 2019).

The main purpose of this paper is to present visual inspection and numerical analysis (VINAM) methodology for effective
model efficiency and ideal validation, and if necessary, modification or calibration of the model predictions to comply with

the measurements. The visual inspection and validation are possible by means of a square template. It includes all basic infor-
mation clearly in an objective manner first for verbal, science, philosophical, logical and rational inferences, which are then
translatable to mathematical symbolic equations. The proposed VINAM methodology improves all suggested model effi-
ciency metrics that are available in the literature.
METHODOLOGY

Statistical efficiency formulations

In the literature, all model efficiency standard indicators are dependent on three basic statistical parameters, among which
are the arithmetic averages of the measurements, �M, and model predictions, �P; standard deviations, SM and SP, and the
cross-correlation, CM,P, between measurement and model prediction sequences. Additionally, the regression line between
the measurements and predictions has two parameters as intercept, I, or regression line central point ( �M and �P) coordinates

and the slope, S.
The simple and necessary, but not enough mathematical efficiency measure is the bias, BI, which measures the distance

between the measurements and model predictions as:

BI ¼ 1
n

Xn
i¼1

(Pi � M_I) ¼ �P� �M (1)

The ideal value for model efficiency is BI¼ 0; although this condition is necessary, but not enough. The second measure is
the mean square error (MSE),

MSE ¼ 1
n

Xn
i¼1

(Pi � M_I)
2 (2)

The ideal value is MSE¼ 0, but this condition is not valid in any hydro-meteorological model efficiency because there are

always natural random errors. This is the main reason why the best model MSE should have the minimum level among all
other alternatives. Equation (2) includes implicitly the standard deviations and the cross-correlation between the measure-
ments and predictions.
://iwaponline.com/ws/article-pdf/22/1/589/992984/ws022010589.pdf
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The Nash-Sutcliffe efficiency (NSE) measure includes the MSE with the standard deviation of the measurement data ratio

as follows:

NSE ¼

Pn
i¼1

(Mi � �M)
2 � Pn

i¼1
(Pi �Mi)

2

Pn
i¼1

(Mi � �M)
2

¼ 1�

Pn
i¼1

(Pi �Mi)
2

Pn
i¼1

(Mi � �M)
2

(3)

The second term on the r.h.s is greater than 1, hence NSE has negative values. The ideal value of NSE is 1, but this is never
verified in practical applications, and therefore, the closer the value is to 1, the better is the model efficiency.

As for the cross-correlation, CC, between the measurement and prediction can be calculated as:

CC ¼

Pn
i¼1

(Mi � �M)(Pi � �P)

SMSP
(4)

On the other hand, the straight-line regression intercept, I, and slope, S, values can be calculated according to the following
expressions:

�P ¼ S �Mþ I (5)

and

S ¼
n
Pn
i¼1

PiM
i�

Pn
i¼1

Pi

Pn
i¼1

Mi

n
Pn
i¼1

M2
i �

Pn
i¼1

Mi

� �2 (6)

respectively.
Apart from the above model efficiency measurements, there are others, which have been suggested for their rectification.

One of the first versions is due to Willmott (1981), who gave agreement index d as:

d ¼ 1�

Pn
i¼1

(Pi �Mi)
2

Pn
i¼1

(jP0
ij þ jM0

ij)
2

(7)

where P
0
i ¼ Pi � �P andM

0
i ¼ Mi � �M are the deviations from the respective arithmetic averages. The expression in the dominator

is referred to as the potential error (PE). The significance of d is that it measures the degree to which model predictions are error

free, and its values vary between 0 and 1; where 1 represents the perfect agreement between the measurements and predictions,
which is never possible in practical applications, and therefore, the researchers take the closest value to d¼ 1 as the model effi-
ciency acceptance, but there is no criterion that indicates objectively the limit value between acceptance and rejection, and hence,

there appears subjectivity as in other efficiency measures. Equation (7) can be rewritten in terms of the MSE as follows.

d ¼ 1� nMSE
PE

(8)

Equations (1)–(8) include all the necessary numerical quantities that are useful in the construction of the VINAM template

as will be explained and applied in the following sections.

Square graph for visual inspection and numerical analysis method (VINAM)

For visual inspection of the model predictions associated with the measurements, one can regard the measurements as inde-
pendent variables, predictions as dependent variables and plot them on a coordinate system. In the case of an ideal match
om http://iwaponline.com/ws/article-pdf/22/1/589/992984/ws022010589.pdf
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Figure 1 | Square template for VINAM.
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between the two series, one expects that they fall on the 1:1 (45°) straight line, which appears as the diagonal straight-line on
the square template graph as in Figure 1. This straight-line divides the square area into two half triangles with the upper
(lower) one representing complete model over-estimation (under-estimation) domain provided that all scatter points fall com-

pletely in either of these triangles. It is also possible that the scatter points may have positions partially in each triangle, in
which case the model has some points as over-estimation and others as under-estimation. The mathematical expression of
the ideal model efficiency case as 1:1 line is:

Pi ¼ Mi (9)

In Figure 1, a and b coefficients correspond to the minimum and maximum values among the measurements and
predictions.

The most significant feature of a square template is in its ability to reflect almost all the previously defined efficiency criteria
properties in a single graph. For instance, in Figure 2(a), the scatter of points is shown in the upper triangular area (over-esti-
mation), but there is no linear trend between the measurements and prediction scatter points, which are randomly distributed.

This provides the message that the model is not capable of representing the measurements at all. It is necessary to try and
model the measurements with another suitable model, which must yield at least some consistency among the scatter points.

For instance, in Figure 2(b), the scatter points have a linear tendency, which is the first indication that the model for pre-

dictions is suitable, because the scatters are around a regression line. The following features are the most important
information pieces in this figure:

(1) The centroid point ( �M and �P) on the regression line is at a distance, D, from the ideal prediction line,
(2) The same straight-line has a slope, S, with the horizontal axis the value of which can be calculated from Equation (6),
(3) The model regression straight-line in the figure has an intercept, I, on the vertical axis. It also crosses from the centroid ( �M

and �P) point.

(4) The straight-line passes through the centroid point which implies Equation (5),
(5) After the regression straight-line expression determination, one can calculate the vertical deviations of each scatter point

from the ideal prediction line, which constitute the error sequence, 1i.

Tian et al. (2015) suggested representing the straight line without any visual explanation as follows as (their Equation (10)
with notations in this article):

Pi ¼ SMi þDþ 1i (10)

which is exactly the reflection of the regression line in Figure 2(b). According to them, S is the scale error, and D is the con-
stant or displacement error, but in this paper, they are referred to as the rotational error and shift error, respectively. It is
://iwaponline.com/ws/article-pdf/22/1/589/992984/ws022010589.pdf



Figure 2 | Measurement and prediction scatter points in the various VINAM templates.
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obvious from Figure 2(b) that each of these are systematic deviations from the ideal prediction line and therefore, each is a

systematic deviation, but their summation is total systematic error. They have significant duties, as will be explained in Sec-
tion 4. No need to say, Figure 2(c) is the under-estimation alternative of Figure 2(b), and the same quantities are also available
in this figure. Equation (10) is also valid for this case, but with opposite shift error.

Figure 2(d) and 2(e) is for the partial model over-estimation (under-estimation) case, where the central point of the regression
line centroid coincideswith the ideal prediction line (D¼ 0), and away from the ideal line, respectively. In the former case, there
is no shift error, and for the other case everything is self-explanatory under the light of the above explanations.

According to the suggested template and algorithm, the measurement data is accepted as constant, and it is tried to system-

atically approach the predictions to these measurement data or to define the recalibration operation between the obtained
model results and the measurement to obtain the best and optimum efficiency model. When the measurement data accepted
as an independent variable is shown on the horizontal axis, and the prediction data that we can accept as a dependent vari-

able on the vertical axis, the rotation and translation can be achieved by performing mathematical operations sequentially. In
this way, a model prediction or calibration that is closer to actual measurement values is made by reducing systematic errors.
In this case, a distortion occurs due to the change in the vertical distances with the ideal line as a result of these operations.

This result is unavoidable to make better predictions. Thanks to the new approach in this study, the optimization of total ver-
tical changes has been achieved by taking all available data into account. The positive contribution of the suggested method is
seen by controlling the obtained results through the six different performance indicators.
Model modification

After all explanations in the previous section, an important question is, ‘is it possible to improve the model performance, and
how to increase its efficiency?’. The best and optimum efficiency is possible after shift and rotation operations on the VINAM
template regression line. The following steps are necessary for arriving at the best solution:

(1) Shifting operation of the central regression point vertically such that it sits on the ideal prediction line (1:1). Only vertical
shifts are possible for keeping the measurements as they are,

(2) After the shifting, the regression line is rotated according to the rotation angle as (1-S), so that the regression line
coincides with the ideal prediction line (1:1),

(3) These two operations are preferable if there is no other choice to get the VINAM regression line to coincide with the ideal

prediction line.

In shifting operation, there is no problem, because the whole scatter points are moved by the amount of D downwards or

upwards. The shifting operation mathematical expression is:

P
0
i ¼ Pi +D (11)

As for the rotation operation, the horizontal locations of each scatter point must remain the same, so as not to disturb

measurement values. Such a rotation can be achieved by means of the following expression where P00
i is for final data:

P
00
i ¼ Pi � I� SMi (12)

The method suggested in this study aims to improve the model performances by reducing the differences between the sys-

tematic errors in the model prediction results and the predictive measurements. When the accuracy and reliability levels are
analyzed, it is seen that there are systematic and random errors between the predictions and measurements. These errors vary
depending on certain factors such as the experience of the modeler, the data quality, and the selected methodology. The error
evaluation can be made according to the ideal line given in the Square template described in Figure 1, which is frequently

preferred in studies, in addition to various performance indicators. When the first results of model studies are evaluated, it
is seen that different alternatives may arise (Figure 2). The vertical differences of the prediction results are composed of
the consistent difference between the mean values of the measurement and prediction, the angle between the 1:1 ideal

line is expected to be between the model and the prediction, and the regression line is obtained according to the least-squares
between the model and the prediction, and finally random differences. These three components showing the quality, accu-
racy, and reliability of the model vary depending on the established model, the used data, and the selected method, and so
://iwaponline.com/ws/article-pdf/22/1/589/992984/ws022010589.pdf



Water Supply Vol 22 No 1, 596

Downloaded fr
by guest
on 14 Decemb
on. The model performances depending on the first two components can be improved significantly through the suggested

method. Therefore, the two important steps including the shift and rotation operations were described in this study. The
model design needs to be revised to improve the model performance by developing the third component prediction.

RESULTS AND DISCUSSION

In the Appendix-A, the necessary software is given for the application of all VINAM steps. The applications of the VINAM
procedure are presented for two well-known models, which are the artificial neural network (ANN) and adaptive network
based fuzzy inference system (ANFIS). These applications are based on the water losses measurement in potable water dis-
tribution systems, for which water loss predictions are among the most important issues of water stress control (Şism̧an &

Kizilöz 2020a). The most important component in the evaluation of a water distribution system with regards to water
losses is the non-revenue water (Kanakoudis & Muhammetoglu 2014; Boztas ̧ et al. 2019; Şism̧an & Kizilöz 2020b; Kizilöz
& Şism̧an 2021). Jang & Choi (2017) built a model to calculate the NRW ratio of Incheon, Republic of Korea, by means of

ANNmethodology. When the best model was examined, R2 was obtained as 0.397. It is seen that the models can be improved
when the measurement values and model projections scatter plots appear along a regression line, as already explained in
Figure 2.

The NRW ratio estimates are modeled through ANN and ANFIS for Kocaeli district, Turkey, and the implementation of the
suggested VINAM method is carried out on similar model outputs for further improvements.

A total of eight models (four ANN and four ANFIS) with nine input measurements are developed through the modeling
procedures. Water demand quantity, domestic water storage tank, number of network failure, number of service connection

failure and failure ratio, network length, water meter, number of junctions, and mean pipe diameter are the model input par-
ameters. All models are validated by the VINAM approach, and the model efficiency evaluations are carried out through
statistical values according to BI, MSE, CC, R2, d and NSE.

For ANN model performance, 55% of the available data is arranged as training, 35% as validation and 10% as testing.
These models are developed with one hidden layer including four neurons and feed forward back propagation training pro-
cedure with support of the Levenberg-Marquardt back propagation algorithm (Coulibaly et al. 2000; Kermani et al. 2005;
Kızılöz et al. 2015; Rahman et al. 2019; Şism̧an & Kizilöz 2020a, 2020b).

As for the ANFIS model implementation, 66% of the obtained data are taken as training and the remaining 34% for vali-
dation (testing) purposes. For this model, various membership functions (MFs) are considered as triangular (Trimf), Gaussian

bell-shaped (gbellmf) and trapezium (trammf) with ‘low’, ‘medium’, and ‘high’ linguistic terms. The statistical properties of
input components and model outputs are given in Table 1 for ANN and ANFIS models.

The resultant VINAM graphs are presented in Figure 3 for ANN model versions, with the model’s efficiency classical and
VINAM improvements in Table 2.

In this study, the NRW prediction rate of the selected model was calculated over nine different parameters through the
ANN and ANFIS methodologies. The performance indicator results of the NRW rate predictions, which are made through
three different combinations of input parameters given in Table 2, are available and it seems that the model results are not at

the desired level. On the other hand, when the NRW rate predictions are analyzed through the Square template described in
Figure 1, it is seen that the combinations determined by certain systematic errors can make good predictions. So, a
Table 1 | Input-output parameters

Model parameters Range Unit

Input Water demand quantity WDQ 315.445–2.844.526 m3

Domestic water storage tank (Şism̧an & Kizilöz 2020a) DWST 4000–85.901 m3

Number of network failure NNF 34–628 Number
Number of service connection failure NSCF 23–541 Number
Failure Ratio FR 0.01–3.43 –

Network length (Şism̧an & Kizilöz 2020a) NL 306–1600 km
Water meter (Şism̧an & Kizilöz 2020a) WM 15.124–160.135 Number
Number of junctions (Şism̧an & Kizilöz 2020a) NJ 9.616–52.565 Number
Mean pipe diameter (Şism̧an & Kizilöz 2020a) MPD 108–159 mm

Output Non-revenue water ratio NRW 0.13–0.54 –
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Figure 3 | ANN classical (a, c, e, g) and VINAM (b, d, f, h) approach.
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Table 2 | ANN and VINAM ANN models result

Model No Input combinations R2 MSE NSE BI CC d

ANN 1 WDQ – MPD – NNF 0.65 0.0028 0.648 �0.0014 0.808 0.874

ANN 2 WDQ – NL – NNF 0.72 0.0022 0.715 �0.0024 0.851 0.901

ANN 3 WDQ – WM – FR 0.57 0.0034 0.572 �0.0022 0.757 0.851

ANN 4 WDQ – DWST – FR 0.63 0.0290 0.625 0.0018 0.791 0.877

VINAM_ANN 1 WDQ – MPD – NNF 0.84 0.0015 0.809 �0.0004 0.916 0.955

VINAM_ANN 2 WDQ – NL – NNF 0.86 0.0013 0.839 �0.0004 0.928 0.962

VINAM_ANN 3 WDQ – WM – FR 0.79 0.0020 0.740 �0.0004 0.891 0.940

VINAM_ANN 4 WDQ – DWST – FR 0.80 0.0020 0.745 �0.0049 0.894 0.941
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considerable improvement has been achieved by calibrating the models (according to the ideal line) over the classical
approaches through the suggested methodology. It is possible to predict the NRW rates with specific levels that can be
accepted with only three parameters, and evaluate the network losses over three parameters such as WDQ, WM, FR.

The second application graph links to the measurements and ANFIS models VINAM diagram with Figure 4. The classical

efficiency and VINAM improvements are available in Table 3.
The NRW rate, which is predicted through certain parameters in this study, actually varies depending on many variables

and it is also affected by many uncertainties in the water distribution infrastructure. Leaks that cause physical losses in the

system, number of failures, network age, network pressure, meter ages that cause apparent losses, meter measurement errors,
illegal water use, and so on show the importance of these uncertainties. The effects of these uncertainties and their manage-
ment are more important, especially for the administrations with high NRW rates. Developing a model in which all

uncertainties that cause increases in NRW rates are evaluated together is possible with significant time and cost resources.
Since the parameter changes in the water distribution system are partially related to the aforementioned issues, the water dis-
tribution system management can be carried out by these parameters by predicting the models through the suggested

methodology with many fewer parameters. Evaluating the NRW rate performances through the parameter combinations pro-
vides much faster and economical solutions for systems. In a conclusion, an improvement in predictive power could help
designing investment incentives more effectively and in a more targeted way, and therefore determining the effects of the par-
ameters for which the best predictions are made on the NRW rate makes the revision of field practices on investment

programs possible with the advantages of the effective models suggested in this study.
CONCLUSIONS

The existing model efficiency criteria have statistical mathematical expressions, which yield a single value about the associ-
ation between the measurement and prediction sequences. Accordingly, the researcher may adopt with subjective acceptance

one of the classical efficiency metrics, because the closer the efficiency measure value to the ideal value, the better the model
representativeness of the measurement data. In these criteria assessments, single significant tests are inappropriate in many
cases because they do not provide preliminary visual information. Rather than depending on such expressions without visual

impressions, this paper presents an effective model efficiency evaluation methodology by means of the visual inspection and
numerical analysis (VINAM) square template concept. It provides visualization of all the methodological details first by eye
for science philosophical, logical and rational inferences, which lead to the fundamentals of the mathematical model effi-
ciency expressions explicitly. The main ideal is to assess the scatter plot diagram between measurement and model

predictions. In the case of random scatter, the model is not suitable at all. On the other hand, if the scatter points appear
along an acceptable regression line on the VINAM square template, then by means of the shift and rotation procedures
the scatter points can be formed around the 1:1 (45°) straight-line with improvements in the classically available statistical

model efficiency results. The application of the VINAM procedure is checked with the artificial neural network (ANN)
and adaptive network based fuzzy inference system (ANFIS) models. It is observed that the VINAM method improves all
the cases with very significant percentages.
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Figure 4 | ANFIS classical (a, c, e, g) and VINAM (b, d, f, h) approach.
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Table 3 | ANFIS models with three inputs

Model No Input combinations R2 MSE NSE BI CC d

ANFIS 1 WDQ – MPD – NNF 0.52 0.0051 0.523 � 0.0014 0.724 0.825

ANFIS 2 WDQ – NL – NNF 0.07 0.0138 � 0.292 0.0086 0.258 0.536

ANFIS 3 WDQ – WM – FR 0.24 0.0081 0.238 0.0031 0.491 0.621

ANFIS 4 WDQ – DWST – FR 0.15 0.0093 0.123 � 0.0011 0.384 0.575

VINAM_ANFIS 1 WDQ – MPD – NNF 0.79 0.0028 0.738 � 0.0012 0.89 0.939

VINAM_ANFIS 2 WDQ – NL – NNF 0.607 0.0075 0.296 � 0.0224 0.779 0.856

VINAM_ANFIS 3 WDQ – WM – FR 0.823 0.0024 0.776 � 0.0095 0.907 0.948

VINAM_ANFIS 4 WDQ – DWST – FR 0.804 0.0026 0.756 � 0.002 0.897 0.944

Water Supply Vol 22 No 1, 600

Downloaded fr
by guest
on 14 Decemb
DATA AVAILABILITY STATEMENT

Data cannot be made publicly available; readers should contact the corresponding author for details.
REFERENCES

ASCE 1993 Criteria for evaluation of watershed models (definition of criteria for evaluation of watershed models of the watershed
management committee, irrigation and drainage division). Journal of Irrigation and Drainage Engineering 119 (3), 429–442.

Boztas,̧ F., Özdemir, Ö., Durmusç̧elebi, F. M. & Firat, M. 2019 Analyzing the effect of the unreported leakages in service connections of water
distribution networks on non-revenue water. International Journal of Environmental Science and Technology 16 (8), 4393–4406.

Bracmort, K. S., Arabi, M., Frankenberger, J. R., Engel, B. A. & Arnold, J. G. 2006 Modeling long-term water quality impact of structural
BMPs. Transactions of the ASABE 49 (2), 367–374.

Coulibaly, P., Anctil, F. & Bobée, B. 2000 Daily reservoir inflow forecasting using artificial neural networks with stopped training approach.
Journal of Hydrology 230 (3–4), 244–257.

Dariane, A. B. & Azimi, S. 2018 Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input
variable selection. Journal of Hydroinformatics 20 (2), 520–532.

Freedman, D., Purves, R. & Pisani, R. 1978 Statistics. W.W. Norton & Co, New York.
Gupta, H. V., Sorooshian, S. & Yapo, P. O. 2002 Status of automatic calibration for hydrologic models: comparison with multilevel expert

calibration. Journal of Hydrologic Engineering 4 (2), 135–143.
Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. 2009 Decomposition of the mean squared error and NSE performance criteria:

implications for improving hydrological modelling. Journal of Hydrology 377 (1–2), 80–91.
Harmel, R. D., Smith, P. K. & Migliaccio, K. W. 2013 Modifying goodness-of-fit indicators to incorporate both measurement and model

uncertainty in model calibration and validation. Transactions of the ASABE 53 (1), 55–63.
Jang, D. & Choi, G. 2017 Estimation of non-revenue water ratio for sustainable management using artificial neural network and Z-score in

Incheon, Republic of Korea. Sustainability 9 (11), 1933.
Kanakoudis, V. & Muhammetoglu, H. 2014 Urban water pipe networks management towards non-revenue water reduction: two case studies

from Greece and Turkey. Clean – Soil, Air, Water 42 (7), 880–892.
Kermani, B. G., Schiffman, S. S. & Nagle, H. T. 2005 Performance of the Levenberg-Marquardt neural network training method in electronic

nose applications. Sensors and Actuators, B: Chemical 110 (1), 13–22.
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