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A B S T R A C T

In this paper, we study the generalized KP equation with double-power nonlinearities. Our investigation covers
various aspects, including the existence of solitary waves, their nonlinear stability, and instability. Notably,
we address a broader class of nonlinearities represented by 𝜇1|𝑢|𝑝1−1𝑢 + 𝜇2|𝑢|𝑝2−1𝑢, with 𝑝1 > 𝑝2, encompassing
cases where 𝜇1 > 0 and 𝜇1 < 0 < 𝜇2. One of the distinct features of our work is the absence of scaling, which
introduces several challenges in establishing the existence of ground states. To overcome these challenges, we
employ two different minimization problems, offering novel approaches to address this issue. Furthermore,
our study includes a nuanced analysis to ascertain the stability of these ground states. Intriguingly, we extend
our stability analysis to encompass cases where the convexity of the Lyapunov function is not guaranteed.
This expansion of stability criteria represents a significant contribution to the field. Moving beyond the
analysis of solitary waves, we shift our focus to the associated Cauchy problem. Here, we derive criteria
that determine whether solutions exhibit finite-time blow-up or remain uniformly bounded within the energy
space. Remarkably, our study unveils a notable gap in the existing literature, characterized by the absence
of both theoretical evidence of blow-up and uniform boundedness. To explore this intriguing scenario, we
employ the integrating factor method, providing a numerical investigation of solution behavior. This method
distinguishes itself by offering spectral-order accuracy in space and fourth-order accuracy in time. Lastly, we
rigorously establish the strong instability of the ground states, adding another layer of understanding to the
complex dynamics inherent in the generalized KP equation.
1. Introduction

The Kadomtsev–Petviashvili (KP) equation is a nonlinear partial dif-
ferential equation of crucial importance in the study of various physical
phenomena. It was originally derived by Kadomtsev and Petviashvili in
their seminal work [1]. The KP equation takes the form:

(𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥)𝑥 + 𝜀𝑢𝑦𝑦 = 0, 𝜀 = ±1, (1.1)

This equation was initially developed to investigate the transverse
stability of the solitary wave solution of the Korteweg–de Vries (KdV)
equation, which is given by:

𝑢𝑡 + 𝑢𝑥 +
( 1
3
− 𝐵

)

𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0, (1.2)

The parameter 𝐵 ≥ 0 in Eq. (1.2) represents the Bond number,
reflecting different surface tension effects in the context of surface
hydrodynamical waves.
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(G.M. Muslu).

Eq. (1.1), when considered with 𝜀 = −1, is known as the KP-II
equation. It models gravity surface waves in a shallow water channel
where the water depth is less than 0.46 cm. This specific form of the KP
equation is particularly relevant for the study of these waves and their
behavior under varying conditions. On the other hand, when Eq. (1.1)
is considered with 𝜀 = 1, it becomes the KP-I equation. This version
of the equation describes capillary waves on the surface of liquid or
oblique magneto-acoustic waves in a plasma. These capillary waves are
characterized by their interactions with surface tension forces and are
observed in a variety of physical scenarios. The KP equation, with its
variations based on the value of 𝜀, continues to be a fundamental tool
for understanding the dynamics of various types of waves in different
media. Its applications extend to fields such as fluid dynamics, plasma
physics, and surface wave phenomena, making it a central equation in
the study of nonlinear wave phenomena.
vailable online 19 January 2024
167-2789/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physd.2024.134057
Received 11 October 2023; Received in revised form 15 December 2023; Accepted
 11 January 2024



Physica D: Nonlinear Phenomena 460 (2024) 134057A. Esfahani et al.

i
d
p
c

P

w

−
o

(

c
w

p

n

w

𝐾

a

b
a
(
𝑢
c
w
w
s

I
p
n
a
o
B
a
T
t
t
(
𝜇
s
r
t
p
i
a
i

s
a
a
a
e
T
w
r
f
e
M

𝑢

When considering the effects of higher-order nonlinearity, the KdV
equation transforms into the following equation:

𝑢𝑡 + 𝑢𝑥 +
( 1
3
− 𝐵

)

𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 − 𝜍𝑢2𝑢𝑥 = 0. (1.3)

This equation is known as the Gardner equation, which characterizes
large-amplitude internal waves (see [2] and references therein). The
sign of the coefficient 𝜍 in (1.3) varies depending on the physical
scenario under examination. In the context of internal waves, this
polarity hinges on the stratification [2]; specifically, it is consistently
positive in the scenario of a two-layer fluid. Beyond its significance in
plasma physics [3,4], Eq. (1.3) also emerges from asymptotic theory
concerning internal waves in a two-layer liquid exhibiting a density
jump at the interface [5,6]. Remarkably, through a linear transforma-
tion, the linear term 𝑢𝑥 can be eliminated, leading to an explicit solitary
wave solution:

𝑢(𝑥, 𝑡) =
6𝐴𝐵0

1 + 𝑅 cosh
(
√

𝐴(𝑥 − 𝑥0 − 𝐴𝐵0𝑡)
) , (1.4)

where 𝐵0 =
1
3 − 𝐵 and 𝑅 = ±

√

1 − 6𝜍𝐴 (see [7]).
Similar to (1.1), a high-dimensional Gardner equation was derived

n [8] to describe the propagation of weakly nonlinear and weakly
ispersive dust ion acoustic waves in a collisionless unmagnetized
lasma. This plasma consists of warm adiabatic ions, static negatively
harged dust grains, nonthermal electrons, and isothermal positrons.

This paper focuses on the following generalized Kadomtsev–
etviashvili (KP) equation with double-power nonlinearities [8–10]:
(

𝑢𝑡 −𝐷2𝛼
𝑥 𝑢𝑥 + (𝑓 (𝑢))𝑥

)

𝑥 + 𝜀𝑢𝑦𝑦 = 0, 𝜀 = ±1, (1.5)

here 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) is a real-valued function, and 𝑓 (𝑢) = 𝜇1𝑓1(𝑢)+𝜇2𝑓2(𝑢)
where 𝜇1, 𝜇2 ∈ R, and 𝑓𝑗 (𝑢) = |𝑢|𝑝𝑗−1𝑢 (𝑗 = 1, 2).

The operator 𝐷2𝛼
𝑥 with 𝛼 > 0 represents the Riesz potential of order

2𝛼 in the 𝑥-direction. It is defined by the usual Fourier multiplier
perator with the symbol |𝜉|2𝛼 . When 𝛼 = 0, Eq. (1.5) reduces to:

𝑢𝑡 − 𝑢𝑥 + (𝑓 (𝑢))𝑥)𝑥 + 𝜀𝑢𝑦𝑦 = 0, (1.6)

where the operator 𝜕−1𝑥 is defined via the Fourier transform 𝜕−1𝑥 = (𝑖𝜉)−1.
This equation models the propagation of short pulses in some media
and is known as the Khokhlov–Zabolotskaya (or the dispersionless)
equation (see [11] and references therein). It is noteworthy that when
𝛼 = 1∕2, Eq. (1.5) becomes the relevant KP version of the Benjamin–
Ono equation. This version has been derived from the two-fluid system
in the weakly nonlinear regime (see [12]). It was also derived in [13,
14] for long weakly nonlinear internal waves in stratified fluids of
large depth. When 𝛼 = 2, (1.5) arises as a two-dimensional model for
apillary–gravity water waves in the regime of critical surface tension
hen the Bond number is close to the critical value 1∕3 (see [15–17]),

and can be regarded as a two-dimensional version of the Kawahara
equation.

Hence, Eq. (1.5) bears some connection with the full dispersion
KP equation derived in [18] and discussed in [19] as an alternative
model to KP (with fewer unphysical shortcomings) for gravity–capillary
surface waves in the weakly transverse regime. It is known that the KP-
I equation features Zaitsev traveling waves, which are localized in the
𝑥 direction and periodic in 𝑦. Suitable transformations of parameters
roduce solutions that are periodic in 𝑥 and localized in 𝑦. Due to its

integrability properties, the KP-I equation possesses a localized, finite
energy, explicit solitary wave called the lump [20]:

𝜓(𝑥 − 𝑐𝑡, 𝑦) =
8𝑐

(

1 − 𝑐
3 (𝑥 − 𝑐𝑡)

2 + 𝑐2

3 𝑦
2
)

(

1 + 𝑐
3 (𝑥 − 𝑐𝑡)

2 + 𝑐2
3 𝑦

2
)2

.

Notice that Eq. (1.5) formally conserves energy (Hamiltonian) de-
oted as 𝐸, along with momentum quantities 𝑀 and P, which are

defined as follows:

𝑀(𝑢) = 1
‖𝑢‖2 , (1.7)
2

2 𝐿2(R2)
P(𝑢) = ∫R2
𝑢(𝜕−1𝑥 𝑢𝑦) d𝑥d𝑦,

𝐸(𝑢) = 1
2 ∫R2

(

|𝐷𝛼
𝑥𝑢|

2 − 𝜀|𝜕−1𝑥 𝑢𝑦|
2) d𝑥d𝑦 −𝐾(𝑢), (1.8)

here

(𝑢) = 𝜇1𝐾1(𝑢) + 𝜇2𝐾2(𝑢) = ∫R2
𝐹 (𝑢) d𝑥d𝑦

= 𝜇1 ∫R2
𝐹1(𝑢) d𝑥d𝑦 + 𝜇2 ∫R2

𝐹2(𝑢) d𝑥d𝑦,

nd 𝐹𝑗 for 𝑗 = 1, 2 represents the primitive function of 𝑓𝑗 with 𝐹𝑗 (0) = 0.
In this paper, our primary focus encompasses the investigation of

oth the existence and stability of solitary waves of (1.5), as well
s the analysis of the long-term behavior of solutions derived from
1.5). A solitary wave is understood to be a solution in the form of
(𝑥, 𝑦, 𝑡) = 𝑣(𝑥 − 𝑐𝑡, 𝑦). It is important to recognize that based on the
oncepts presented in [21], (1.5) does not exhibit nontrivial solitary
ave solutions when 𝜀 = +1. Consequently, in the subsequent analysis,
e consider (1.5) with the assumption that 𝜀 = −1. In this case, the

olution 𝑣 satisfies the equation:
(

𝑐𝑣 +𝐷2𝛼
𝑥 𝑣 − 𝑓 (𝑣)

)

𝑥𝑥 + 𝑣𝑦𝑦 = 0. (1.9)

t is worth noting that well-posedness results concerning the Cauchy
roblem associated with (1.5) have been established in specific sce-
arios. For instance, when 𝜇2 = 0 and 𝑝1 = 2, various works such
s [22–25] have provided insights into well-posedness. In the context
f homogeneous nonlinearity with 𝜇2 = 0 < 𝜇1 and 𝛼 = 1, 2, de
ouard and Saut [21] introduced a minimization procedure for the
ssociated norm of (1.1), subject to the constraint 𝐾(𝑢) = 𝜆 > 0.
hey employed the concentration–compactness principle to establish
he existence of solitary wave solutions. Through appropriate scaling of
he Lagrange multiplier, they demonstrated that the minimizer satisfies
1.5). However, in the presence of nonhomogeneous nonlinearity where
1, 𝜇2 ≠ 0 this method becomes inapplicable due to the absence of
caling invariance. To overcome this challenge, we divide our existence
esults into parts. In the case 𝜇1 > 0 with 𝑝1 > 𝑝2, we employ
he Pankov–Nehari manifold method [26]. While a similar result can
otentially be achieved using the Mountain-pass argument (as detailed
n [27, Chapter 7]) under certain constraints on 𝑓 , our approach offers
n additional advantage: the stability analysis of solitary waves can be
nferred.

In the case where 𝜇1 < 0 < 𝜇2 with 𝑝1 > 𝑝2, the situation is
ignificantly different, and the previously mentioned argument is not
pplicable. This is because the leading nonlinearity term, 𝜇1|𝑢|𝑝1−1𝑢, is
positive term in the energy. To address this challenge, we introduce
novel minimization problem (see (2.7)) that helps establish the

xistence of ground states, although it complicates the proof of stability.
his novel approach, distinct from previous methods, is inspired by the
ork of Colin and Ohta [28], allowing us to achieve another stability

esult without relying on the convexity condition of the Lyapunov
unction (see Theorem 3.3). An important observation is that there
xists a natural scaling invariance associated with (1.5) when 𝜇2 = 0.
ore specifically, the scaling transformation

𝜆(𝑥, 𝑦, 𝑡) = 𝜆
2𝛼
𝑝1−1 𝑢(𝜆2𝛼+1𝑥, 𝜆𝑦, 𝜆𝛼+1𝑡), 𝜆 > 0 (1.10)

preserves the form of (1.5). This implies that 𝑢𝜆 is also a solution
provided that 𝑢 is a solution of (1.5). In contrast, when dealing with
combined nonlinearities, no such scaling exists that leaves (1.5) invari-
ant. This lack of invariance adds complexity to the systematic study
of the Cauchy problem associated with (1.5). A similar situation is
encountered in the context of the following nonlinear Schrödinger
equation with combined power-type nonlinearities:

i𝑢 + 𝛥𝑢 = 𝜇 |𝑢|𝑝1−1𝑢 + 𝜇 |𝑢|𝑝2−1𝑢. (1.11)
𝑡 1 2
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Inspired by the comprehensive study presented by Tao et al. in [29],
our focus in this paper is on establishing sharp criteria concerning the
dichotomy of global existence versus finite-time blow-up. This includes
obtaining insights into the local and global well-posedness, finite-time
blow-up in weighted spaces, asymptotic behavior in both energy and
weighted spaces, and the scattering versus blow-up phenomenon for
specific cases of (1.11). Building upon the methodologies presented
in [30,31], we aim to provide novel insights into understanding the
intricate dynamics of (1.11). Drawing inspiration from these works,
our aim is to develop a deeper understanding of the ground states of
(1.5), their stability, and their behavior in the face of perturbations and
nonlinear interactions.

The structure of the paper unfolds as follows: Section 2 delves into
the examination of the existence of ground states within the context
of (1.5). The subsequent section, Section 3, probes into the stability
of these ground states. In Section 4, we derive the criteria dictating
whether the solutions remain uniformly bounded in the energy space
or eventually blow up. The exploration of strong instability occu-
pies Section 5. Furthermore, in Section 6, we present an intricately
devised numerical approach that amalgamates the Fourier pseudo-
spectral method with the integration factor method. This approach is
proficiently employed to solve the generalized KP equation featuring
double-power nonlinearities. The accuracy of this numerical method
is meticulously monitored through both mass conservation error and
Fourier coefficients. Significantly, the method exhibits a spectral-order
precision in space and a fourth-order precision in time. The investi-
gation then proceeds to the dynamic evolution of solutions for the
generalized KP equation involving supercritical, subcritical, and critical
nonlinearities. Particular attention is devoted to the analysis of a gap
within Section 4. This gap, wherein neither a blow-up nor a uniform
boundedness outcome has been theoretically established, is a focal
point of inquiry.

Notation

We denote the 𝐿2(R2)-inner product by ⟨⋅, ⋅⟩. We shall also denote
by �̂� the Fourier transform of 𝜑, defined as

�̂�(𝜁 ) = ∫R2
𝜑(𝑧)𝑒−i𝑧⋅𝜁 d𝑧.

or 𝑠 ∈ R, we denote by 𝐻𝑠 (R2), the nonhomogeneous Sobolev space
efined by

𝑠 (R2) =
{

𝜑 ∈  ′ (R2) ∶ ‖𝜑‖𝐻𝑠(R2) <∞
}

,

here

𝜑‖𝐻𝑠(R2) =
‖

‖

‖

‖

(

1 + |𝜁 |2
)

𝑠
2 �̂�(𝜁 )

‖

‖

‖

‖𝐿2(R2)
,

and  ′ (R2) is the space of tempered distributions. Let 𝑋𝛼 be the closure
of 𝜕𝑥(𝐶∞

0 (R2)) for the norm

‖𝜑𝑥‖
2
𝑋𝛼

= ‖𝐷𝛼
𝑥𝜑𝑥‖

2
𝐿2(R2)

+ ‖𝜑𝑦‖
2
𝐿2(R2)

+ ‖𝜑𝑥‖
2
𝐿2(R2)

. (1.12)

he homogeneous space �̇�𝛼 is defined by the norm

‖𝜑‖2
�̇�𝛼

= ‖𝐷𝛼
𝑥𝜑‖

2
𝐿2(R2)

+ ‖𝜕−1𝑥 𝜑𝑦‖
2
𝐿2(R2)

. (1.13)

et

𝑠 =
{

𝑢 ∈ 𝐻𝑠(R2);
(

𝜉−1�̂�(𝜉, 𝜂)
)∨ ∈ 𝐻𝑠(R2)

}

,

with the norm

‖𝑢‖𝑋𝑠 = ‖𝑢‖𝐻𝑠(R2) +
‖

‖

‖

(

𝜉−1�̂�
)∨
‖

‖

‖𝐻𝑠(R2)
,

where ‘∨’ is the inverse Fourier transform.
3

2. Existence of ground states

In this section, we establish the existence of traveling wave solutions
of Eq. (1.5). We define the functional 𝐼(𝑢) as follows:

𝐼(𝑢) = 1
2 ∫R2

(

𝑐𝑢2 + |𝐷𝛼
𝑥𝑢|

2 + |𝜕−1𝑥 𝑢𝑦|
2) d𝑥d𝑦.

function 𝑢 is a weak solution of (1.9) if and only if 𝐼 ′(𝑢) = 𝐾 ′(𝑢), or
n other words, if 𝑢 is a critical point of the functional 𝑆 = 𝐼 − 𝐾.
n [32], critical points of 𝑆 were shown to exist for homogeneous
onlinearities by demonstrating the existence of minimizers of 𝐼(𝑢)

under the constraint 𝐾(𝑢) = 𝜆 > 0. These minimizers satisfy 𝐼 ′(𝑢) =
𝜃𝐾 ′(𝑢), where 𝜃 ∈ R is a Lagrange multiplier. By homogeneity of the
nonlinearity, this multiplier could be scaled out to obtain a solution of
(1.9).

The same approach can be applied to prove the existence of mini-
mizers for the same variational problem involving more general non-
linearities that satisfy suitable growth conditions. However, for non-
homogeneous nonlinearities, the Lagrange multiplier cannot be scaled
out. In such cases, the dependence of the Lagrange multiplier 𝜃 on
the constraint parameter 𝜆 can become quite intricate, especially when
𝜇1𝜇2 < 0. Instead, we consider an alternative constrained minimization
problem. This is driven by the observation that if 𝑢 is a critical point of
𝑆, then 𝑃 (𝑢) = 0, where

𝑃 (𝑢) = ⟨𝑆′(𝑢), 𝑢⟩ = 2𝐼(𝑢) −𝑁(𝑢)

and

𝑁(𝑢) = ∫R2

(

𝜇1|𝑢|
𝑝1+1 + 𝜇2|𝑢|

𝑝2+1
)

d𝑥d𝑦.

We now seek solutions of (1.9) that minimize the action 𝑆 among
nontrivial solutions by solving the minimization problem

𝑚 = inf
𝑢∈𝑁0

𝑆(𝑢), (2.1)

where

𝑁0 = {𝑢 ∈ 𝑋𝛼 , 𝑢 ≢ 0, 𝑃 (𝑢) = 0}.

These solutions satisfy 𝑆′(𝑢) = 𝜃𝑃 ′(𝑢) for some 𝜃, which, due to the
homogeneity of the constraint 𝑃 (𝑢) = 0, can be demonstrated to be
zero. Consequently, 𝑆′(𝑢) = 0, and 𝑢 is a weak solution of (1.9). A
ground state is a solution of (1.9) that minimizes the action 𝑆 among
all nontrivial solutions of (1.9). The main result of this section is the
following.

Theorem 2.1. Let 𝜇1 > 0 and 1 < 𝑝2 < 𝑝1 < 2∗. Suppose that {𝑢𝑛} is
a minimizing sequence of (2.1). Then there exists a subsequence, renamed
by the same, a sequence {𝑧𝑛} ⊂ R2, and 𝑢 ∈ 𝑋𝛼 such that 𝑢𝑛(⋅ − 𝑧𝑛) → 𝑢
strongly in 𝑋𝛼 , 𝑃 (𝑢) = 0 and 𝑆(𝑢) = 𝑚.

Remark 2.2. By a slight modification, one can extend Theorem 2.1 to
the case 𝑓 (𝑢) = 𝜇1𝑓1(𝑢) + 𝜇2𝑓2(𝑢) where 𝑓1 and 𝑓2 are homogeneous
of degree 𝑝1 and 𝑝2, respectively, 𝑝1 > 𝑝2, and there exist 𝑢 ∈ 𝑋𝛼
such that 𝜇1𝐾1(𝑢) > 0. This includes for example even nonlinearities
𝑓 (𝑢) = 𝜇1|𝑢|

𝑝1 + 𝜇2|𝑢|
𝑝2 and mixed-parity nonlinearities such as 𝑓 (𝑢) =

𝜇1|𝑢|
𝑝1 +𝜇2|𝑢|

𝑝2−1𝑢 and 𝑓 (𝑢) = 𝜇1|𝑢|
𝑝1−1𝑢+𝜇2|𝑢|

𝑝2 with 𝜇1 > 0. See [33].

To prove Theorem 2.1, we first recall the well-known result
from [34,35] that provides an embedding for any 𝑞 ∈ [2, 2∗]:

𝑋𝛼 ↪ 𝐿𝑞(R2), (2.2)

where

2∗ =

{

∞− 𝛼 ≥ 2,
3𝛼+2
2−𝛼 𝛼 < 2.

Moreover the embedding 𝑋 ↪ 𝐿𝑞 (R2) is compact if 𝑞 ∈ (2, 2∗).
𝛼 loc
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Fig. 1. Solitary waves of the Gardner equation (1.3) given by (1.4) with various values
of 𝜍.

Fig. 2. Numerical solitary wave of (1.5) with 𝛼 = 1, 𝑓 (𝑢) = |𝑢|3 − 2𝑢2.

Related to (2.2), we recall the following anisotropic Sobolev-type
inequality from the results of Besov, Il’in, and Nikolskii [34] (see
also [36, Proposition 2.2] and [23, Lemma 1.1]), together with an
interpolation:

‖𝑢‖𝑝+1
𝐿𝑝+1(R2)

≤ 𝜌𝑝‖𝑢‖
2𝑐𝑝
𝐿2(R2)

‖𝐷𝛼
𝑥𝑢‖

𝑝−1
𝛼

𝐿2(R2)
‖𝜕−1𝑥 𝑢𝑦‖

𝑝−1
2

𝐿2(R2)
, 𝑢 ∈ 𝑋𝛼 , (2.3)

provided

𝑐𝑝 =
3𝛼 + 2 + 𝑝(𝛼 − 2)

4𝛼
> 0.

See also [37, Lemma 2.1].
Next we set

𝑁𝜎 = {𝑢 ∈ 𝑋𝛼 , 𝑢 ≢ 0, 𝑃 (𝑢) = 𝜎}

and define

𝑚𝜎 = inf
𝑢∈𝑁𝜎

𝑆0(𝑢), (2.4)

where

𝑆0 = 𝑆 − 1
𝛾 + 1

𝑃 ,

𝛾 = 𝑝1 if 𝜇2 < 0, and 𝛾 = 𝑝2 if 𝜇2 > 0. Hereafter in this section, we
consider the case 𝜇2 < 0 in the proof of Theorem 2.1. The argument
also works for the case 𝜇2 > 0 and is simpler.

Lemma 2.3. For any 𝜎 ∈ R, the set 𝑁𝜎 is nonempty. Moreover, 𝑁𝜎 is
bounded away from zero if 𝜎 ≤ 0.

Proof. Let 𝜎 ∈ R and fix any nonzero 𝑢 ∈ 𝑋𝛼 . For 𝐶 ∈ R, we define

𝑢 (𝑥, 𝑦) = 𝑢(𝑥, 𝐶𝑦).
4

𝐶

Then it is easy to see that

lim
𝐶→+∞

𝑃 (𝑢𝐶 ) = +∞.

Hence, there exists 𝐶 > 0 such that 𝑃 (𝑢𝐶 ) > 𝜎. On the other hand, since
𝐾1(𝑢𝐶 ) > 0 and 𝑝1 > 𝑝2 > 1,

lim
𝐴→∞

𝑃 (𝐴𝑢𝐶 ) = −∞.

Thus, there exists 𝐴 > 0 such that 𝑃 (𝐴𝑢𝐶 ) = 𝜎. This proves 𝑁𝜎 is not
empty.

Now, let 𝜎 ≤ 0 and 𝑢 ∈ 𝑁𝜎 . Then, we have from (2.2) that

0 ≥ 𝑃 (𝑢) ≥ 𝐶1‖𝑢‖
2
𝑋𝛼

− 𝐶2(‖𝑢‖
𝑝1+1
𝑋𝛼

+ ‖𝑢‖𝑝2+1𝑋𝛼
),

for some constants 𝐶1, 𝐶2 > 0. Therefore, ‖𝑢‖𝑋𝛼 ≥ 𝐶 > 0, where 𝐶 is a
constant depending only on 𝑝1, 𝑝2, 𝜇1 and 𝜇2. □

In the following lemma, we show that 𝑚𝜎 is decreasing on 𝜎 ≤ 0
which shows the strict subadditivity condition of 𝑚𝜎 .

Lemma 2.4. We have 𝑚𝜎 ≥ 0 for all 𝜎 ∈ R. Moreover, 𝑚𝜎 positive and
strictly decreasing on (−∞, 0].

Proof. Since 1
𝑝1+1

𝑁(𝑢) ≥ 𝐾(𝑢), then 𝑆0(𝑢) ≥ 0 for all 𝑢 ∈ 𝑋𝛼 . This means
that 𝑚𝜎 ≥ 0 for any 𝜎 ∈ R. If 𝜎 ≤ 0, then by Lemma 2.3, there exists 𝐶
such that ‖𝑢‖𝑋𝛼 ≥ 𝐶. Then

𝑆0(𝑢) ≥ 𝐶𝑝𝐶
2

for any 𝑢 ∈ 𝑁𝜎 . Hence, 𝑚𝜎 > 0.
Next, for 𝜎 < 𝜎2 ≤ 0, we can consider 𝑢 ∈ 𝑁𝜎 such that 𝑆0(𝑢) < 2𝑚𝜎2 .

We will get the desired inequality 𝑚𝜎1 > 𝑚𝜎2 , if no such 𝑢 exists. First
note that 𝑁(𝑢) > 0 so if we define 𝑔(𝑟) = 𝑃 (𝑟𝑢) = 𝑟2(2𝐼(𝑢) − 𝑟−2𝑁(𝑟𝑢))
then since ⟨𝑁 ′(𝑣), 𝑣⟩ ≥ (𝛾 + 1)𝑁(𝑣) for all 𝑣 ∈ 𝑋𝛼 it follows that
𝑑
𝑑𝑟 (𝑟

−2𝑁(𝑟𝑢)) > 0 and thus there exists at most one 𝑟 > 0 such that
𝑔(𝑟) = 𝜎2. Hence by the reasoning in the proof of Lemma 2.3, there
exists a unique 𝑟𝑢 < 1 such that 𝑃 (𝑟𝑢𝑢) = 𝜎2. We show that there exists
𝑟0 < 1, independent of 𝑢, such that 𝑟𝑢 ≤ 𝑟0. By using

𝑆0(𝑢) ≥
(

1 − 2
𝑝1 + 1

)

𝐼(𝑢) ≥
(

1 − 2
𝑝1 + 1

)

‖𝑢‖2𝑋𝛼 ,

we obtain that there is 𝐶 > 0 such that ‖𝑢‖𝑋𝛼 ≤ 𝐶 for all 𝑢 such that
𝑆0(𝑢) < 2𝑚𝜎2 . Hence, it follows immediately that 𝑔′(𝑟) ≥ −𝐶0 for all
𝑟 < 1, where 𝑔(𝑟) = 𝑃 (𝑟𝑢). Then we have by integrating from 𝑟𝑢 to 1
that

𝜎1 − 𝜎2 = 𝑔(1) − 𝑔(𝑟𝑢) ≥ −𝐶0(1 − 𝑟𝑢).

and thereby 𝑟𝑢 ≤ 1 − 𝜎2−𝜎1
𝐶0

=∶ 𝑟0. Now as 𝑃 (𝑟𝑢) ≤ 0 for 𝑟𝑢 ≤ 𝑟 ≤ 1,
then similar to the proof of Lemma 2.3, it holds that ‖𝑟𝑢‖𝑋𝛼 ≥ 𝐶.
Consequently, ℎ′(𝑟) ≥ 2(1 − 2

𝑝1+1
)𝐶2 for all 𝑟𝑢 ≤ 𝑟 ≤ 1, where ℎ(𝑟) =

𝑆0(𝑟𝑢). It follows that 𝑆0(𝑢) − 𝑆0(𝑟𝑢) ≥ 2(1 − 2
𝑝1+1

)𝐶
2

𝐶0
(𝜎2 − 𝜎1). The fact

𝑚𝜎2 ≤ 𝑆0(𝑟𝑢𝑢) reveals that

𝑆0(𝑢) ≥ 𝑚𝜎22
(

1 − 2
𝑝1 + 1

)

𝐶2

𝐶0
(𝜎2 − 𝜎1)

for all 𝑢 ∈ 𝑁𝜎 such that 𝑆0(𝑢) ≤ 2𝑚𝜎2 . Therefore, 𝑚𝜎1 > 𝑚𝜎2 , and the
proof is complete. □

Proof of Theorem 2.1. Let {𝑢𝑛} be a minimizing sequence. Then it is
bounded. Indeed, since 𝑆(𝑢𝑛) and 𝑃 (𝑢𝑛) are bounded, 𝑆0(𝑢𝑛) is bounded,
and because of

𝑆0(𝑢𝑛) ≳
(

1 − 2
𝑝1 + 1

)

𝐼(𝑢𝑛),

the sequence {𝑢𝑛} is bounded in 𝑋𝛼 . Now, since 𝑚 > 0, the sequence
{𝑆(𝑢𝑛)} is uniformly bounded below for large enough 𝑛, and then {𝑢𝑛} is
uniformly bounded below in 𝑋𝛼 . To get the minimizer function 𝑢 ∈ 𝑋𝛼 ,
we apply the concentration–compactness principle (see [38,39]) for the



Physica D: Nonlinear Phenomena 460 (2024) 134057A. Esfahani et al.
Fig. 3. Numerical solitary waves of (1.5) with 𝛼 = 1, 𝑓 (𝑢) = 𝑢4 − 2𝑢2 (left) and 𝑓 (𝑢) = 𝑢4 + 2𝑢2 (right).
Fig. 4. Numerical solitary waves of (1.5) with 𝛼 = 1, 𝑓 (𝑢) = −2|𝑢|3𝑢 + |𝑢|𝑢 (left) 𝑓 (𝑢) = − 3
2
|𝑢|3𝑢 + |𝑢|𝑢 (right).
sequence 𝜒𝑛 = |𝑢𝑛|
2 + |𝐷𝛼

𝑥𝑢𝑛|
2 + |𝜕−1𝑥 (𝑢𝑛)𝑦|

2, and lim𝑛→∞ ∫R2 𝜒𝑛 d𝑥d𝑦 =
𝐿 > 0, up to a subsequence (see also the proof of Theorem 4.11). The
sequence 𝜒𝑛 can be normalized such that ∫R2 𝜒𝑛 d𝑥d𝑦 = 𝐿. We rule out
the vanishing and dichotomy cases. If the vanishing case occurs, then
by an argument similar to [21,32], 𝑢𝑛 → 0 for any 2 < 𝑞 < 2∗ as 𝑛→ ∞.
This implies that 𝐾(𝑢𝑛) → 0 as 𝑛 → ∞. Hence, 𝐼(𝑢𝑛) → 0 and 𝑆(𝑢𝑛) → 0
as 𝑛 → ∞, because 𝑃 (𝑢𝑛) → 0. This contradicts 𝑆(𝑢𝑛) → 𝑚 > 0. Suppose
that the dichotomy case occurs. Then, there are the bounded sequences
{𝑣𝑛}, {𝑤𝑛} ⊂ 𝑋𝛼 such that

lim
𝑛→∞

‖𝑢𝑛 − 𝑣𝑛 −𝑤𝑛‖𝑋𝛼 = 0,

lim
𝑛→∞

𝐾(𝑢𝑛) −𝐾(𝑣𝑛) −𝐾(𝑤𝑛) = 0

and 𝑁(𝑢𝑛) − 𝑁(𝑣𝑛) − 𝑁(𝑤𝑛) → 0 as 𝑛 → ∞. These imply that 𝑃 (𝑢𝑛) −
𝑃 (𝑣𝑛) − 𝑃 (𝑤𝑛) → 0 and

𝑆0(𝑢𝑛) − 𝑆0(𝑣𝑛) − 𝑆0(𝑤𝑛) → 0

as 𝑛 → ∞. Suppose (by extracting subsequences if necessary) that
𝜎1 = lim𝑛→∞ 𝑃 (𝑣𝑛) and 𝜎2 = lim𝑛→∞ 𝑃 (𝑤𝑛). Then 𝜎1 + 𝜎2 = 0. If 𝜎1 > 0,
then there is 𝑛0 ∈ N such that 𝜎2,𝑛 = 𝑃 (𝑤𝑛) < 𝜎2∕2 for all 𝑛 ≥ 𝑛0. Since
𝑚𝜎 is strictly decreasing in 𝜎, so 𝑆0(𝑤𝑛) ≥ 𝑚𝜎2,𝑛 > 𝑚𝜎2∕2 for all 𝑛 ≥ 𝑛0.
As 𝑆0(𝑣𝑛) ≥ 0 for all 𝑛, then

𝑆0(𝑣𝑛) + 𝑆0𝑤𝑛 ≥ 𝜎 1
2 𝜎2

for all 𝑛 ≥ 𝑛0. It is concluded to the contradiction

𝑚 = lim
𝑛→∞

𝑆(𝑢𝑛) = lim
𝑛→∞

𝑆0(𝑢𝑛) = lim
𝑛→∞

(

𝑆0(𝑣𝑛) + 𝑆0(𝑤𝑛)
)

≥ 𝜎 1
2 𝜎2

> 𝑚.

A similar contradiction holds for the case 𝜎1 < 0. Next, we consider
𝜎0 = 𝜎2 = 0. In this case, we have from the coercivity of 𝐼 that
𝐼1, 𝐼2 > 0, where 𝐼1 = lim𝑛→∞ 𝐼(𝑣𝑛) and 𝐼2 = lim𝑛→∞ 𝐼(𝑤𝑛). Then, for
any 𝜖 > 0 there is 𝑛0 ∈ N such that 𝐼(𝑣𝑛) < 2𝑁(𝑣𝑛)(1+𝜖)𝑝1−1 and 𝐼(𝑤𝑛) <
2𝑁(𝑤𝑛)(1 + 𝜖)𝑝1−1 for all 𝑛 ≥ 𝑛0. Since {𝑣𝑛} is bounded in 𝑋𝛼 , then
𝐾(𝑣𝑛)−𝐾(𝜃𝑣𝑛) ≤ 𝐶(𝜃−1) for all 𝑛 and 𝜃 > 1, and𝑁(𝑣𝑛)−𝑁(𝜃𝑣𝑛) ≤ 𝐶(𝜃−1)

for some 𝐶 > 0. If 𝑃 (𝑣 ) > 0, then 𝑃 (𝜃𝑣 ) = 0 for some 𝜃 <
(

2𝐼(𝑣𝑛)
)

1
𝑝1−1 ,
5

𝑛 𝑛 𝑁(𝑣𝑛)
because we have for 𝜃 > 1 that 𝑃 (𝜃𝑣𝑛) ≤ 2𝜃2𝐼(𝑣𝑛) − 𝜃𝑝1+1𝑁(𝑣𝑛). A
straightforward computation shows for some 𝐶1 > 0 that

𝑚 ≤ 𝑆0(𝜃𝑣𝑛) ≤ 𝑆0(𝑣𝑛) + 𝐶(𝜃 − 1) ≤ 𝑆0(𝑣𝑛 + 𝐶1𝜖).

Hence, 𝑆0(𝑣𝑛) ≥ 𝑚−𝐶1𝜖. This inequality also trivially holds if 𝑃 (𝑣𝑛) ≤ 0,
and also for 𝑆0(𝑤𝑛). Therefore, we obtain that

𝑆0(𝑣𝑛) + 𝑆0(𝑤𝑛) ≥ 2𝑚 − 2𝐶1𝜖

for all 𝑛 ≥ 𝑛0. This obviously shows that 𝑚 lim𝑛→∞ 𝑆(𝑢𝑛) ≥ 2𝑚 − 2𝐶1𝜖,
and consequently, 𝑚 ≥ 2𝑚 which is a contradiction. Thus the dichotomy
does not occur. Finally, the compactness case should occur. So, by using
Lemma 3.3 in [32], there is a sequence {𝑧𝑛} ⊂ R2 and some 𝑢 ∈ 𝑋𝛼
such that �̃�𝑛 = 𝑢𝑛(⋅− 𝑧𝑛) ⇀ 𝑢 in 𝑋𝛼 and �̃�𝑛(⋅− 𝑧𝑛) → 𝑢 in 𝐿𝑞loc(R

2) for any
𝑞 ∈ (2, 2∗), and thereupon the strong convergence in 𝐿𝑞(R2) is deduced.
Hence 𝐾(�̃�𝑛) = 𝐾(𝑢𝑛) → 𝐾(𝑢) and 𝑁(�̃�𝑛) = 𝑁(𝑢𝑛) → 𝑁(𝑢) as 𝑛→ ∞. The
weak lower semicontinuity of 𝐼 shows that

𝑆(𝑢) +𝐾(𝑢) = 𝐼(𝑢) ≤ lim inf
𝑛→∞

𝐼(𝑢𝑛) = lim inf
𝑛→∞

(𝑆(𝑢𝑛) +𝐾(𝑢𝑛)) = 𝑚 +𝐾(𝑢).

By a similar computation, 𝑃 (𝑢) ≤ 0 and 𝑆(𝑢) ≤ 𝑚. But, we have
𝑆0(𝑢) < 𝑚𝜎 for all 𝜎 < 0, and thereby 𝑃 (𝑢) = 0. Indeed if 𝑃 (𝑢) = 𝜎 < 0
then we get the contradiction 𝑚𝜎 ≤ 𝑆0(𝑢) < 𝑚𝜎 . hence, 𝑢 achieves the
minimum 𝑚. Moreover, as lim𝑛→∞ 𝑆(�̃�𝑛) = 𝑚 = 𝑆(𝑢), then lim𝑛→∞ 𝐼(�̃�𝑛) =
lim𝑛→∞(𝑆(�̃�𝑛) + 𝐾(�̃�𝑛)) = 𝐼(𝑢). Consequently, we obtain from �̃�𝑛 ⇀ 𝑢 in
𝑋𝛼 that �̃�𝑛 → 𝑢 in 𝑋𝛼 . □

Remark 2.5. Numerical results illustrated in Figs. 2–5 show a similar
description of the behavior and the polarity change of the solitary
waves with the different sign of 𝜇1 and 𝜇2 as it was reported for the
Gardner Eq. (1.3) (see Fig. 1).

Theorem 2.6. Let 𝑢 ∈ 𝑋𝛼 satisfy 𝑃 (𝑢) = 0 and 𝑆(𝑢) = 𝑚. Then 𝑢 is
a solution of (1.9). Moreover, 𝑚 = 𝑚′, and 𝑢 achieves 𝑚 if and only if 𝑢
achieves the minimum 𝑚′, where

𝑚′ = inf
′
𝑆0(𝑢)
𝑢∈𝑁0
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Fig. 5. The numerical surfaces of the projections of solitary waves of (1.5) on the 𝑋𝑍-plane (left) and the 𝑌 𝑍-plane (right) with 𝛼 = 1 and 𝑓 (𝑢) = |𝑢|3 + 𝜇2𝑢2 with various values
of 𝜇2.
and 𝑁 ′
0 = {𝑢 ∈ 𝑋𝛼 , 𝑢 ≢ 0, 𝑃 (𝑢) ≤ 0}.

Proof. By the definition of 𝑚, there is the Lagrange multiplier 𝜃 ∈ R
such that 𝑆′(𝑢) = 𝜃𝑃 ′(𝑢). Thus,

𝜃⟨𝑃 ′(𝑢), 𝑢⟩ = ⟨𝑆′(𝑢), 𝑢⟩ = 𝑃 (𝑢) = 0.

By this assumption, we obtain

𝜃⟨𝑃 ′(𝑢), 𝑢⟩ = 4𝐼(𝑢) − 𝜃⟨𝑁 ′(𝑢), 𝑢⟩ = 2
(

1 − 1
𝑝1 + 1

)

𝐼(𝑢) < 0.

Thus, 𝜃 = 0 and 𝑆′(𝑢) = 0. Next, suppose that 𝑆(𝑢) = 𝑚 and 𝑃 (𝑢) = 0.
Then clearly, 𝑚′ ≤ 𝑆(𝑢) = 𝑚. Since 𝑚 < 𝑚𝜎 for all 𝜎 < 0, we have
𝑚 < 𝑆0(𝑢) for all 𝑢 such that 𝑃 (𝑢) < 0 and thereby 𝑚 ≤ 𝑚′. This means
that 𝑚 = 𝑚′. Now if 𝑢 achieves the minimum 𝑚′, then 𝑃 (𝑢) ≤ 0 and
𝑆0(𝑢) = 𝑚′ = 𝑚. Suppose that 𝑃 (𝑢) < 0. Then 𝑚𝜎 ≤ 𝑆0(𝑢) = 𝑚 which
contradicts the fact 𝑚 < 𝑚𝜎 . Hence, 𝑃 (𝑢) = 0 and 𝑢 achieves 𝑚. □

To have a complete picture of the existence of ground states, we
extend our results to the case 𝜇1 < 0 < 𝜇2 with 𝑝1 > 𝑝2. Assuming

𝜇2(𝑝1 − 1) + 𝜇1(𝑝2 − 1) > 0, (2.5)

we define

𝑐∗ =
2(𝑝1 − 1)𝜇2 + 𝜇1(𝑝2 − 1)

(𝑝1 − 1)(𝑝2 + 1)

(

𝜇2(𝑝2 − 1)(𝑝1 + 1)
−𝜇1(𝑝1 − 1)(𝑝2 + 1)

)

𝑝2−1
𝑝1−𝑝2 .

Theorem 2.7. Let 𝛼 = 1 and 𝜇2(𝑝1−1)+𝜇1(𝑝2−1) > 0. For any 𝑐 ∈ (0, 𝑐∗),
there exists a ground state of (1.9).

Remark 2.8. In view of Berestycki–Lions seminal work [40], we
observe that

𝑐∗ = sup
{

𝑐 > 0, inf
𝑟≥0

( 𝑐
2
𝑟2 − 𝐹 (𝑟)

)

< 0
}

. (2.6)

Proof of Theorem 2.7. Consider a new variational problem

D(𝑐) = inf
{

𝑆(𝑢), 𝑢 ∈ 𝑋𝛼 , 𝑢 ≢ 0, P(𝑢) = 0
}

, (2.7)

where

P(𝑢) = 2 − 𝛼
2(1 + 𝛼)

‖𝑢‖2
�̇�𝛼

+ 1
2 ∫R2

(

𝑐𝑢2 − 2𝐹 (𝑢)
)

d𝑥d𝑦. (2.8)

It is clear to see that

D(𝑐) = ∞ (2.9)

as 𝑐 → 𝑐∗. It is straightforward to see from Lemma 2.9 that any ground
state of (1.9) is also a minimizer of (2.7). We show that

D(𝑐) = D̃(𝑐) ∶= inf
{ 𝛼
𝛼 + 2

‖𝑢‖2
�̇�𝛼
, 𝑢 ∈ 𝑋𝛼 , 𝑢 ≢ 0, P(𝑢) ≤ 0

}

. (2.10)

Let 𝑢 be in 𝑋𝛼 ⧵ {0} such that P(𝑢) ≤ 0. Using the fact 𝑆(𝑢) = 𝛼
𝛼+2‖𝑢‖

2
�̇�𝛼

and defining 𝑢𝜆(𝑥, 𝑦) = 𝑢(𝜆𝑥, 𝜆2𝑦), we obtain that there exists 𝜏0 ≥ 1 such
that

D(𝑐) ≤ 𝑆(𝑢 ) = 𝛼 ‖

‖𝑢 ‖

‖

2
≤ 𝛼

‖𝑢‖2 .
6

𝜆0 𝛼 + 2 ‖

𝜆0
‖�̇�𝛼 𝛼 + 2 �̇�𝛼
This means that D(𝑐) ≤ D̃(𝑐). On the other hand, since 𝑆(𝑢) − P(𝑢) =
𝛼
𝛼+2‖𝑢‖

2
�̇�𝛼

, then D(𝑐) ≥ D̃(𝑐), so that D(𝑐) = D̃(𝑐). Moreover, we have
D̃(𝑐) > 0. Indeed, it yields for any 𝑢 ∈ 𝑋𝛼 ⧵{0} with P(𝑢) ≤ 0 from (2.3)
that
2 − 𝛼

2(𝛼 + 2)
‖𝑢‖2

�̇�𝛼
+ 𝑐𝑀(𝑢) ≤ 𝐾(𝑢) ≤ 𝑐

2
𝑀(𝑢) + 𝐶𝑐‖𝑢‖2

∗

�̇�𝛼

for some 𝐶𝑐 depending only on 𝑐. This reveals that ‖𝑢‖2∗−2
�̇�𝛼

≥ 𝐶 > 0.
Hence, D̃(𝑐) > 0.

Next, we prove that any minimizer 𝜑 of D(𝑐) is a ground state
of (1.9). To do so, it is enough to show that 𝜑 satisfies (1.9). By
contradiction, we assume that there exists a minimizer of 𝜑 of D(𝑐)
such that 𝑆′(𝜑) ≠ 0. Without loss of generality, we can assume that
⟨𝑆′(𝜑), 𝜓⟩ = −1 for some 𝜓 ∈ 𝑋𝛼 . Since 𝛼 = 1, then P(𝜑) = 0 and

d
d𝜆
𝑆(𝜑𝜆) = −𝜆

−4

2
(1 − 𝜆2)‖𝜑‖2

�̇�𝛼
.

Hence, 𝑆(𝜑𝜆) with 𝜆 > 0 attains its maximum at 𝜆 = 1. On the other
hand, since 𝑆 is 𝐶1, there exists 1≫ 𝛿0 > 0 sufficiently small such that
⟨𝑆′(𝜑𝜆), 𝜓⟩ is close to −1 if |𝜆 − 1| < 𝛿0. Define �̃�𝜆 = 𝜑𝜆 + 𝛿𝜒

(

𝜆−1
𝛿

)

𝜓 ,
where 0 < 𝛿 ≪ 𝛿0 and 𝜒(𝜆) = |1 − 𝜆|1[−1,1](𝜆). It is clear that

P(�̃�1−𝛿) < 0 < P(�̃�1+𝛿).

So, there exists 𝛿0 ∈ (−𝛿, 𝛿) such that P(�̃�𝛿0 ) = 0. Thusly, it follows
from the definition D(𝑐) that

D(𝑐) ≤ 𝑆(�̃�𝛿0 ) = 𝑆(𝜑𝛿0 ) +
⟨

𝑆′(𝜑𝛿0 ), 𝛿𝜒
(

𝛿0 − 1
𝛿

)

𝜓
⟩

+ 𝑜
(

‖

‖

�̃�𝛿0 − 𝜑𝛿0‖‖𝑋𝛼

)

≤ 𝑆(𝜑) − 𝛿𝜒
(

𝛿0 − 1
𝛿

)

< 𝑆(𝜑) = D(𝑐)

for sufficiently small 𝛿. This contradiction reveals that 𝜑 is a ground
state. Now, assume that {𝑢𝑛} ⊂ 𝑋𝛼 is a minimizing sequence. So,
𝑆(𝑢𝑛) → D(𝑐) and P(𝑢𝑛) → 0 as 𝑛→ ∞. This implies that D(𝑐) ∼ ‖𝑢𝑛‖2�̇�𝛼
for any 𝑛 ≫ 1. Another application of (2.3) gives for any 𝑛 ≫ 1 that

P(𝑢𝑛) ≳ 𝑀(𝑢𝑛) −
(

𝑀(𝑢𝑛)
)𝑐𝑝

‖𝑢𝑛‖
(𝑝−1)(𝛼+2)

2𝛼
�̇�𝛼

,

where 𝑐𝑝 is defined in (2.3). This yields that 𝑀(𝑢𝑛) ≲ 1 for any 𝑛 ≫ 1.
Moreover, ‖𝑢𝑛‖

𝑝+1
𝐿𝑝+1

≳ D(𝑐) for any 𝑛 ≫ 1. By applying pqr-lemma
(see [41]) with p = 2 < q = 𝑝 < r = 6, there exist 𝐶 > 0 and 𝑟 > 0
such that
|

|

|

{

(𝑥, 𝑦) ∈ R2, |𝑢𝑛(𝑥, 𝑦)| > 𝑟
}

|

|

|

≥ 𝐶

for any 𝑛 ≫ 1. Thus, it follows from the boundedness of {𝑢𝑛} ⊂ 𝑋𝛼
and [35, Lemma 4] that there exist 𝐶1 = 𝐶1(𝐶, 𝜂, 𝑟) and a subsequence
of {𝑢𝑛}, still denoted by the same symbol, a non-trivial function 𝜑 and
a sequence

{

𝑧𝑛
}

⊂ R2 such that
|

|

|

𝐵 ∩
{

(𝑥, 𝑦) ∈ R2, |𝑢𝑛((𝑥, 𝑦) + 𝑧𝑛)| > 𝑟
}

|

|

|

≥ 𝐶1

and 𝑢𝑛(⋅ + 𝑧𝑛) ⇀ 𝜑 in 𝑋𝛼 , where 𝐵 is the unit box in R2. Moreover,
since 𝛼 = 1, the weak convergence of 𝑢 and the Brezis–Lieb lemma
𝑛
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(see [35]) show that

P(𝑢𝑛) −P(𝑢𝑛 − 𝜑) −P(𝜑) → 0,
‖

‖

𝑢𝑛‖‖
2
�̇�𝛼

− ‖

‖

𝑢𝑛 − 𝜑‖‖
2
�̇�𝛼

− ‖𝜑‖2�̇�𝛼
→ 0

(2.11)

as 𝑛 → ∞. It is clear that P(𝜑) ≤ 0. Indeed, if P(𝜑) > 0, then (2.11)
reveals that

P(𝑢𝑛 − 𝜑) = −P(𝜑) < 0,

so that we obtain from D(𝑐) = D̃(𝑐) that D(𝑐) ≲ ‖𝑢𝑛 − 𝜑‖2
�̇�𝛼

for any
𝑛 ≫ 1. Hence, we have from (2.11) that

‖𝜑‖2
�̇�𝛼

= lim
𝑛→∞

(

‖𝜑‖2
�̇�𝛼

− ‖𝑢𝑛 − 𝜑‖2�̇�𝛼

)

≲ D(𝑐) −D(𝑐) = 0.

This contradiction shows the non-positivity of P(𝜑). Therefore, by
utilizing again the fact D(𝑐) = D̃(𝑐) together with the Fatou lemma,
we obtain that

lim
𝑛→∞

𝛼
𝛼 + 2

‖𝑢𝑛‖
2
�̇�𝛼

= D(𝑐) = 𝛼
𝛼 + 2

‖𝜑‖2
�̇�𝛼
. (2.12)

Thus, {𝑢𝑛(⋅ + 𝑧𝑛)} strongly converges to 𝜑 in �̇�𝛼 . Moreover,

𝑢𝑛(⋅ + 𝑧𝑛) → 𝜑 (2.13)

in 𝐿𝑠(R2) for any 2 < 𝑠 ≤ 2∗. Moreover, there exists 𝜆1 ≥ 1 such that
P(𝜑𝜆1 ) = 0, where 𝜑𝜆1 (𝑥, 𝑦) = 𝜑(𝜆1𝑥, 𝜆21𝑦), whence

D(𝑐) ≤ 𝑆(𝜑𝜆1 ) =
𝛼

𝛼 + 2
‖

‖

‖

𝜑𝜆1
‖

‖

‖

2

�̇�𝛼
= 𝜆−11 D(𝑐).

So, 𝜆1 = 1 which results to P(𝜑) = 0. Another application of (2.11)
together with lim𝑛→∞ P(𝑢𝑛) = 0 shows that lim𝑛→∞ P(𝑢𝑛 − 𝜑) = 0. Con-
sequently, a combination of (2.12) and (2.13) completes the proof. □

Finally, we conclude this section by deriving the following Pohozaev
dentities, which will be needed in our instability analysis.

emma 2.9. Suppose 𝜑 ∈ 𝑋𝛼 is a solution of (1.9). Then for integers
𝛼 ≥ 1,

∫R2
(𝐷𝛼

𝑥𝜑)
2 + 𝑐𝜑2 + (𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦 = ∫R2

𝜑𝑓 (𝜑) d𝑥 d𝑦

∫R2

(

𝛼 − 1
2

)

(𝐷𝛼
𝑥𝜑)

2 − 1
2
𝑐𝜑2 − 3

2
(𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦 = −∫R2

𝐹 (𝜑) d𝑥 d𝑦

∫R2
−1
2
(𝐷𝛼

𝑥𝜑)
2 − 1

2
𝑐𝜑2 + 1

2
(𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦 = −∫R2

𝐹 (𝜑) d𝑥 d𝑦

Proof. If 𝜑 is a solution of (1.9) then

𝐷2𝛼
𝑥 𝜑 + 𝑐𝜑 + 𝜕−2𝑥 𝜑𝑦𝑦 = 𝑓 (𝜑)

so multiplying by 𝜑, 𝑥𝜑𝑥 and 𝑦𝜑𝑦 and integrating yields the identities
in the lemma. □

Corollary 2.10. Summing the 3 identities above yields

𝛼 ∫R2
(𝐷𝛼

𝑥𝜑)
2 d𝑥 d𝑦 = ∫R2

𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦,

and subtracting the third one from the second one gives

2∫R2
(𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦 = 𝛼 ∫R2

(𝐷𝛼
𝑥𝜑)

2 d𝑥 d𝑦

So using the first equation we obtain the relations

∫R2
(𝐷𝛼

𝑥𝜑)
2 d𝑥 d𝑦 = 1

𝛼 ∫R2
𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦

∫R2
(𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦 = 1

2 ∫R2
𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦

𝑐𝜑2 d𝑥 d𝑦 = 1 (𝛼 − 2)𝜑𝑓 (𝜑) + (2𝛼 + 4)𝐹 (𝜑) d𝑥 d𝑦
7

∫R2 2𝛼 ∫R2
3. Stability and instability of ground states

In this section we investigate both analytically and numerically the
stability of ground state solitary waves. We first recall that a subset 𝐷
of 𝑋𝛼 is said to be stable with respect to (1.5) if for any 𝜖 > 0 there
exists some 𝛿 > 0 such that, for any 𝑢0 ∈ 𝐵𝛿(𝐷) (𝛿-neighborhood of 𝐷),
the solution 𝑢 of (1.5) with 𝑢(0) = 𝑢0 satisfies 𝑢(𝑡) ∈ 𝐵𝜖(𝐷) for all 𝑡 > 0.
Otherwise, we say 𝐷 is unstable. We will consider both the stability of
the set of ground states with speed 𝑐, namely

𝐺𝑐 = {𝜑 ∈ 𝑋𝛼 ⧵ {0}, 𝑆(𝜑) = 𝑚, 𝑃 (𝜑) = 0},

as well as that of the orbit of a particular ground state 𝜑 ∈ 𝐺𝑐 defined
by

(𝜑) = {𝜑(⋅ − 𝜏, ⋅) ∶ 𝜏 ∈ R}.

The following stability and instability results follow from the arguments
in [33], and we omit their proofs.

3.1. Stability

We first state our result in the case 𝜇1 > 0.

Theorem 3.1. Let 𝜇1 > 0 and 𝑝1 > 𝑝2. Define 𝑑(𝑐) = 𝑆(𝜑), where 𝜑 ∈ 𝐺𝑐 .
If 𝑑′′(𝑐) > 0 then 𝐺𝑐 is stable.

The proof of Theorem 3.1 does not directly apply to the case
here 𝜇1 < 0, and addressing this scenario requires more intricate
odifications.

heorem 3.2. Let 𝜇1 < 0 < 𝜇2, 𝑝1 > 𝑝2, and 𝑐 ∈ (0, 𝑐∗) such that (2.5)
olds. If 𝑑′′(𝑐) > 0, then 𝐺𝑐 is stable.

However, we also establish the stability of ground states by relaxing
he convexity condition when the wave speed is close to 𝑐∗.

Theorem 3.3. Let 𝜇1 < 0 < 𝜇2 and 𝑝1 > 𝑝2 such that (2.5) holds. There
exists {𝑐𝑛} ⊂ (0, 𝑐∗) such that 𝑐𝑛 → 𝑐∗ as 𝑛 → ∞ and the set 𝐺𝑐𝑛 of all
round states is stable for all 𝑛.

From now on, we present P and 𝑆 by P𝑐 and 𝑆𝑐 , respectively, to
nsist their dependence on 𝑐.

emma 3.4. There exists 𝐶 > 0 such that for any ground state 𝜑𝑐1 and
𝑐2 of (2.10) corresponding to 𝑐1 < 𝑐2 < 𝑐∗,

(𝑐1) ≤ D(𝑐2) −𝑀(𝜑𝑐2 )(𝑐2 − 𝑐1) + 𝐶

(

𝑀(𝜑𝑐2 )
)2

D(𝑐2)
(𝑐2 − 𝑐1)2.

(3.1)

oreover,

(𝑐2) ≤ D(𝑐1) +𝑀(𝜑𝑐1 )(𝑐2 − 𝑐1) + 𝐶

(

𝑀(𝜑𝑐1 )
)2

D(𝑐1)
(𝑐2 − 𝑐1)2 (3.2)

rovided 𝑐2 − 𝑐1 is sufficiently close to zero.

roof. For any 𝑢 ∈ 𝑋𝛼 and 𝜆 > 0, define 𝑢𝜆(𝑥, 𝑦) = 𝑢(
√

𝜆𝑥, 𝜆𝑦). First we
ote from P𝑐2 (𝜑𝑐2 ) = 0 that

𝑐1 (𝜑𝑐2 ,𝜆) =
𝜆−

3
2

6

(

(𝜆 − 1) ‖‖
‖

𝜑𝑐2
‖

‖

‖

2

�̇�𝛼
− 3(𝑐2 − 𝑐1)

‖

‖

‖

𝜑𝑐2
‖

‖

‖

2

𝐿2(R2)

)

.

Then, P𝑐1 (𝜑𝑐2 ,𝜆0 ) = 0, where

𝜆0 = 1 +
6(𝑐2 − 𝑐1)𝑀(𝜑𝑐2 )

‖

‖

‖

𝜑𝑐2
‖

‖

‖

2

�̇�𝛼

,

hereby

(𝑐 ) = D̃(𝑐 ) ≤ 𝛼 ‖

‖𝜑 ‖

‖

2
= 𝜆

− 1
2 D(𝑐 ). (3.3)
1 1 𝛼 + 2 ‖

𝑐2 ,𝜆0
‖�̇�𝛼 0 2
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𝜆

‖

‖

‖

p
𝑐

𝑀

𝑐
s
t
𝑡

𝜑

w
𝜓
a

𝑆

a

P

𝑚

T
c

P
‖

‖

‖

T

H
l

D

D

𝛤

𝛤

I

Now, we have from the Taylor expansion of 𝜆
− 1

2
0 about 1 for some

𝜏 ∈ (0, 1) that

𝜆
− 1

2
0 = 1 −

(𝑐2 − 𝑐1)𝑀(𝜑𝑐2 )
D(𝑐2)

+ 3
8

⎛

⎜

⎜

⎜

⎝

6(𝑐2 − 𝑐1)𝑀(𝜑𝑐2 )

‖

‖

‖

𝜑𝑐2
‖

‖

‖

2

�̇�𝛼

⎞

⎟

⎟

⎟

⎠

2
⎛

⎜

⎜

⎜

⎝

1 +
6𝜏(𝑐2 − 𝑐1)𝑀(𝜑𝑐2 )

‖

‖

‖

𝜑𝑐2
‖

‖

‖

2

�̇�𝛼

⎞

⎟

⎟

⎟

⎠

− 5
2

≤ 1 −
(𝑐2 − 𝑐1)𝑀(𝜑𝑐2 )

D(𝑐2)
+ 𝐶

( (𝑐2 − 𝑐1)𝑀(𝜑𝑐2 )
D(𝑐2)

)2

.

By combining the above inequality with (3.3), we arrive at (3.1).
Similarly, we have

P𝑐2 (𝜑𝑐1 ,𝜆) =
𝜆−

3
2

6

(

(𝜆 − 1) ‖‖
‖

𝜑𝑐1
‖

‖

‖

2

�̇�𝛼
+ 3(𝑐2 − 𝑐1)

‖

‖

‖

𝜑𝑐1
‖

‖

‖

2

𝐿2(R2)

)

.

This shows that P𝑐2 (𝜑𝑐1 ,𝜆1 ) = 0 provided 𝑐2 − 𝑐1 is small enough, where

𝜆1 = 1 −
6(𝑐2 − 𝑐1)𝑀(𝜑𝑐1 )

‖

‖

‖

𝜑𝑐1
‖

‖

‖

2

�̇�𝛼

∈ (0, 1).

Hence, it holds that

D(𝑐2) ≤
𝛼

𝛼 + 2
‖

‖

‖

𝜑𝑐1 ,𝜆1
‖

‖

‖

2

�̇�𝛼
= 𝜆

− 1
2

1 D(𝑐1). (3.4)

Another application of the Taylor expansion for 𝜆
− 1

2
0 about 1 reveals for

some 𝜏 ∈ (0, 1) that

− 1
2

1 = 1 +
(𝑐2 − 𝑐1)𝑀(𝜑𝑐1 )

D(𝑐1)
+ 3

8

⎛

⎜

⎜

⎜

⎝

6(𝑐2 − 𝑐1)𝑀(𝜑𝑐1 )

‖

‖

‖

𝜑𝑐1
‖

‖

‖

2

�̇�𝛼

⎞

⎟

⎟

⎟

⎠

2
⎛

⎜

⎜

⎜

⎝

1 −
6𝜏(𝑐2 − 𝑐1)𝑀(𝜑𝑐1 )

‖

‖

‖

𝜑𝑐1
‖

‖

‖

2

�̇�𝛼

⎞

⎟

⎟

⎟

⎠

− 5
2

≤ 1 −
(𝑐2 − 𝑐1)𝑀(𝜑𝑐1 )

D(𝑐1)
+ 𝐶

( (𝑐2 − 𝑐1)𝑀(𝜑𝑐1 )
D(𝑐1)

)2

,

provided that 𝑐2−𝑐1 is close to zero. Inserting the above inequality into
(3.4) yields (3.2). □

Corollary 3.5. The function D(𝑐) is strictly increasing and continuous on
(0, 𝑐∗).

Lemma 3.6. Let 𝑐0 ∈ (0, 𝑐∗) and 𝜑𝑐0 be a ground state of (1.9). If

D(𝑐) −D(𝑐0) > 𝑀(𝜑𝑐0 )(𝑐 − 𝑐0) (3.5)

for all 𝑐 ∈ (0, 𝑐∗) with 𝑐 ≠ 𝑐0, then for any 𝜀 ∈ (0, 𝑐0), there exists 𝛿 > 0
such that if 𝜓 ∈ 𝑋 satisfies

𝜓 − 𝜑𝑐0
‖

‖

‖𝑋𝛼
≤ 𝛿, (3.6)

the solution 𝑢 ∈ 𝐶([0, 𝑇 );𝑋𝛼) of (1.5) with 𝑢(0) = 𝜓 satisfies

D(𝑐0 − 𝜀) <
𝛼

𝛼 + 2
‖𝑢(𝑡)‖2

�̇�𝛼
< D(𝑐0 + 𝜀) (3.7)

for all 0 < 𝑡 < 𝑇 .

We postpone the proof of Lemma 3.6 and first complete the proof
of Theorem 3.3.

Proof of Theorem 3.3.
The proof is divided into two Steps.
Step 1. We first show that there exists {𝑐𝑛} ⊂ (0, 𝑐∗) and {𝑍𝑛} ⊂

(0,∞) such that 𝑍𝑛 → ∞, 𝑐𝑛 → 𝑐∗ as 𝑛→ ∞ and

D(𝑐) −D(𝑐𝑛) > 𝑍𝑛(𝑐 − 𝑐𝑛) (3.8)

for all 𝑛 and all 𝑐 ∈ (0, 𝑐∗) with 𝑐 ≠ 𝑐𝑛.
Choose a sequence {𝑎𝑛} ⊂ (1,∞) such that 𝑎𝑛 → ∞, and define

𝑏𝑛 = 𝑐−1∗ 𝑎𝑛D((1 − 𝑎−1𝑛 )𝑐∗). Then, it is seen from (2.9) that 𝑏𝑛 → ∞ as
𝑛→ ∞. Taking 𝓁 ≥ 2, it follows for any 𝑐 ∈ (0, (1 − 𝓁𝑎−1𝑛 )) that

H𝑛(𝑐) ∶= D(𝑐) − 𝑏𝑛𝑐 − 𝑐2 > −𝑏𝑛𝑐 − 𝑐2 > −𝑏𝑛(1 − 𝓁𝑎−1𝑛 )𝑐∗ −
(

(1 − 𝓁𝑎−1𝑛 )𝑐∗
)2

> 𝑏𝑛(𝑎−1𝑛 (𝓁 − 1))𝑐∗ − 𝑏𝑛𝑐∗(1 − 𝑎−1𝑛 ) −
(

(1 − 𝑎−1𝑛 )𝑐∗
)2

−1
8

≥ H𝑛((1 − 𝑎𝑛 )𝑐∗).
This shows from lim𝑛 H𝑛(𝑐) = ∞ that there exists a minimum point
𝑐𝑛 ≥ (1 − 𝑎−1𝑛 )𝑐∗ to H𝑛(𝑐) such that 𝑐𝑛 → 𝑐∗ as 𝑛 → ∞. Next we show
for any 𝑛 and any 𝑐 ∈ (0, 𝑐∗) with 𝑐 ≠ 𝑐𝑛 that

D(𝑐) > D(𝑐𝑛) + (𝑏𝑛 + 2𝑐𝑛)(𝑐 − 𝑐𝑛).

Since 𝑐𝑛 is a minimum point of H𝑛, then

D(𝑐) = H𝑛(𝑐) + 𝑏𝑛𝑐 + 𝑐2 > H𝑛(𝑐𝑛) + 𝑏𝑛𝑐𝑛 + 𝑐2𝑛 + (𝑏𝑛 + 2𝑐𝑛)(𝑐 − 𝑐𝑛)

= D(𝑐𝑛) + (𝑏𝑛 + 2𝑐𝑛)(𝑐 − 𝑐𝑛)
.

By define 𝑍𝑛 = 2𝑐𝑛 + 𝑏𝑛, we get (3.8). Moreover, for any ground state
𝜑𝑛 ∈ 𝐺𝑐𝑛 , we have from (3.1) that

𝑀(𝜑𝑛)(𝑐𝑛 − 𝑐) ≤ D(𝑐𝑛 −D(𝑐)) + 𝑜(𝑐𝑛 − 𝑐) ≤ 𝑍𝑛(𝑐𝑛 − 𝑐) + 𝑜(𝑐𝑛 − 𝑐),

rovided 𝑐𝑛−𝑐 is close to zero. Whence we obtain 𝑀(𝜑𝑛) ≤ 𝑍𝑛 by taking
→ 𝑐𝑛. By using (3.2), it is similarly deduced that 𝑀(𝜑𝑛) ≥ 𝑍𝑛. Thus,

𝑛(𝜑𝑛) = 𝑍𝑛.

Step 2. Completion of the proof.
Let {𝑐𝑛} be the same sequence obtained in Step 1. We show for any

𝑛, the set 𝐺𝑐𝑛 of all ground states of (1.9) corresponding with 𝑐𝑛 is
table. By contradiction, assume that 𝐺𝑐𝑁 is unstable for some 𝑁 . Thus,
here exists 𝜖0 > 0 such that for any 𝑚 ∈ N, there exists 𝜓𝑚 ∈ 𝑋𝛼 and
𝑚 ∈ [0, 𝑇𝑚) such that

inf
∈𝐺𝑐𝑁

‖

‖

𝜓𝑚 − 𝜑‖
‖𝑋𝛼

≤ 1𝑚, and inf
𝜑∈𝐺𝑐𝑁

‖

‖

𝑢𝑚(𝑡𝑚) − 𝜑‖‖𝑋𝛼 ≥ 𝜖0, (3.9)

here 𝑢𝑚 ∈ 𝐶([0, 𝑇𝑚);𝑋𝛼) is the unique solution of (1.5) with 𝑢𝑚(0) =
𝑚. The conservations of energy and momentum, Step 1, Lemma 3.6
nd Corollary 3.5 show that

𝑐𝑁 (𝑢𝑚(𝑡𝑚)) = 𝑆𝑐𝑁 (𝜓𝑚) → D(𝑐𝑁 ), 𝛼
𝛼 + 2

‖

‖

𝑢𝑚(𝑡𝑚)‖‖
2
�̇�𝛼

→ D(𝑐𝑁 )

s 𝑚→ ∞. Hence, we obtain that

𝑐𝑁 (𝑢𝑚(𝑡𝑚)) = 𝑆𝑐𝑁 (𝑢𝑚(𝑡𝑚)) −
𝛼

𝛼 + 2
‖

‖

𝑢𝑚(𝑡𝑚)‖‖
2
�̇�𝛼

→ 0

as 𝑚 → ∞. By repeating the proof of Theorem 2.7, we can find
a subsequence of {𝑢𝑚(𝑡𝑚)}, denoted by the same symbol, a sequence
{𝑧𝑚} ⊂ R2, and a ground state 𝜑 ∈ 𝑋𝛼 such that 𝑢𝑚(𝑡𝑚, ⋅ + 𝑧𝑚) strongly
converges to 𝜑 in 𝑋𝛼 . This means that

lim
→∞

‖

‖

𝑢𝑚(𝑡𝑚) − 𝜑(⋅ − 𝑧𝑚)‖‖𝑋𝛼 = 0.

his is a contradiction to (3.9), and the proof of Theorem 3.3 is
omplete. □

roof of Lemma 3.6. Let 𝛿 > 0 and 𝜀 ∈ (0, 𝑐0), and 𝜓 ∈ 𝑋𝛼 such that

𝜓 − 𝜑𝑐0
‖

‖

‖𝑋𝛼
≤ 𝛿.

he facts P𝑐0 (𝜑𝑐0 ) = 0 and 𝑆𝑐0 (𝜑𝑐0 ) =
𝛼
𝛼+2

‖

‖

‖

𝜑𝑐0
‖

‖

‖

2

�̇�𝛼
imply that

D(𝑐0) =
𝛼

𝛼 + 2
‖𝜓‖2�̇�𝛼

+ 𝑂(𝛿). (3.10)

ence, by choosing 𝛿 = 𝛿(𝜀) sufficiently small, we derive from Corol-
ary 3.5 and (3.5) that

(𝑐0 − 𝜀) <
𝛼

𝛼 + 2
‖𝜓‖2

�̇�𝛼
< D(𝑐0 + 𝜀). (3.11)

efine the sets
+
𝑐 =

{

𝑢 ∈ 𝑋𝛼 , 𝑆𝑐 (𝑢) < D(𝑐), 3D(𝑐) > ‖𝑢‖2�̇�𝛼

}

,

−
𝑐 =

{

𝑢 ∈ 𝑋𝛼 , 𝑆𝑐 (𝑢) < D(𝑐), 3D(𝑐) < ‖𝑢‖2�̇�𝛼

}

.
(3.12)

t is straightforward to see that the submanifolds 𝛤±
𝑐 are invariant

under the flow of the Cauchy problem associated with (1.5). Indeed,
let 𝜓 ∈ 𝛤+

𝑐 and 𝑢(𝑡) be a unique solution of (1.5) with 𝑢(0) = 𝜓 . Then,
the invariants 𝐸 and 𝑀 show that 𝑆𝑐 (𝑢(𝑡)) < D(𝑐) for all 𝑡 ∈ [0, 𝑇 ). By
using
𝛼

‖𝑢(𝑡)‖2 = 𝑆 (𝑢(𝑡)) −P (𝑢(𝑡)) < D(𝑐) −P (𝑢(𝑡)),

𝛼 + 2 �̇�𝛼 𝑐 𝑐 𝑐
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it suffices to show P𝑐 (𝑢(𝑡)) ≥ 0 for all 𝑡. Suppose by contradiction that
here exists 𝑡0 ∈ (0, 𝑇 ) such that P(𝑢(𝑡0)) < 0. Since 𝜓 ∈ 𝛤+

𝑐 , then
P𝑐 (𝜓) > 0, so that there exists 𝑡1 ∈ (0, 𝑡0) such that P𝑐 (𝑢(𝑡1)) = 0. This
contradicts the fact 𝑆𝑐 (𝑢(𝑡1)) ≥ D(𝑐). The invariance of 𝛤−

𝑐 is proved
similarly.

Hence, to complete the proof, it is enough to prove that

𝑆𝑐0±𝜀(𝜓) < D(𝑐0 ± 𝜀). (3.13)

We only prove (3.13) for 𝑐0 + 𝜀, and the case 𝑐0 − 𝜀 can be analogously
proved. By using (3.5) and the Taylor expansion about 𝜑𝑐0 , we obtain
that

𝑆𝑐0+𝜀(𝜓) = 𝑆𝑐0+𝜀(𝜑𝑐0 ) +
⟨

𝑆′
𝑐0+𝜀

(𝜑𝑐0 ), 𝜓 − 𝜑𝑐0
⟩

+ 𝑜(𝛿)

= 𝑆𝑐0 (𝜑𝑐0 ) + 𝜀𝑀(𝜑𝑐0 ) +
⟨

𝑆′
𝑐0+𝜀

(𝜑𝑐0 ), 𝜓 − 𝜑𝑐0
⟩

+ 𝑜(𝛿)

≤ D(𝑐0) + 𝜀𝑀(𝜑𝑐0 ) + 2𝜖𝛿𝑀(𝜑𝑐0 ) + 𝑜(𝛿).

This implies that

𝑆𝑐0+𝜀(𝜓) −D(𝑐0 + 𝜀) < D(𝑐0) −D(𝑐0 + 𝜀) + 𝜀𝑀(𝜑𝑐0 ) + 2𝜀𝛿𝑀(𝜑𝑐0 ) + 𝑜(𝛿)

=∶ 𝐶𝑐0 (𝜀) + 2𝜀𝛿𝑀(𝜑𝑐0 ) + 𝑜(𝛿).

Since 𝐶𝑐0 (𝜀) < 0, by taking 𝛿 = 𝛿(𝜀, 𝑐0) > 0 sufficiently small we arrive
at (3.13). □

We now shift our focus to the proof of Theorem 3.2, which incor-
porates the essential convexity condition for establishing stability. The
proof is obtained through an argument similar to one in [33] and is
complemented by the following crucial lemmas; therefore, we omit the
details.

Lemma 3.7. There exists 𝜖 > 0 and a continuous map 𝑐 ∶ 𝑈𝜖(𝐺𝑐 ) → R
such that 𝑑(𝑐(𝑢)) = 𝛼

𝛼+2‖𝑢‖
2
�̇�𝛼

for each 𝑢 ∈ 𝑈𝜖(𝐺𝑐 ).

Proof. Since D(𝑐) is continuous and strictly increasing, it follows that
𝑑−1 is continuous and strictly increasing. Since

𝑑(𝑐) = D(𝑐) = D̃(𝑐) = 𝑆𝑐 (𝜑)

for any 𝜑 ∈ 𝐺𝑐 , it follows from the continuity of 𝑆𝑐 and P𝑐 that there
xists 𝜖 > 0 such that 𝑆𝑐 (𝑢) is in the range of 𝑑 for any 𝑢 ∈ 𝑈𝜖(𝐺𝑐 ). We

may therefore define

𝑐(𝑢) = 𝑑−1
( 𝛼
𝛼 + 2

‖𝑢‖2
�̇�𝛼

)

(3.14)

for any such 𝑢. Continuity of this map follows from the continuity of
𝑑−1 and 𝑋𝛼-norm. □

The following lemma is the key step in the stability proof.

Lemma 3.8. Suppose 𝑑′′(𝑐) > 0. Then there exists some 𝜖 > 0 such that
we have for any 𝜑 ∈ 𝐺𝑐 and any 𝑢 ∈ 𝑈𝜖(𝐺𝑐 )

𝐸(𝑢) − 𝐸(𝜑) + 𝑐(𝑢)(𝑀(𝑢) −𝑀(𝜑)) ≥ 1
4
𝑑′′(𝑐)(𝑐(𝑢) − 𝑐)2.

Proof. Following the [33, Lemma 4.3], we have

𝑑(𝑐1) ≥ 𝑑(𝑐) +𝑀(𝜑)(𝑐1 − 𝑐) +
1
4
𝑑′′(𝑐)(𝑐1 − 𝑐)2

or 𝑐1 sufficiently close to 𝑐. It then follows that

(𝑐(𝑢)) ≥ 𝑑(𝑐) +𝑀(𝜑)(𝑐(𝑢) − 𝑐) + 1
4
𝑑′′(𝑐)(𝑐(𝑢) − 𝑐)2

= 𝐸(𝜑) + 𝑐𝑀(𝜑) +𝑀(𝜑)(𝑐(𝑢) − 𝑐) + 1
4
𝑑′′(𝑐)(𝑐(𝑢) − 𝑐)2

= 𝐸(𝜑) + 𝑐(𝑢)𝑀(𝜑) + 1
4
𝑑′′(𝑐)(𝑐(𝑢) − 𝑐)2

or all 𝑢 ∈ 𝑈𝜖(𝐺𝑐 ) provided 𝜖 > 0 is sufficiently small. Now we consider
wo cases.

ase 1: P𝑐(𝑢)(𝑢) > 0. In this case, we have

(𝑐(𝑢)) = 𝑆 (𝑢) −P (𝑢) < 𝑆 (𝑢) = 𝐸(𝑢) + 𝑐(𝑢)𝑀(𝑢)
9

𝑐(𝑢) 𝑐(𝑢) 𝑐(𝑢)
and combining this with the previous inequality gives

𝐸(𝑢) + 𝑐(𝑢)𝑀(𝑢) > 𝐸(𝜑) + 𝑐(𝑢)𝑀(𝜑) + 1
4
𝑑′′(𝑐)(𝑐(𝑢) − 𝑐)2,

nd thus proves the claim.

ase 2: P𝑐(𝑢)(𝑢) ≤ 0. In this case, let 𝜑 ∈ 𝐺𝑐(𝑢). Then, since 𝜑 minimizes
𝑆𝑐(𝑢)(𝑣) over all 𝑣 with P𝑐(𝑢)(𝑣) ≤ 0, we have

𝑑(𝑐(𝑢)) = 𝑆𝑐(𝑢)(𝜑) ≤ 𝑆𝑐(𝑢)(𝑢)

= 𝑆𝑐(𝑢)(𝑢) −P𝑐(𝑢)(𝑢)

= 𝑑(𝑐(𝑢)).

Consequently, all of the aforementioned quantities are equivalent, in-
dicating that 𝑢 attains the same minimum value as 𝜑. As a result, 𝑢 also
belongs to 𝐺𝑐(𝑢). This leads to the equation:

𝑑(𝑐(𝑢)) = 𝑆𝑐(𝑢)(𝑢) = 𝐸(𝑢) + 𝑐(𝑢)𝑀(𝑢),

which, in turn, establishes the validity of the claim. □

3.2. Instability

Theorem 3.9. Let 𝜑 ∈ 𝐺𝑐 . If there exists 𝜙 ∈ 𝐿2 such that 𝜙𝑥 ∈ 𝑋𝑠 for
some 𝑠 > 3∕2, 𝜙𝑥𝑥 ∈ 𝑋𝛼 , ⟨𝜙𝑥, 𝜑⟩ = 0 and ⟨𝑆′′(𝜑)𝜙𝑥, 𝜙𝑥⟩ < 0, then (𝜑) is
unstable.

Assuming there exists a choice of 𝜑(𝑐) ∈ 𝐺𝑐 that is 𝐶1 as a mapping
from R+ to 𝑋𝛼 , the function 𝜙𝑥 = 𝜑− 2𝑑′(𝑐)

𝑑′′(𝑐)
𝑑𝜑(𝑐)
𝑑𝑐 satisfies the hypotheses

of Theorem 3.9 and as a consequence, we have the following converse
of Theorem 3.9.

Corollary 3.10. If 𝑑′′(𝑐) < 0 then (𝜑) is unstable.

Due to the inhomogeneity of the nonlinear term, we do not have
xplicit formulas for 𝑑(𝑐). The numerical results presented at the end
f this section provide approximate intervals of stability and instability
or various nonlinear terms. We first consider the following alternate
nstability criteria.

orollary 3.11. Let 𝜑 ∈ 𝐺𝑐 and define

𝑓 (𝜑) = ∫R2
𝜑𝑓 (𝜑) − 𝜑2𝑓 ′(𝜑) d𝑥 d𝑦 + 2

(

(𝛼 + 2)𝑎2 − 4𝑎 + 3
)

∫R2
𝜑𝑓 (𝜑)

− 2𝐹 (𝜑) d𝑥 d𝑦.

f 𝑓 (𝜑) < 0 for some 𝑎 ∈ R then (𝜑) is unstable.

roof. Let 𝜙𝑥 = 𝜑 + 𝑎𝑥𝜑𝑥 + 𝑏𝑦𝜑𝑦 where 𝑎 + 𝑏 = 2. A straightforward
ntegration by parts gives

𝜙𝑥, 𝜑⟩ =
(

1 − 1
2
(𝑎 + 𝑏)

)

∫R2
𝜑2 d𝑥 d𝑦

o ⟨𝜙𝑥, 𝜑⟩ = 0 when 𝑎 + 𝑏 = 2. Next set  = 𝑆′′(𝜑). Then

= 𝐷2𝛼
𝑥 + 𝑐 + 𝜕−2𝑥 𝜕2𝑦 − 𝑓

′(𝜑)

e have 𝜑 = 𝑓 (𝜑) − 𝜑𝑓 ′(𝜑), so

𝜑,𝜑⟩ = ∫R2
𝜑𝑓 (𝜑) −𝜑2𝑓 ′(𝜑) d𝑥 d𝑦 = 𝜇1(1 − 𝑝21)𝐾1(𝜑) +𝜇2(1 − 𝑝22)𝐾2(𝜑)

nd

𝜑, 𝑥𝜑𝑥⟩ =
⟨

𝜑, 𝑦𝜑𝑦
⟩

= ∫R2
𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦

= 𝜇1(𝑝1 − 1)𝐾1(𝜑) + 𝜇2(𝑝2 − 1)𝐾2(𝜑).

ext, since

(𝑥𝜑𝑥) = 𝐷2𝛼
𝑥 (𝑥𝜑𝑥) + 𝑐𝑥𝜑𝑥 + 𝜕−2𝑥 𝜕2𝑦 (𝑥𝜑𝑥) − 𝑓

′(𝜑)𝑥𝜑𝑥
= 𝑥𝐷2𝛼

𝑥 𝜑𝑥 + 2𝛼𝐷2𝛼
𝑥 𝜑 + 𝑐𝑥𝜑𝑥 + 𝜕2𝑦 (𝑥𝜕

−1
𝑥 𝜑 − 2𝜕−2𝑥 𝜑) − 𝑓 ′(𝜑)𝑥𝜑𝑥

= 𝑥
(

𝐷2𝛼𝜑 + 𝑐𝜑 + 𝜕2𝜕−2𝜑 − 𝑓 ′(𝜑)𝜑
)

+ 2𝛼𝐷2𝛼𝜑 − 2𝜕2𝜕−2𝜑
𝑥 𝑥 𝑥 𝑦 𝑥 𝑥 𝑥 𝑥 𝑦 𝑥
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= 2𝛼𝐷2𝛼
𝑥 𝜑 − 2𝜕2𝑦𝜕

−2
𝑥 𝜑

= 2𝛼𝑓 (𝜑) − 2𝑐𝛼𝜑 − (2𝛼 + 2)𝜕2𝑦𝜕
−2
𝑥 𝜑

e have

(𝑥𝜑𝑥), 𝑥𝜑𝑥⟩ = ∫R2

(

2𝛼𝑓 (𝜑) − 2𝑐𝛼𝜑 − (2𝛼 + 2)𝜕2𝑦𝜕
−2
𝑥 𝜑

)

𝑥𝜑𝑥 d𝑥 d𝑦

= −2𝛼 ∫R2
𝐹 (𝜑) 𝑑𝑥 𝑑𝑦 + 𝑐𝛼 ∫R2

𝜑2 𝑑𝑥 𝑑𝑦

+ (3𝛼 + 3)∫R2
(𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦

nd

(𝑥𝜑𝑥), 𝑦𝜑𝑦
⟩

= ∫R2

(

2𝛼𝑓 (𝜑) − 2𝑐𝛼𝜑 − (2𝛼 + 2)𝜕2𝑦𝜕
−2
𝑥 𝜑

)

𝑦𝜑𝑦 d𝑥 d𝑦

= −2𝛼 ∫R2
𝐹 (𝜑) d𝑥 d𝑦 + 𝑐𝛼 ∫R2

𝜑2 d𝑥 d𝑦

− (𝛼 + 1)∫R2
(𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦

sing the Pohozaev identities (see Corollary 2.10) these become

(𝑥𝜑𝑥), 𝑥𝜑𝑥⟩ =
4𝛼 + 1

2 ∫R2
𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦

and
⟨

(𝑥𝜑𝑥), 𝑦𝜑𝑦
⟩

= −3
2 ∫R2

𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦.

Finally, since (𝑦𝜑𝑦) = 2𝜕−2𝑥 𝜑𝑦𝑦,
⟨

(𝑦𝜑𝑦), 𝑦𝜑𝑦
⟩

= ∫R2
(𝜕−1𝑥 𝜑𝑦)2 d𝑥 d𝑦 = 1

2 ∫R2
𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦.

Combining these gives

⟨𝜙𝑥, 𝜙𝑥⟩ = ⟨𝜑,𝜑⟩ + 𝑎2 ⟨(𝑥𝜑𝑥), 𝑥𝜑𝑥⟩ + 𝑏2
⟨

(𝑦𝜑𝑦), 𝑦𝜑𝑦
⟩

+ 2𝑎 ⟨𝜑, 𝑥𝜑𝑥⟩ + 2𝑏
⟨

𝜑, 𝑦𝜑𝑦
⟩

+ 2𝑎𝑏
⟨

(𝑥𝜑𝑥), 𝑦𝜑𝑦
⟩

= ∫R2
𝜑𝑓 (𝜑) − 𝜑2𝑓 ′(𝜑) d𝑥 d𝑦

+ 2
(

(𝛼 + 2)𝑎2 − 4𝑎 + 3
)

∫R2
𝜑𝑓 (𝜑) − 2𝐹 (𝜑) d𝑥 d𝑦

which shows 𝜙𝑥 satisfies the hypotheses of Theorem 3.9. □

In our application of Corollary 3.11, the following estimate will be
needed.

Lemma 3.12. Let 𝜑 be a solution of (1.9) with 𝑓 (𝑢) = 𝜇1|𝑢|
𝑝1−1𝑢 +

𝜇2|𝑢|
𝑝2−1𝑢, where 𝜇1 > 0. Then

∫R2
|𝑢|𝑝1+1 d𝑥 d𝑦 ≥

(

(

𝑐
𝜇1

)𝜃
−
𝜇+2
𝜇1

)

∫R2
|𝑢|𝑝2+1 d𝑥 d𝑦

for all 𝑐 > 0, where 𝜃 = 𝑝1−𝑝2
𝑝1−1

and 𝜇+2 = max{0, 𝜇2}.

Proof. Suppose instead that

∫R2
|𝑢|𝑝1+1 d𝑥 d𝑦 <

(

(

𝑐
𝜇1

)𝜃
−
𝜇+2
𝜇1

)

∫R2
|𝑢|𝑝2+1 d𝑥 d𝑦

for some 𝑐 > 0. Since 𝑁(𝜑) = 2𝐼(𝜑) ≥ 𝑐‖𝜑‖2
𝐿2(R2)

, applying Hölder’s
inequality gives

∫R2
|𝜑|𝑝2+1 d𝑥 d𝑦 ≤

(

∫R2
𝑢2 d𝑥 d𝑦

)𝜃 (

∫R2
𝑢𝑝1+1 d𝑥 d𝑦

)1−𝜃

≤
(𝜇1
𝑐

)𝜃
(

∫R2
|𝑢|𝑝1+1 +

𝜇2
𝜇1

|𝑢|𝑝2+1 d𝑥 d𝑦
)𝜃

×
(

∫R2
|𝑢|𝑝1+1 d𝑥 d𝑦

)1−𝜃

<
(𝜇1 )𝜃

(

(

𝑐
)𝜃

∫ |𝑢|𝑝2+1 d𝑥 d𝑦

)𝜃
10

𝑐 𝜇1 R2
×

(

(

𝑐
𝜇1

)𝜃

∫R2
|𝑢|𝑝2+1 d𝑥 d𝑦

)1−𝜃

= ∫R2
|𝜑|𝑝2+1 d𝑥 d𝑦,

contradiction. □

heorem 3.13. Let 𝑓 (𝑢) = 𝜇1|𝑢|
𝑝1−1𝑢 + 𝜇2|𝑢|

𝑝2−1𝑢 and let 𝜑 be a ground
state with speed 𝑐.

(a) If 𝜇1 > 0, 𝜇2 ≥ 0 and 𝑝1 > 𝑝2 ≥
5𝛼+2
𝛼+2 , then (𝜑) is unstable.

(b) If 𝜇1 > 0, 𝜇2 ≥ 0 and 𝑝1 > 5𝛼+2
𝛼+2 > 𝑝2, then there exists

𝑐(𝑝1, 𝑝2, 𝜇1, 𝜇2) such that (𝜑) is unstable for 𝑐 > 𝑐(𝑝1, 𝑝2, 𝜇1, 𝜇2).
(c) If 𝜇1 > 0, 𝜇2 < 0 and 𝑝1 >

5𝛼+2
𝛼+2 > 𝑝2, then (𝜑) is unstable.

(d) If 𝜇1 > 0, 𝜇2 < 0 and 𝑝1 > 𝑝2 ≥ 5𝛼+2
𝛼+2 , then there exists

𝑐(𝑝1, 𝑝2, 𝜇1, 𝜇2) such that (𝜑) is unstable for 𝑐 > 𝑐(𝑝1, 𝑝2, 𝜇1, 𝜇2).

roof. First assume 𝜇1 > 0 and 𝜇2 ≥ 0. The quadratic (𝛼 + 2)𝑎2 − 4𝑎+ 3
s minimized when 𝑎 = 2

𝛼+2 and for this choice of 𝑎 we have

𝑓 (𝜑) = 𝜇1
𝑝1 − 1
𝑝1 + 1

( 5𝛼 + 2
𝛼 + 2

− 𝑝1
)

‖𝜑‖𝑝1+1
𝐿𝑝1+1(R2)

+ 𝜇2
𝑝2 − 1
𝑝2 + 1

(5𝛼 + 2
𝛼 + 2

− 𝑝2
)

‖𝜑‖𝑝2+1
𝐿𝑝2+1(R2)

This is clearly negative when 𝑝1 > 𝑝2 ≥ 5𝛼+2
𝛼+2 , which proves (a). If

𝑝1 > 5𝛼+2
𝛼+2 > 𝑝2 the first term is negative and the second term is

positive. However, by Lemma 3.12 the first term dominates the second
term for large 𝑐, which proves (b). Next assume 𝜇1 > 0 and 𝜇2 ≤ 0.
If 𝑝1 > 5𝛼+2

𝛼+2 ≥ 𝑝2, then the first term is negative and the second
non-positive, so again 𝑓 (𝜑) is negative. This proves (c). Finally, if
𝑝1 > 𝑝2 ≥

5𝛼+2
𝛼+2 the first term is negative and by Lemma 3.12 dominates

the second term for sufficiently large 𝑐, and thus (d) holds. □

We conclude this section by presenting results of numerical approx-
imations of 𝑑′′(𝑐) for the odd nonlinearities 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 ± |𝑢|𝑝2−1𝑢
or various pairs (𝑝1, 𝑝2) with 𝑝1 > 𝑝2. The results for even and
ixed parity nonlinearities are similar. We use the algorithm presented

n [42] to numerically approximate ground states and then use these
pproximations to compute 𝑑′′(𝑐). The method is inspired by the fact
hat ground states minimize 𝑆 subject to 𝑃 = 0 and consist of a gradient
escent combined with a rescaling to maintain the constraint 𝑃 = 0.
igs. 6–8 show the plots of 𝑑′′(𝑐) for sums of two powers with 𝛼 = 1.
hey illustrate that when 𝑝2 ≥

7
3 we have stability for all 𝑐 > 0 (within

the range of computation performed), when 𝑝1 ≤
7
3 we have instability

for all 𝑐 > 0, and when 𝑝1 >
7
3 > 𝑝2 we have stability for small 𝑐 and

instability for large 𝑐. Fig. 9 illustrates the same behavior for 𝛼 = 2,
where the critical exponent is 𝑠𝑐 = 3. For differences of two powers, the
behavior appears to depend on 𝑝1 and 𝑝1 + 𝑝2. For 𝛼 = 1 and 𝑝1 < 7∕3,
Figs. 10 and 11 show that we may either have stability for all 𝑐 or a
transition from instability for small 𝑐 to stability for large 𝑐, while for
𝑝1 > 7∕3 we appear to have instability for all 𝑐 (Fig. 12). Figs. 13 and 14
show results for differences of powers with 𝛼 = 2. We note that these
results resemble those obtained by Ohta in [43] for the Schrödinger
equation with double power nonlinearity.

4. Blow-up and uniform boundedness

In this section, we derive a sharp threshold between blow-up and
global existence (uniformly boundedness in the energy space). First, we
state the following local well-posedness for the initial-value problem
associated with (1.5). This local existence can be obtained along the
lines of arguments of [44]. See also [45].

Theorem 4.1. Let 𝑢0 ∈ 𝑋𝑠, 𝑠 ≥ 𝛼 + 1. Then there exists 𝑇 > 0 such that
(1.5) has a unique solution 𝑢(𝑡) with 𝑢(0) = 𝑢0 satisfying

𝑢 ∈ 𝐶([0, 𝑇 );𝑋𝑠)∩𝐶1 ([0, 𝑇 );𝐻𝑠−𝛼−1(R2)
)

, 𝜕−1𝑢 ∈ 𝐶
(

[0, 𝑇 );𝐻𝑠−1(R2)
)

;
𝑥 𝑦
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Fig. 6. Plots of 𝑑′′(𝑐) for 𝛼 = 1 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 + |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (2.2, 2) (left) and (𝑝1 , 𝑝2) = (7∕3, 2) (right). In both cases we have 𝑑′′(𝑐) > 0 for all 𝑐 in the domain
considered.

Fig. 7. Plots of 𝑑′′(𝑐) for 𝛼 = 1 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 + |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (2.5, 2) (left) and (𝑝1 , 𝑝2) = (3, 2) (right). In these cases, we have 𝑑′′(𝑐) > 0 for small 𝑐 and 𝑑′′(𝑐) < 0 for
large 𝑐.

Fig. 8. Plots of 𝑑′′(𝑐) for 𝛼 = 1 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 + |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (3, 7∕3) (left) and (𝑝1 , 𝑝2) = (4, 3) (right). In both cases we have 𝑑′′(𝑐) < 0 for all 𝑐 in the domain
considered.

Fig. 9. Plots of 𝑑′′(𝑐) for 𝛼 = 2 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 + |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (3, 2) (left), (𝑝1 , 𝑝2) = (4, 3) (middle) and (𝑝1 , 𝑝2) = (4, 2) (right).
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Fig. 10. Plots of 𝑑′′(𝑐) for 𝛼 = 1 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 − |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (1.6, 1.2) (left) and (𝑝1 , 𝑝2) = (1.8, 1.4) (right).
Fig. 11. Plots of 𝑑′′(𝑐) for 𝛼 = 1 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 − |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (2, 1.6) (left) and (𝑝1 , 𝑝2) = (2.2, 1.8) (right).
Fig. 12. Plots of 𝑑′′(𝑐) for 𝛼 = 1 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 − |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (3, 2) (left) and (𝑝1 , 𝑝2) = (4, 3) (right).
T
t

𝜌

nd if 𝜕−2𝑥 (𝑢0)𝑦𝑦 ∈ 𝐿2(R2), one has

𝑡 ∈ 𝐿∞ (

(0, 𝑇 );𝑋0) , 𝜕−1𝑥 𝑢𝑦𝑡 ∈ 𝐿∞ (

[0, 𝑇 );𝐻−1(R2)
)

.

urthermore we have 𝑀(𝑢(𝑡)) =𝑀(𝑢0) and 𝐸(𝑢(𝑡)) = 𝐸(𝑢0).

Next, we obtain the conditions under which the local solutions are
niformly bounded in the energy space. We start by showing that the
est constant 𝜌𝑝 in (2.3) may be expressed in terms of the ground state
olutions of (1.9) with homogeneous nonlinearity,

2𝛼 −2 𝑝−1
12

𝑥 𝜑 + 𝜕𝑥 𝜑𝑦𝑦 + 𝜑 = |𝜑| 𝜑. (4.1)
heorem 4.2. Let 𝑝 > 1. Then the optimal constant 𝜌𝑝 in (2.3) is such
hat

−1
𝑝 = 𝛼−1

(

𝑝 − 1
𝑝 + 1

)

𝑘
𝑐′𝑝
𝑝

(𝛼
2

)
𝑝−1
4
‖𝜑‖𝑝−1𝐿2(R2) = 𝛼−1

(

𝑝 − 1
𝑝 + 1

)

𝑘𝑐𝑝𝑝
( 2
𝛼

)

𝑝−1
4
𝑚

𝑝−1
2 ,

(4.2)

where 𝑐′𝑝 = 𝑐𝑝 −
𝑝−1
2 ,

𝑘𝑝 =
3𝛼 + 2 + 𝑝(𝛼 − 2)

2(𝑝 − 1)

and 𝜑 is a ground state of (4.1).
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Fig. 13. Plots of 𝑑′′(𝑐) for 𝛼 = 2 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 − |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (2.5, 2) and (𝑝1 , 𝑝2) = (2, 1.5).
Fig. 14. Plots of 𝑑′′(𝑐) for 𝛼 = 2 and 𝑓 (𝑢) = |𝑢|𝑝1−1𝑢 − |𝑢|𝑝2−1𝑢 with (𝑝1 , 𝑝2) = (4, 2) and (𝑝1 , 𝑝2) = (4, 3).
H
p

T

𝐶

i

roof. The proof is based on the ideas of [46, Theorem 1.2], so we
mit the details. □

We next obtain some Pohozaev-type identities related to the solu-
ions of (4.1).

emma 4.3. Let 𝜑 be a ground state of (4.1), then

‖𝜕−1𝑥 𝜑𝑦‖
2
𝐿2(R2)

= 𝛼‖𝐷𝛼
𝑥𝜑‖

2
𝐿2(R2)

=
(

𝑝 − 1
𝑝 + 1

)

‖𝜑‖𝑝+1
𝐿𝑝+1(R2)

, (4.3)

‖𝐷𝛼
𝑥𝜑‖

2
𝐿2(R2)

= 𝑘−1𝑝 ‖𝜑‖2
𝐿2(R2)

. (4.4)

Proof. The proof follows from the ideas of [32]. □

Theorem 4.4. Let 𝑠 ≥ 𝛼 + 1, 𝜇1 < 0 < 𝜇2 and 𝑝1 > 𝑝2. Let 𝑢 ∈
𝐶([0, 𝑇 );𝐻𝑠(R2)) with 𝜕−1𝑥 𝑢𝑦 ∈ 𝐶([0, 𝑇 );𝐻𝑠−1(R2)) be the solution obtained
in Theorem 4.1, corresponding to the initial data 𝑢0. Then the solution 𝑢
satisfies

sup
𝑡∈[0,𝑇 )

‖𝑢(𝑡)‖2
�̇�𝛼

≲ 𝐸(𝑢0) + 𝐶‖𝑢0‖2𝐿2(R2)
,

where 𝐶 = 𝐶(𝑝1, 𝑝2, 𝜇1, 𝜇2) > 0.

roof. The proof follows easily from the conservation laws of the
nergy and the momentum. Indeed, one can see that

1
2
‖𝑢(𝑡)‖2�̇�𝛼

= 𝐸(𝑢(𝑡)) + ∫R2
𝐹 (𝑢(𝑡)) d𝑥d𝑦

≤ 𝐸(𝑢0) +
𝜇2(𝑝1 − 𝑝2)

(𝑝1 − 1)(𝑝2 + 1)

(

𝜇2(𝑝2 − 1)(𝑝1 + 1)
−𝜇1(𝑝1 − 1)(𝑝2 + 1)

)

𝑝2−1
𝑝1−𝑝2

‖𝑢(𝑡)‖2𝐿2(R2)

= 𝐸(𝑢0) +
𝜇2(𝑝1 − 𝑝2)

(

𝜇2(𝑝2 − 1)(𝑝1 + 1)
)

𝑝2−1
𝑝1−𝑝2

‖

‖

𝑢0‖‖
2
2 2 .
13

(𝑝1 − 1)(𝑝2 + 1) −𝜇1(𝑝1 − 1)(𝑝2 + 1) 𝐿 (R )
ere, we have used the fact that 𝑢−2𝐹 (𝑢) has a unique maximum
oint. □

heorem 4.5. Let 𝑠 ≥ 𝛼 + 1, 𝜇1, 𝜇2 > 0 and 𝑝1 > 𝑝2. Let 𝑢 ∈

([0, 𝑇 );𝐻𝑠(R2)) with 𝜕−1𝑥 𝑢𝑦 ∈ 𝐶([0, 𝑇 );𝐻𝑠−1(R2)) be the solution obtained

n Theorem 4.1, corresponding to the initial data 𝑢0.

(i) If 𝑝1, 𝑝2 < 𝑠𝑐 = 1 + 4𝛼
2+𝛼 , then 𝑢(𝑡) is uniformly bounded in 𝑋𝛼 for

𝑡 ∈ [0, 𝑇 ).

(ii) If 𝑝1 = 𝑠𝑐 and

1 −
2𝜇1𝜌𝑝1
𝑝1 + 1

‖𝑢0‖
2𝑐𝑝1
𝐿2(R2)

> 0, (4.5)

then 𝑢(𝑡) is uniformly bounded in 𝑋𝛼 for 𝑡 ∈ [0, 𝑇 ). Particularly, 𝑢(𝑡)

is uniformly bounded in 𝑋𝛼 if

‖𝑢0‖
2𝑐𝑝1
𝐿2(R2)

< 1
𝜇1

2
2 + 3𝛼

(𝛼
2

)
𝛼
𝛼+2

‖𝜑𝑠𝑐‖
4𝛼
𝛼+2
𝐿2(R2)

,

where 𝜑𝑠𝑐 is the ground state of

(

𝑢 +𝐷2𝛼
𝑥 𝑢 − 𝑢

𝑠𝑐
)

𝑥𝑥 + 𝑢𝑦𝑦 = 0. (4.6)

Proof. Let 𝑢 ∈ 𝐶([0, 𝑇 );𝑋𝑠) be the solution of (1.5) with the initial
data 𝑢(0) = 𝑢0. Then by using the invariants 𝐸 and 𝑀 , we have
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that

𝐸(𝑢0) ≥
1
2
‖𝑢‖2

�̇�𝛼
−

𝜇1
𝑝1 + 1

‖𝑢‖𝑝1+1
𝐿𝑝1+1(R2)

−
𝜇2

𝑝2 + 1
‖𝑢‖𝑝2+1

𝐿𝑝2+1(R2)

≥ 1
2
‖𝑢‖2

�̇�𝛼
−
𝜇1𝜌𝑝1
𝑝1 + 1

‖𝑢‖
2𝑐𝑝1
𝐿2(R2)

‖𝐷𝛼
𝑥𝑢‖

(𝑝1−1)∕𝛼
𝐿2(R2)

‖𝜕−1𝑥 𝑢𝑦‖
(𝑝1−1)∕2
𝐿2(R2)

−
𝜇2𝜌𝑝2
𝑝2 + 1

‖𝑢‖
2𝑐𝑝2
𝐿2(R2)

‖𝐷𝛼
𝑥𝑢‖

(𝑝2−1)∕𝛼
𝐿2(R2)

‖𝜕−1𝑥 𝑢𝑦‖
(𝑝2−1)∕2
𝐿2(R2)

≥ 1
2
‖𝑢‖2

�̇�𝛼
−
𝜇1𝜌𝑝1
𝑝1 + 1

‖𝑢‖
2𝑐𝑝1
𝐿2(R2)

‖𝑢‖
(𝛼+2)(𝑝1−1)

2𝛼
�̇�𝛼

−
𝜇2𝜌𝑝2
𝑝2 + 1

‖𝑢‖
2𝑐𝑝2
𝐿2(R2)

‖𝑢‖
(𝛼+2)(𝑝2−1)

2𝛼
�̇�𝛼

= ℎ(‖𝑢‖�̇�𝛼 ),

(4.7)

where

ℎ(𝑧) = 1
2
𝑧2 −

𝜇1𝜌𝑝1
𝑝1 + 1

‖𝑢0‖
2𝑐𝑝1
𝐿2(R2)

𝑧
(𝛼+2)(𝑝1−1)

2𝛼 −
𝜇2𝜌𝑝2
𝑝2 + 1

‖𝑢0‖
2𝑐𝑝2
𝐿2(R2)

𝑧
(𝛼+2)(𝑝2−1)

2𝛼

nd 𝜌𝑝1 , 𝜌𝑝2 > 0 are the same as in Theorem 4.2. This immediately
mplies for 𝑝1, 𝑝2 < 𝑠𝑐 that ‖𝑢‖𝑋𝛼 is uniformly bounded for all 𝑡 ∈ [0, 𝑇 ).
he uniform bound still holds for 𝑝1 = 𝑠𝑐 > 𝑝2 provided

−
2𝜇1𝜌𝑝1
𝑝1 + 1

‖𝑢0‖
2𝑐𝑝1
𝐿2(R2)

> 0.

n the other hand, (4.2) gives the condition of boundedness of 𝑢 in
terms of the ground state of (4.1). □

For the supercritical nonlinearities or in the case of the combined
supercritical and critical nonlinearities, we need to impose more addi-
tional conditions in terms of the best constant of (2.3).

Theorem 4.6. Let 𝜇1, 𝜇2 > 0, 𝑝2 > 𝑝1 ≥ 𝑠𝑐 . Suppose that 𝑢 is the solution
of (1.5) as in Theorem 4.5, corresponding to the initial data 𝑢0.

(i) If 𝑝1 = 𝑠𝑐 , ‖𝑢0‖�̇�𝛼 < 𝑧0, 𝐸(𝑢0) < ℎ(𝑧0) and (4.5) holds, then 𝑢(𝑡) is
uniformly bounded in 𝑋𝛼 for 𝑡 ∈ [0, 𝑇 ), where ℎ is as in the proof
of Theorem 4.5,

𝑧0 =
(𝐴
𝐵

)

𝑠𝑐−1
2𝑝2−𝑠𝑐+1 ,

and

𝐴 = 1−
2𝜌𝑝1𝜇1
𝑝1 + 1

‖𝑢0‖
2𝑐𝑝1
𝐿2(R2)

, 𝐵 =
𝜌𝑝2𝜇2
𝑝2 + 1

(𝑝2−1)
(𝛼 + 2

2𝛼

)

‖𝑢0‖
2𝑐𝑝2
𝐿2(R2)

.

(ii) If 𝑝1 > 𝑠𝑐 , there exists

𝑧1 = 𝑧1
(

𝛼, 𝑝1, 𝑝2, 𝜌𝑝1 , 𝜌𝑝2 , 𝜇1, 𝜇2, ‖𝑢0‖𝐿2(R2)

)

> 0

such that if

𝐸(𝑢0) <
(𝑝1 − 1)(𝛼 + 2) − 4𝛼
2(𝑝1 − 1)(𝛼 + 2)

𝑧21,

and ‖𝑢0‖�̇�𝛼 < 𝑧1, then the solution 𝑢(𝑡) is uniformly bounded in the
energy space.

Proof. (i) Let ℎ be as the same in the proof of 4.5. Then,

𝐸(𝑢(𝑡)) ≥ ℎ(‖𝑢(𝑡)‖�̇�𝛼 ).

The function ℎ is continuous on [0,∞) and

ℎ′(𝑧) = 𝐴𝑧 − 𝐵𝑧(𝑝2−1)(
𝛼+2
2𝛼 )−1.

nequality (4.5) shows that ℎ′(𝑧) = 0 has only a positive root 𝑧0. Hence,
is increasing on the interval [0, 𝑧0), decreasing on [𝑧0,+∞) and

ℎmax = ℎ(𝑧0) = 𝐴
(𝑝2 − 1)(𝛼 + 2) − 4𝛼
2(𝑝2 − 1)(𝛼 + 2)

𝑧20.

The invariant 𝐸(𝑢(𝑡)) = 𝐸(𝑢0) and 𝐸(𝑢0) < ℎ(𝑧0) imply that
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ℎ(‖𝑢(𝑡)‖�̇�𝛼 ) ≤ 𝐸(𝑢(𝑡)) = 𝐸(𝑢0) < ℎ(𝑧0) (4.8)
for all [0, 𝑇 ). We show that ‖𝑢(𝑡)‖�̇�𝛼 < 𝑧0 for all [0, 𝑇 ), if ‖𝑢0‖�̇�𝛼 < 𝑧0.
This means that 𝑢(𝑡) is uniformly bounded in the energy space. Suppose
by contradiction that ‖𝑢(𝑡)‖�̇�𝛼 ≥ 𝑧0 for some 𝑡1 < 𝑇 . Then, by continuity
f ‖𝑢(𝑡)‖�̇�𝛼 , there exists 𝑡0 ∈ (0, 𝑇 ) such that ‖𝑢(𝑡0)‖�̇�𝛼 = 𝑧0. Thus,

(‖𝑢(𝑡0)‖�̇�𝛼 ) = ℎ(𝑧0) = ℎmax.

ow, (4.8) yields with 𝑡 = 𝑡0 that

(‖𝑢(𝑡0)‖�̇�𝛼 ) = ℎ(𝑧0) = ℎmax ≤ 𝐸(𝑢(𝑡0)) = 𝐸(𝑢0) < ℎmax.

his contradiction gives the desired result. We note by a similar argu-
ent that if ‖𝑢(𝑡)‖�̇�𝛼 > 𝑧0 for all [0, 𝑇 ), if ‖𝑢0‖�̇�𝛼 > 𝑧0.

(ii) By an argument similar to (i), we see that
′(𝑧) = 𝑧 − 𝐵1𝑧

𝑒1−1 − 𝐵2𝑧
𝑒2−1,

here

𝑗 = (𝑝𝑗 − 1)
(𝛼 + 2

2𝛼

)

and

𝐵𝑗 =
𝜌𝑝𝑗𝜇𝑗
𝑝𝑗 + 1

𝑒𝑗‖𝑢0‖
2𝑐𝑝𝑗
𝐿2(R2)

, 𝑗 = 1, 2.

Set ℎ̃(𝑧) = ℎ′(𝑧)
𝑧 . Then,

ℎ̃′(𝑧) = −𝐵1
(

𝑒1 − 1
)

𝑧𝑒1−2 − 𝐵2
(

𝑒2 − 1
)

𝑧𝑒2−2.

The assumption 𝑝2 > 𝑝1 > 𝑠𝑐 shows for 𝑧 > 0 that ℎ̃′(𝑧) < 0. So, ℎ̃ is
decreasing on [0,+∞). By the fact ℎ̃(0) = 1, there exists 𝑧1 > 0 such that
ℎ̃(𝑧1) = 0, and then

ℎ(𝑧1) =
(

1
2
− 1
𝑒1

)

𝑧21 +
𝜌𝑝2𝜇2

𝑒1(𝑝2 + 1)

(𝛼 + 2
2𝛼

)

(𝑝2 − 𝑝1)𝑧
𝑒2
1 .

e now obtain from the conservation of energy together with 𝐸(𝑢0) <
𝑒1−2
2𝑒1

𝑧21 that

ℎ(‖𝑢(𝑡)‖�̇�𝛼 ) ≤ 𝐸(𝑢(𝑡)) = 𝐸(𝑢0)

≤
(

1
2
− 1
𝑒1

)

𝑧21 +
𝜌𝑝2𝜇2

𝑒1(𝑝2 + 1)

(𝛼 + 2
2𝛼

)

(𝑝2 − 𝑝1)𝑧
𝑒2
1 = ℎ(𝑧1).

y the same argument as in (i), we conclude that ‖𝑢(𝑡)‖�̇�𝛼 < 𝑧1 for all
∈ [0, 𝑇 ), if ‖𝑢0‖�̇�𝛼 < 𝑧1. This gives the uniform boundedness of 𝑢. □

roposition 4.7. Let 𝜙 ∈ 𝐶1(R) be a nonnegative measurable function
satisfying |𝜙′(𝑦)| ≲ 𝜙(𝑦) and 𝑢 be the solution of Theorem 4.1. Then
1∕2(𝑦)𝑢 ∈ 𝐿∞((0, 𝑇 );𝐿2(R2)), if 𝜙1∕2(𝑦)|𝑢0| ∈ 𝐿2(R2).

The proof of this proposition is similar to one of Theorem 3.3
n [44].

Now by Proposition 4.7, the quantity

(𝑢) = ∫R2
𝜙(𝑦)𝑢2(𝑡) d𝑥d𝑦

s well defined as soon as 𝑢0 ∈ 𝑋𝑠 and 𝜙1∕2(𝑦)𝑢0 ∈ 𝐿2(R2).

heorem 4.8. Let 𝜙 ∈ 𝐶4(R) as in Proposition 4.7. Suppose that 𝑢 is a
olution, obtained from Theorem 4.1, such that 𝜙1∕2(𝑦)𝑢0 ∈ 𝐿2(R2). Then
(𝑡) satisfies

1
2

d2

d𝑡2
I(𝑢) = −1

2 ∫R2
𝜙(4)(𝜕−1𝑥 𝑢)2 d𝑥d𝑦

+ 2∫R2
𝜙′′(𝑦)

(

(𝜕−1𝑥 𝑢𝑦)2 − k1𝜇1𝐹1(𝑢) − k2𝜇2𝐹2(𝑢)
)

d𝑥d𝑦,

(4.9)

here k𝑗 = (𝑝𝑗 − 1)∕2.

emark 4.9. If ∫R2 |𝑥|𝑢20 d𝑥d𝑦 is finite, then 𝑡↦ ∫R2 𝑥𝑢2(𝑡) d𝑥d𝑦 is a 𝐶1

unction of time and
d
d𝑡 ∫R2

𝑥𝑢2(𝑡) d𝑥d𝑦 = (2𝛼 − 1)‖𝐷𝛼
𝑥𝑢‖

2
𝐿2(R2)

− ‖𝜕−1𝑥 𝑢𝑦‖
2
𝐿2(R2)

+ 2 (𝐹 (𝑢) − 𝑢𝑓 (𝑢)) d𝑥d𝑦.
(4.10)
∫R2
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We use the Young inequality for the next result. Recall from the
Young inequality for any 𝑎 > 0 and 𝑝2 > 𝑝1 > 1 that for any 𝜏 > 0 there
xists 𝐶𝜏 > 0 such that

𝑝1+1 ≤ 𝜏𝑎2 + 𝐶𝜏𝑎𝑝2+1, 𝐶𝜏 = 𝜏
𝑝2−𝑝1
1−𝑝1 . (4.11)

Now we state our blow-up result in terms of the energy of initial
ata and the sign of 𝜇1 and 𝜇2.

Theorem 4.10. Let 𝑢 ∈ 𝐶([0, 𝑇 );𝐻𝑠(R2)) with 𝜕−1𝑥 𝑢𝑦 ∈ 𝐶([0, 𝑇 );
𝐻𝑠−1(R2)) be the solution obtained in Theorem 4.1, corresponding to the
initial data 𝑢0. If 𝑦𝑢0 ∈ 𝐿2(R2), then the solution 𝑢(𝑡) blows up in finite time
in the sense that 𝑇 < +∞ must hold in each of the following three cases:

(i) 𝜇2 > 0, 𝐸(𝑢0) ≤ 0 and 𝑝2 ≥ 𝑝1 ≥ 5;
(ii) 𝜇1 < 0, 𝐸(𝑢0) ≤ 0 and 𝑝2 ≥ max{5, 𝑝1};
(iii) 𝜇2 < 0 < 𝜇1, 𝑝2 ≥ max{ 4

𝜃 + 1, 𝑝1} with 𝜃 ∈ (0, 1), and there is 𝜏 > 0
such that

𝑝2 − 1
2

𝜃𝐸(𝑢0) + 𝐴𝑝1𝜏𝑀(𝑢0) ≤ 0 (4.12)

and

𝐴𝑝1𝐶𝜏 − 𝐴𝑝2 ≤ 0,

where 𝐶𝜏 is as in (4.11) and

𝐴𝑝1 =
𝜇1

2(𝑝1 + 1)
|𝜃(𝑝2 − 1) − 𝑝1 + 1|, 𝐴𝑝2 =

𝜇2k2
𝑝2 + 1

(1 − 𝜃).

(iv) 𝜇2 > 0, 𝑝2 ≥ max{ 4
𝜃 + 1, 𝑝1} with 𝜃 ∈ (0, 1), and there is 𝜏 > 0 such

that

𝑝2 − 1
2

𝜃𝐸(𝑢0) − 𝐴′
𝑝2
𝜏𝑀(𝑢0) ≤ 0 (4.13)

and

𝐴′
𝑝1

+ 𝐴′
𝑝2

≤ 0,

where 𝐶𝜏 is as in (4.11) and

𝐴′
𝑝2

=
𝜇2(𝑝2 − 1)(1 − 𝜃)

2𝐶𝜏 (𝑝2 + 1)
, 𝐴′

𝑝1
=

𝜇1
𝑝1 + 1

(𝜃(𝑝2 − 1) − 𝑝1 + 1).

roof. In what follows, we will show for 𝜙(𝑦) = 𝑦2 in Theorem 4.8
that the second derivative of I(𝑢) is negative for positive times 𝑡. More
precisely, in each of the described three cases, it follows that I(𝑢(𝑡0))
for some 𝑡0 < 𝑇 , and the blow-up result can be deduced from the
conserved momentum 𝑀 and the classical Weyl–Heisenberg inequality.

(i) and (ii) We obtain from 4.8 and the conservation of energy 𝐸
that

1
8

d2

d𝑡2
I(𝑢) = ‖𝜕−1𝑥 𝑢𝑦‖

2
𝐿2(R2)

− �̃�(𝑢)

=
5 − 𝑝1

4
‖𝜕−1𝑥 𝑢𝑦‖

2
𝐿2(R2)

−
𝑝2 − 𝑝1

2
𝐾2(𝑢)

−
𝑝1 − 1

4
‖𝐷𝛼

𝑥𝑢‖
2
𝐿2(R2)

+ k1𝐸(𝑢0)

=
5 − 𝑝2

4
‖𝜕−1𝑥 𝑢𝑦‖

2
𝐿2(R2)

−
𝑝1 − 𝑝2

2
𝐾1(𝑢)

−
𝑝2 − 1

4
‖𝐷𝛼

𝑥𝑢‖
2
𝐿2(R2)

+ k2𝐸(𝑢0),

where

�̃�(𝑢) = k 𝐾 (𝑢) + k 𝐾 (𝑢). (4.14)
15

1 1 2 2
(iii) In this case, we have from (4.11) and the mass conservation
that

1
8

d2

d𝑡2
I(𝑢) = ‖𝜕−1𝑥 𝑢𝑦‖

2
𝐿2(R2)

− (𝜃 + (1 − 𝜃))k2𝐾2(𝑢) − k1𝐾1(𝑢)

=
(

1 −
𝑝2 − 1

4
𝜃
)

‖𝜕−1𝑥 𝑢𝑦‖
2
𝐿2(R2)

−
k2𝜃
2

‖𝐷𝛼
𝑥𝑢‖

2
𝐿2(R2)

+ k2𝜃𝐸(𝑢0)

− k2(1 − 𝜃)𝐾2(𝑢) −
1
2
(𝑝1 − 1 − 𝜃(𝑝2 − 1))𝐾1(𝑢)

≤
4 − (𝑝2 − 1)𝜃

4
‖𝜕−1𝑥 𝑢𝑦‖

2
𝐿2(R2)

−
k2𝜃
2

‖𝐷𝛼
𝑥𝑢‖

2
𝐿2(R2)

+ k2𝜃𝐸(𝑢0)

+ 𝐴𝑝1𝜏𝑀(𝑢0) + (𝐴𝑝1𝐶𝜏 + 𝐴𝑝2 )∫R2
𝑢𝑝2+1 d𝑥d𝑦.

Now, if 𝜏 > 0 is in such a way that 𝐴𝑝1𝐶𝜏 + 𝐴𝑝2 ≤ 0, then d2
d𝑡2 I(𝑢) < 0

rovided (4.12) holds.
Case (iv) is obtained similarly. □

We have seen in Theorem 4.5 in the critical case 𝑝1 = 𝑠𝑐 that the
solutions of (1.5) are uniformly bounded if the initial data is almost
less than the 𝐿2-norm of the ground state of (4.1). In the following, we
study the conditions under which 𝐿2-prescribed solutions of (1.9) exist
in the critical case.

For 𝜚 > 0, we consider the minimizing problem

𝜚 = inf{𝐸(𝑢); 𝑢 ∈ 𝑋𝛼 , 𝑀(𝑢) = 𝜚} (4.15)

nd the set

𝜚 = {𝑢 ∈ 𝑋𝛼 , 𝐸(𝑢) = 𝑑𝜚, 𝑀(𝑢) = 𝜚}.

heorem 4.11. Let 𝑝2 = 𝑠𝑐 , 𝜇2 = 1 and 𝑄 be a ground state of (4.1)
ith 𝑝 = 𝑠𝑐 . If 𝜇1 < 0 and 𝑝1 > 𝑠𝑐 , then for any 𝜚 ∈ (𝑀(𝑄),+∞), the set

𝛴𝜚 is nonempty. If 𝜇1 > 0 and 𝑝1 < 𝑠𝑐 , then for any 𝜚 ∈ (0,𝑀(𝑄)), the set
𝛴𝜚 is not empty.

Proof. First, we consider the case 𝜇1 < 0 and 𝑝1 > 𝑠𝑐 . The minimization
value 𝑑𝜚 is bounded from below. Indeed, we have from (4.11) for any
𝑢 ∈ 𝑋𝛼 with 𝑀(𝑢) = 𝜚 that

𝐸(𝑢) ≥ 1
2
‖𝑢‖2

�̇�𝛼
+
(

𝜇1
𝑝1 + 1

−
𝐶𝜏

𝑝2 + 1

)

∫R2
𝑢𝑝1+1 d𝑥d𝑦 − 𝜏𝜚

≥ 1
2
‖𝑢‖2

�̇�𝛼
+
(

𝜇1
𝑝1 + 1

−
𝐶𝜏

𝑝2 + 1

)

𝜚𝑐𝑝1 𝜌𝑝1‖𝑢‖
2(𝑝1−1)
𝑠𝑐−1

�̇�𝛼
− 𝜏𝜚

(4.16)

f we choose 𝜏 > 0 such that 𝜇1
𝑝1+1

− 𝐶𝜏
𝑝2+1

> 0, then 𝑑𝜚 > −∞. We show
that if 𝜚 ∈ (0,𝑀(𝑄)), then 𝑑𝜚 ≥ 0 while 𝑑𝜚 < 0 for all 𝜚 ∈ (𝑀(𝑄),+∞).
Let 𝑢 ∈ 𝑋𝛼 and 𝑀(𝑢) = 𝜚 ≤𝑀(𝑄). Then, we have that

𝐸(𝑢) ≥ 1
2
‖𝑢‖2𝑋𝛼 −

𝜌𝑝2𝜚
𝑐𝑝2

𝑝2 + 1
‖𝑢‖2

�̇�𝛼
=

(

1
2
−
𝜌𝑝2𝜚

𝑐𝑝2

𝑝2 + 1

)

‖𝑢‖2
�̇�𝛼
.

We note that

𝜌−1𝑝2 = 𝛼−1
(𝛼
2

)
𝛼
𝛼+2 2𝛼

𝛼 + 2
‖𝑄‖

4𝛼
2+𝛼
𝐿2(R2)

.

Then, 𝐸(𝑢) ≥ 0 if

‖𝑢‖𝐿2(R2) ≤ 𝓁𝛼‖𝑄‖𝐿2(R2),

where

𝓁𝛼 = 𝛼
1
4 (𝛼 + 2)−(𝑠𝑐−1)2

1
2𝛼 .

Thus, it follows that 𝑑𝜚 ≥ 0 for all 𝜚 ∈ (0,𝓁2
𝛼𝑀(𝑄)]. Next, for 𝜖 > 0 we

set

𝑢𝜖(𝑥, 𝑦) =

√

𝜚
𝜖
𝛼+2
2 𝑄(𝜖𝑥, 𝜖𝛼+1𝑦).
‖𝑄‖𝐿2(R2)
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Then ‖𝑢𝜖‖2𝐿2(R2)
= 𝜚. Moreover, it is straightforward to check that

𝐸(𝑢𝜖) = 𝜖2𝛼
⎛

⎜

⎜

⎝

𝜚
2𝑀(𝑄)

‖𝑄‖2
�̇�𝛼

−
(

𝜚
𝑀(𝑄)

)
3𝛼+2
𝛼+2

𝐾2(𝑄)
⎞

⎟

⎟

⎠

+ 𝜖(𝛼+2)
𝑝−1
2

(

𝜚
𝑀(𝑄)

)
𝑝−1
2 (𝛼+2)

𝐾1(𝑄)

≤ 𝜖2𝛼

2
‖𝑄‖2

�̇�𝛼

⎛

⎜

⎜

⎝

𝜚
𝑀(𝑄)

−
(

𝜚
𝑀(𝑄)

)
3𝛼+2
𝛼+2 ⎞

⎟

⎟

⎠

+ 𝜖(𝛼+2)
𝑝−1
2

(

𝜚
𝑀(𝑄)

)
𝑝−1
2 (𝛼+2)

𝐾1(𝑄) < 0

(4.17)

provided 𝜚 > 𝑀(𝑄) as 𝜖 ≪ 1, where in the above we use the following
ohozaev identity

𝑄‖2
�̇�𝛼

= 2𝐾2(𝑄).

Next, we show that every minimizing sequence for 𝑑𝜚 is bound in 𝑋𝛼
nd bound from below in 𝐿𝑝1+1(R2). Let {𝑢𝑛} be a minimizing sequence.
ince 𝑀(𝑢𝑛) = 𝜚, then we obtain from (4.16) that {𝑢𝑛} is bounded in
𝛼 . Furthermore, since 𝑑𝜚, we have 𝐸(𝑢𝑛) ≤ 𝑑𝜚∕2 for 𝑛 large enough.
he definition of 𝐸 and (4.11) show that

𝑢𝑛‖
𝑝1+1
𝐿𝑝1+1(R2)

≥ −𝐸(𝑢𝑛) ≥ −
𝑑𝜚
2
. (4.18)

Now suppose that {𝑢𝑛} is a minimizing sequence for 𝑑𝜚, i.e.,
‖𝑢𝑛‖2𝐿2(R2)

= 𝜚 and 𝐸(𝑢𝑛) → 𝑑𝜚 as 𝑛→ ∞. We first prove

𝑑𝜃𝜚 < 𝜃𝑑𝜚 (4.19)

for all 𝜚 > 𝑀(𝑄) and 𝜃 > 1. Since 𝜚 > 𝑀(𝑄), there exists 𝛿 > 0 such that
‖𝑢𝑛‖2�̇�𝛼

≥ 𝛿 for sufficiency large 𝑛. If this is not true, then ‖𝑢𝑛‖�̇�𝛼 → 0 as
𝑛 → ∞. By (2.3), this implies that 𝐸(𝑢𝑛) tends to zero as 𝑛 → ∞ which
contradicts 𝑑𝜚 < 0. Therefore, the minimization problem (4.15) can be
rewritten as

𝑑𝜚 = inf{𝐸(𝑢); 𝑢 ∈ 𝑋𝛼 , 𝑀(𝑢) = 𝜚, ‖𝑢‖2
�̇�𝛼

≥ 𝛿}. (4.20)

If we set �̃�(𝑥, 𝑦) = 𝑢(𝜃−
1
𝛼+2 𝑥, 𝜃−

𝛼+1
𝛼+2 𝑦) with 𝜃 > 1, then we can see that

(�̃�) = 𝜃𝑀(𝑢) and

𝜃𝜚 ≤ inf{𝐸(�̃�); 𝑢 ∈ 𝑋𝛼 , 𝑀(𝑢) = 𝜚, ‖𝑢‖2
�̇�𝛼

≥ 𝛿}, (4.21)

here

(�̃�) = 𝜃
2−𝛼
2+𝛼

2
‖𝑢‖2

�̇�𝛼
− 𝜃𝐾(𝑢)

= 𝜃𝐸(𝑢) − 1
2
(𝜃 − 𝜃

2−𝛼
2+𝛼 )‖𝑢‖2

�̇�𝛼

≤ 𝜃𝐸(𝑢) − 𝛿
2
(𝜃 − 𝜃

2−𝛼
2+𝛼 ).

We have by taking the infimum that

𝑑𝜃𝜚 ≤ 𝜃𝑑𝜚 −
𝛿
2
(𝜃 − 𝜃

2−𝛼
2+𝛼 ) < 𝜃𝑑𝜚

or all 𝜚 > 𝑀(𝑄) and 𝜃 > 1. This implies that

𝜚 < 𝑑𝛽 + 𝑑𝜚−𝛽 (4.22)

for all 𝜚 > 𝑀(𝑄) and 𝛽 ∈ (0, 𝜚). More precisely, if 𝛽 > 𝑀(𝑄) and
< 𝜚 − 𝛽 ≤𝑀(𝑄), then we obtain that

𝜚 = 𝑑𝛽𝜚∕𝛽 <
𝜚
𝛽
𝑑𝛽 = 𝑑𝛽 +

𝜚 − 𝛽
𝛽

𝑑𝛽 ≤ 𝑑𝛽 + 𝑑𝜚−𝛽 .

ow we apply the concentration–compactness principle (see [47]) in
𝛼 for {𝑢𝑛}, similar to [21,32,38,39]. The vanishing case cannot occur
y (4.16). The dichotomy case is ruled out, similar to [32] by using
he subadditivity property (4.22) with the help of the fractional Leibniz
ule together with the fractional commutator estimate in [48, Lemma
.5] and [49, Lemma 2.12] (see also [50] for the estimates of higher
16
order fractional derivatives), and the fractional Poincaré inequality
(see [51, Proposition 2.1], [52, Lemma 2.2] and [53,54]). Finally,
we can conclude by ruling out vanishing and dichotomy that indeed
compactness occurs. Thereby, we infer that there exist a subsequence
{𝑢𝑛𝑘}, {𝑧𝑘} ⊂ R2 and some 𝑢 ∈ 𝑋𝛼 such that

𝑢𝑛𝑘 (⋅ − 𝑧𝑘) → 𝑢

in 𝐿𝑞(R2) for all 𝑞 < 2∗. Thus, we deduce from this fact combined with
the weak lower semicontinuity of the 𝑋𝛼-norm that

𝐸(𝑢) ≤ lim
𝑘→∞

𝐸(𝑢𝑛𝑘 ) = 𝑑𝜚.

We have from the definition 𝑑𝜚 of that 𝐸(𝑢) = 𝑑𝜚. Particularly, 𝐸(𝑢𝑛𝑘 ) →
𝐸(𝑢), and it indicate that ‖𝑢𝑛𝑘‖�̇�𝛼 → ‖𝑢‖�̇�𝛼 , which implies that 𝑢𝑛𝑘 (⋅ −
𝑧𝑘) → 𝑢 strongly in 𝑋𝛼 .

Next, we consider the case 𝜇1 > 0 and 𝑝1 < 𝑠𝑐 . We first note for
𝑢 ∈ 𝑋𝛼 with 𝑢 ≢ 0 and

𝑢𝜖(𝑥, 𝑦) = 𝜖
𝛼+2
2 𝑢(𝜖𝑥, 𝜖𝛼+1𝑦) (4.23)

that

𝑑𝜚 ≤ 𝐸(𝑢𝜖) =
𝜖2𝛼

2
‖𝑢‖2

�̇�𝛼
− 𝜖

(𝛼+2)(𝑝1−1)
2 𝐾1(𝑢) − 𝜖

(𝛼+2)(𝑝2−1)
2 𝐾2(𝑢) < 0

for sufficiently small 𝜖 > 0. Moreover, any minimizing sequence is
ounded in 𝑋𝛼 by (2.3). Furthermore, it follows from 𝜚 < 𝑀(𝑄) that
here exists 𝛿 > 0 such that 𝐾1(𝑢𝑛), 𝐾2(𝑢𝑛) ≥ 𝛿 for all sufficiently large
. We also observe for 𝜚 > 𝑀(𝑄) and 𝑉 =

√

𝜚
‖𝑄‖2

𝐿2(R2)

that 𝑀(𝑈 ) = 𝜚 and

1
2
‖𝑈‖

2
�̇�𝛼

−𝐾2(𝑄) =
1
2

‖𝑄‖2
�̇�𝛼

𝑀(𝑄)
𝜚 −

𝜚
𝑝2
2 +1

(𝑀(𝑄))
𝑝2+2
2

𝐾2(𝑄) < 0.

This together with 𝑝2 < 𝑝2 with (4.23) reveals that

lim
𝜖→+∞

𝐸(𝑢𝜖) = −∞.

Second, let

𝑢𝜃(𝑥, 𝑦) = 𝜃
2𝛼
𝑝1−1 𝑢(𝜃𝑥, 𝜃𝛼+1𝑦),

so that
d
d𝜃

|

|

|𝜃=1
𝐸(𝑢𝜃) = 𝜃1

( 1
2
‖𝑢‖2

�̇�𝛼
−𝐾1(𝑢)

)

− 𝜃2𝐾2(𝑢)

= 𝜃1𝐸(𝑢) − 𝜃3𝐾2(𝑢),

where

𝜃1 =
4𝛼

𝑝1 − 1
+ 𝛼 − 2, 𝜃2 =

4𝛼
𝑝2 − 1

+ 𝛼 − 2, 𝜃3 =
2𝛼

𝑝1 − 1
(𝑝2 − 𝑝1).

Together with ‖𝑢𝜃‖2𝐿2(R2)
= 𝜃

4𝛼
𝑝1−1

−𝛼−2
‖𝑢‖2

𝐿2(R2)
, which implies that

d
d𝜃

|

|

|𝜃=1
‖𝑢𝜃‖𝐿2(R2) > 0,

and this shows that 𝑑𝜚 is decreasing in 𝜚. As a consequence, we have a
strict subadditivity condition. But we alternatively show this directly.
Let {𝑈𝑛} and {𝑉𝑛} be sequences of functions in 𝑋𝛼 such that 𝑀(𝑈𝑛) →
𝜚′, 𝐸(𝑈𝑛) → 𝑑𝜚′ , 𝑀(𝑉𝑛) → 𝜚′′ and 𝐸(𝑉𝑛) → 𝑑𝜚′′ as 𝑛 → ∞. Let
′ =

𝑑𝜚′
𝜚′ and 𝜈′′ =

𝑑𝜚′′
𝜚′′ . If 𝜈′ < 𝜈′′, then by defining �̃�𝑛 =

√

𝜚𝑈𝑛 with
𝜚 = (𝜚′ + 𝜚′′)∕𝜚′ we obtain that �̃�𝑛 ∈ 𝑋𝛼 and 𝐸(�̃�𝑛) → 𝜚′ + 𝜚′′ and
consequently 𝑑𝜚′+𝜚′′ ≤ lim𝑛→∞ 𝐸(�̃�𝑛). A straightforward calculation for
𝜚 > 1 gives that 𝐸(�̃�𝑛) ≤ 𝜚𝐸(𝑈𝑛). This then implies that 𝑑𝜚′+𝜚′′ ≤ 𝜚′𝜈′.
ut 𝛿 = 𝜚′′(𝜈′′ − 𝜈′) > 0. Then

𝜚′+𝜚′′ ≤ 𝜚′𝜈′ + 𝜚′′𝜈′′ − 𝛿.

his means that 𝑑𝜚′+𝜚′′ < 𝑑𝜚′ +𝑑𝜚′′ . This inequality holds similarly when
′ > 𝜈′′. If 𝜈′ = 𝜈′′, then there exists 𝛿 > 0 such that 𝐸(�̃�𝑛) ≤ 𝜚𝐸(𝑈𝑛) − 𝛿
or sufficiently large 𝑛. This in turn implies that

(�̃�𝑛) ≤ 𝜚𝐸(𝑈𝑛) − 𝛿
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for sufficiently large 𝑛. Thus, we obtain that

𝜚′+𝜚′′ ≤ 𝜚 lim
𝑛→∞

𝐸(𝑈𝑛) − 𝛿 = 𝜚𝜈′𝜚′ − 𝛿 = 𝜈′𝜚′ + 𝜈′𝜚′′ − 𝛿.

Therefore, similar to the case 𝜇1 < 0, the boundedness of the minimiz-
ing sequence {𝑢𝑛} now implies that there exists 𝑢 ∈ 𝑋𝛼 such that 𝑢𝑛 ⇀ 𝑢
in, 𝑋𝛼 , up to a subsequence. The limit function is nontrivial. If not, then
𝐾(𝑢𝑛) → 0 which contradicts to 𝐸(𝑢𝑛) =

1
2‖𝑢𝑛‖

2
�̇�𝛼

→ 𝑑𝜚 < 0. Next, we
rove 𝑀(𝑢) = 𝜚. If 𝑀(𝑢) < 𝜚, we get

0 =

√

𝜚
‖𝑢‖𝐿2(R2)

> 1, 𝜅𝑛 =

√

𝜚
‖𝑢𝑛 − 𝑢‖𝐿2(R2)

> 1.

Note that

𝐸(𝜃𝑢) = 𝜃2𝐸(𝑢) + 𝜃2(1 − 𝜃𝑝1 )𝐾1(𝑢) + 𝜃2(1 − 𝜃𝑝2 )𝐾2(𝑢),

which implies for any 𝜃 > 0 that

𝐸(𝑢) = 𝜃−2𝐸(𝜃𝑢) + (𝜃𝑝1 − 1)𝐾1(𝑢) + (𝜃𝑝2 − 1)𝐾2(𝑢).

Thus, we deduce from the Brezis–Lieb lemma that
𝐸(𝑢𝑛) = 𝐸(𝑢) + 𝐸(𝑢𝑛 − 𝑢) + 𝑜𝑛(1),

= 𝜅−20 𝐸(𝜅0𝑢) + (𝜅𝑝10 − 1)𝐾1(𝜅0𝑢) + (𝜅𝑝20 − 1)𝐾2(𝜅0𝑢)

+ 𝜅−20 𝐸(𝜅𝑛(𝑢𝑛 − 𝑢)) + (𝜅𝑝1𝑛 − 1)𝐾1(𝜅0(𝑢𝑛 − 𝑢))

+ (𝜅𝑝2𝑛 − 1)𝐾2(𝜅0(𝑢𝑛 − 𝑢))

≥ 𝑀(𝑢)
𝜚

𝑑𝜚 +
𝑀(𝑢𝑛 − 𝑢)

𝜚
𝑑𝜚 + 𝑜𝑛(1).

aking the limit 𝑛→ ∞, we get

𝜚 ≥
𝑀(𝑢)
𝜚

𝑑𝜚,

hich together with 𝑑𝜚 < 0, implies that 𝑀(𝑢) ≥ 𝜚. Hence, 𝑀(𝑢) = 𝜚
and then 𝑢𝑛 → 𝑢 in 𝐿2(R2). We can obtain from the (2.3) that 𝑢𝑛 → 𝑢 in
𝐿𝑝1 (R2) ∩ 𝐿𝑝2 (R2). Consequently, we obtain

𝐸(𝑢) ≤ lim inf
𝑛→∞

𝐸(𝑢𝑛) = 𝑑𝜚.

This means that 𝐸(𝑢) = 𝑑𝜚 and 𝑢 ∈ 𝛴𝜚. □

Proposition 4.12. Let 𝑝2 = 𝑠𝑐 , 𝜇2 = 1 and 𝑄 be a ground state of (4.1)
with 𝑝 = 𝑠𝑐 , where 𝜚∗ = 𝑀(𝜑𝑠𝑐 ). If 𝑝1 < 𝑠𝑐 and 𝜙𝜚 is a minimizer of 𝑑𝜚,
then
𝑑𝜚
𝜚

≊ −𝛩−𝛿 ,
𝐾1(𝜙𝜚)
𝜚

≊ −𝛩−𝛿

s 𝜚 → 𝜚∗, where 𝛩 = 1 − 𝛼+2
2 (2𝛼−1)

𝛼
𝛼+2

(

𝜚
𝜚∗

)
2𝛼
𝛼+2 and 𝛿 = (𝑝1−1)(𝛼+2)

5𝛼+2−(𝛼+2)𝑝1
.

roof. Let 𝜙 be in 𝑋𝛼 such that 𝑀(𝜙) = 𝜚. Then by (4.16) and the
Hölder inequality we have for any 𝜖 = 1

4𝛩 that

2𝐸(𝜙) ≥ ‖𝜙‖2
�̇�𝛼

(1 − 𝛩 − 2𝜖) − 𝑅𝜖𝜚
3𝛼+2+𝑝1(𝛼−2)

2(5𝛼+2−𝑝1(𝛼+2))

≳ 1
2
‖𝜙‖2

�̇�𝛼
𝛩 − 𝜚

3𝛼+2+𝑝1(𝛼−2)
2(5𝛼+2−𝑝1(𝛼+2))𝛩−𝛿 .

where 𝑅𝜖 = 𝐶𝜖−𝛿 . By taking the infimum over all 𝜙 ∈ 𝑋𝛼 with
(𝜙) = 𝜚, we obtain that

𝑑𝜚
𝜚
≳ −𝜚

3𝛼+2+𝑝1(𝛼−2)
2(5𝛼+2−𝑝1(𝛼+2))𝛩−𝛿 .

efine for 𝜏 > 0 the trial functions 𝑢𝜏 (𝑥, 𝑦) =
√

𝜚𝜏
𝛼+2
2 𝑢(𝜏𝑥, 𝜏𝛼+1𝑦), where

= 𝜑𝑠𝑐∕𝜚∗. Then 𝑀(𝑢𝜏 ) = 𝜚. Hence, we have from Theorem 4.2 and
emma 4.3 that
𝑑𝜚
𝜚

≤
𝐸(𝑢𝜏 )
𝜚

= 1
2
𝜏2𝛼

(

‖𝑢‖2
�̇�𝛼

− 2
𝑠𝑐 + 1

𝜚
2𝛼
𝛼+2𝐾2(𝑢)

)

− 𝜏
𝑝1−1
2 (𝛼+2)𝜚

𝑝1−1
2 𝐾1(𝑢)

=
𝜏2𝛼(𝛼 + 2)

4𝛼

⎛

⎜

⎜

⎝

1 −
(

𝜚
𝜚∗

)
2𝛼
𝛼+2 ⎞

⎟

⎟

⎠

− 𝜏
𝑝1−1
2 (𝛼+2)𝜚

𝑝1−1
2 𝐾1(𝑢).

(4.24)
17
To find the upper bound, we use (4.24) with 𝜏 = 𝜖𝛩
𝛿
2𝛼 with 𝜖 > 0. Then

by choosing 𝜖 small enough, we infer when 𝜚→ 𝜚∗ that 𝑑𝜚
𝜚 ≲ −𝛩−𝛿 . The

second part is proved analogously. □

5. Strong instability of ground states

In this section, we establish the instability of ground state solutions
of Eq. (1.5) through the mechanism of blow-up. To achieve this, we
introduce certain submanifolds within the context of 𝑋𝛼 , which remain
nvariant under the evolution governed by the Cauchy problem linked
o Eq. (1.5). By appropriately selecting initial data from these sets, the
olution of Eq. (1.5) will experience blow-up within a finite time. The
nstability of the ground states is then deduced from this phenomenon.

Let 𝑏, 𝑑 ≥ 0, and define

𝑏,𝑑 (𝑢) = 𝛼𝑏‖𝐷𝛼
𝑥𝑢‖

2
𝐿2(R2)

+(𝑑−𝑏)‖𝜕−1𝑥 𝑢𝑦‖
2
𝐿2(R2)

−(𝑏+𝑑)(k1𝐹1(𝑢)+ k2𝐹2(𝑢)).

We denote

𝛬𝑏,𝑑 = {𝑢 ∈ 𝑋𝛼 ⧵ {0}, 𝑆(𝑢) < 𝑚, 𝑅𝑏,𝑑 (𝑢) = 0},

and set

𝑚𝑅𝑏,𝑑 = inf
𝑢∈𝛬𝑏,𝑑

𝑆(𝑢).

Lemma 5.1. Let 𝜇1 > 0. If 𝜇2 < 0, 𝑝1 ≥ 𝑝2 and

1 ≥ 4
max{𝑑 − 𝑏, 𝛼𝑏}

𝑏 + 𝑑
+ 1.

hen

= 𝑚𝑅𝑏,𝑑 . (5.1)

dentity (5.1) holds when 𝜇2 > 0 if

1 ≥ 𝑝2 ≥ 4
max{𝑑 − 𝑏, 𝛼𝑏}

𝑏 + 𝑑
+ 1.

roof. By Theorem 2.1 we show that 𝜑 is ground state of (1.9) if and
nly if 𝜑 ∈ 𝛬𝑏,𝑑 and 𝑆(𝜑) = 𝑚𝑅𝑏,𝑑 . First we note that if 𝜑 is a ground

state of (1.9), then 𝜑 ∈ 𝛬𝑏,𝑑 by using

𝑅𝑏,𝑑 (𝜑) =
⟨

𝑆′(𝜑), 𝑏 + 𝑑
2

𝜑 + 𝑏𝑥𝜑𝑥 + 𝑑𝑦𝜑𝑦
⟩

= 0. (5.2)

Next, suppose that 𝑅𝑏,𝑑 (𝑢) < 0. Then 𝑅𝑏,𝑑 (𝜆𝑢) > 0 for some
sufficiently small 𝜆 > 0, and hereby there exists 𝜆0 ∈ (0, 1) such that
𝑏,𝑑 (𝜆0𝑢) = 0. Hence, 𝑚𝑅𝑏,𝑑 ≤ �̃�(𝑢), where �̃� = 𝑆 − 2

𝑟(𝑏+𝑑)𝑅𝑏,𝑑 with
= 𝑝1 − 1 if 𝜇2 < 0 and 𝑟 = 𝑝2 − 1 when 𝜇2 > 0. This means that

𝑅𝑏,𝑑 = �̃�𝑅𝑏,𝑑 ∶= inf
𝑢∈�̃�𝑏,𝑑

�̃�(𝑢),

here

̃𝑏,𝑑 = {𝑢 ∈ 𝑋𝛼 ⧵ {0}, 𝑅𝑏,𝑑 (𝑢) ≤ 0}.

o it is enough to find the ground state 𝜑 such that �̃�𝑅𝑏,𝑑 = �̃�(𝜑). Notice
hat the assumptions on 𝑝1 and 𝑝2 shows that �̃�(𝜑) > 0. Hence, there
xists a minimizing sequence {𝑢𝑛} ⊂ �̃�𝑏,𝑑 of �̃�𝑅𝑏,𝑑 that is bounded in
𝛼 , and in 𝐿𝑞(R2) for 𝑞 ∈ [2, 2∗] from (2.2), and lim𝑛→∞ �̃�(𝑢𝑛) = �̃�𝑅𝑏,𝑑 .

This implies that there exist a subsequence of {𝑢𝑛}, still denoted by the
same {𝑢𝑛}, and 𝑢 ∈ 𝑋𝛼 such that 𝑢𝑛 converges to 𝑢 weakly in 𝑋𝛼 . It
follows from Lemma 3.3 in [32] that 𝑢𝑛 → 𝑢 a.e. in R2. We show that
�̃�(𝑢) = �̃�𝑅𝑏,𝑑 and 𝑢 ∈ 𝛬𝑏,𝑑 . If we assume that 𝑖𝑝1 ∶= inf𝑛 ‖𝑢𝑛‖𝐿𝑝1+1(R2) > 0,
hen Lemma 4 in [35] shows that 𝑢 ≢ 0 a.e. in R2. Now if 𝑖𝑝1 = 0,
hen exists a subsequence of {𝑢𝑛}, still denoted by the same, such
hat ‖𝑢𝑛‖𝐿𝑝1+1(R2) → 0 as 𝑛 → ∞, so that ‖𝑢𝑛‖𝐿𝑝2+1(R2) → 0 from the
oundedness of {𝑢𝑛} in 𝑋𝛼 . Since 𝑢𝑛 ⊂ �̃�𝑅𝑏,𝑑 , ‖𝑢𝑛‖�̇�𝛼 → 0 as 𝑛 → ∞.

oreover, ‖𝐷𝛼
𝑥𝑢‖

4𝑏
𝑏+𝑑
𝐿2(R2)

‖𝜕−1𝑥 𝑢𝑦‖
2(𝑑−𝑏)
𝑏+𝑑

𝐿2(R2)
→ 0. Consequently, we have from

(2.3) that

‖𝐷𝛼𝑢‖
4𝑏
𝑏+𝑑

‖𝜕−1𝑢 ‖

2(𝑑−𝑏)
𝑏+𝑑 ≲ ‖𝑢 ‖

𝑝+1 ≲ ‖𝐷𝛼𝑢‖
𝑝−1
2

‖𝜕−1𝑢 ‖

𝑝−1
𝛼 ,
𝑥 𝐿2(R2) 𝑥 𝑦 𝐿2(R2) 𝑛 𝐿𝑝+1(R2) 𝑥 𝐿2(R2) 𝑥 𝑦 𝐿2(R2)
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for all 𝑝 ≤ 𝑝1, and equivalently,

𝐷𝛼
𝑥𝑢‖

4𝑏
𝑏+𝑑
𝐿2(R2)

‖𝜕−1𝑥 𝑢𝑦‖
2(𝑑−𝑏)
𝑏+𝑑

𝐿2(R2)

(

1 − 𝐶‖𝐷𝛼
𝑥𝑢‖

𝑝−1
2 − 4𝑏

𝑏+𝑑
𝐿2(R2)

‖𝜕−1𝑥 𝑢𝑦‖
𝑝−1
𝛼 − 2(𝑑−𝑏)

𝑏+𝑑
𝐿2(R2)

)

≤ 0.

his turns into

𝐷𝛼
𝑥𝑢‖

𝑝−1
2 − 4𝑏

𝑏+𝑑
𝐿2(R2)

‖𝜕−1𝑥 𝑢𝑦‖
𝑝−1
𝛼 − 2(𝑑−𝑏)

𝑏+𝑑
𝐿2(R2)

≳ 1.

This contradicts ‖𝑢𝑛‖�̇�𝛼 → 0 by the assumptions on 𝑝1. Consequently,
𝑖𝑝1 > 0. Now if 𝑅𝑏,𝑑 (𝑢) > 0, then the Brezis–Lieb lemma and the
fact {𝑢𝑛} ⊂ �̃�𝑏,𝑑 reveals that 𝑅𝑏,𝑑 (𝑢𝑛 − 𝑢) ≤ 0 as 𝑛 → ∞, so that
�̃�(𝑢𝑛 − 𝑢) ≥ �̃�𝑅𝑏,𝑑 . Since �̃�(𝑢𝑛 − 𝑢) → �̃�𝑅𝑏,𝑑 as 𝑛 → ∞, we have again
from the Brezis–Lieb lemma that �̃�(𝑢) ≤ 0 which contradicts 𝑢 ≢ 0.
Consequently, 𝑢 ∈ �̃�𝑏,𝑑 . This shows that �̃�(𝑢) = �̃�𝑅𝑏,𝑑 . It is easy to
check that 𝑅𝑏,𝑑 (𝑢) = 0. Indeed, since 𝑅𝑏,𝑑 (𝜆𝑢) > 0 for sufficiently small
𝜆 > 0, so 𝑅𝑏,𝑑 (𝑢) < 0 implies that 𝜆0𝑢 ∈ 𝛬𝑏,𝑑 , which is a contradiction
to the definition of �̃�𝑅𝑏,𝑑 . Finally, we prove that 𝑢 is a ground state.
We have from 𝑚𝑅𝑏,𝑑 = �̃�𝑅𝑏,𝑑 = 𝑆(𝑢) that there is 𝜃 ∈ R such that
𝑆′(𝑢) + 𝜃𝑅′

𝑏,𝑑 (𝑢) = 0. The fact 𝑢 ∈ 𝛬𝑏,𝑑 reveals from
⟨

𝑆′(𝑢) + 𝜃𝑅′
𝑏,𝑑 (𝑢),

𝑏 + 𝑑
2

𝜑 + 𝑏𝑥𝜑𝑥 + 𝑑𝑦𝜑𝑦
⟩

= 0

that 𝜃 = 0. Now if 𝑆′(𝑤) = 0, then 𝑤 ∈ 𝛬𝑏,𝑑 from (5.2). Therefore, it
follows from the definition of 𝑚𝑅𝑏,𝑑 that 𝑆(𝑢) ≤ 𝑆(𝑤). □

Consider the submanifolds

𝛬+
𝑏,𝑑 = {𝑢 ∈ 𝑋𝛼 , 𝑆(𝑢) < 𝑚, 𝑅𝑏,𝑑 (𝑢) ≥ 0},

and

𝛬−
𝑏,𝑑 = {𝑢 ∈ 𝑋𝛼 , 𝑆(𝑢) < 𝑚, 𝑅𝑏,𝑑 (𝑢) < 0}.

Lemma 5.2. Let 𝑑 ≥ 𝑏 and 𝑝𝑗 satisfy Lemma 5.1. Then the sets 𝛬+
𝑏,𝑑

nd 𝛬−
𝑏,𝑑 are invariant under the flow generated by the Cauchy problem

ssociated with (1.5).

roof. We only prove that 𝑅𝑏,𝑑+ is invariant under the flow generated
y the Cauchy problem associated with (1.5) since the proofs of the
ther set are similar. Let 𝑢(𝑡) be the solution of (1.5) with initial data
𝑢0 ∈ 𝑅𝑏,𝑑+. We first note from Theorem 4.1 that 𝑢(𝑡) < 𝑚. Next, we show
hat 𝑅𝑏,𝑑 (𝑢(𝑡)) ≥ 0 for 𝑡 ∈ [0, 𝑇 ). If it is not true, the continuity of 𝑅𝑏,𝑑
mplies that there exists 𝑡1 ∈ (0, 𝑇 ) such that 𝑅𝑏,𝑑 (𝑢(𝑡1)) = 0. This means
hat 𝑢(𝑡1) ∈ 𝛬. So that 𝑆(𝑢(𝑡1)) ≥ 𝑚𝑅𝑏,𝑑 ≥ 𝑚, which contradicts with
(𝑢(𝑡)) < 𝑚 for all 𝑡 ∈ (0, 𝑇 ). Therefore, 𝑅𝑏,𝑑 (𝑢(𝑡)) > 0 for 𝑡 ∈ [0, 𝑇 ). □

The following theorem gives another condition under which the
niform boundedness of solutions in the energy space is guaranteed.

heorem 5.3. Let 𝜇1 > 0 and 𝑢0 ∈ 𝛬+
𝑏,𝑑 . Suppose that 𝑝1 ≥ 𝑝2 and

𝑝1 > 4
max{𝑑 − 𝑏, 𝛼𝑏}

𝑏 + 𝑑
+ 1,

if 𝜇2 < 0 while

𝑝1 ≥ 𝑝2 > 4
max{𝑑 − 𝑏, 𝛼𝑏}

𝑏 + 𝑑
+ 1

when 𝜇2 > 0. Then the solution 𝑢(𝑡) in Theorem 4.1 is uniformly bounded
in the energy space.

Proof. We first note that 𝛬+
𝑏,𝑑 ≠ ∅. Let 𝑢0 ∈ 𝛬+

𝑏,𝑑 and 𝑢(𝑡) be the
orresponding solution of (1.5) for 𝑡 ∈ [0, 𝑇 ) with the initial data 𝑢0.
uppose by contradiction that 𝑇 < +∞. Then by Theorem 4.1,

lim
𝑡→𝑇−

‖𝑢‖2𝑋𝛼 = +∞. (5.3)

Hence, by the assumptions on 𝑝𝑗 and using the conservation laws
𝐸(𝑢(𝑡)) = 𝐸(𝑢0) and 𝑀(𝑢(𝑡)) =𝑀(𝑢0) for 0 ≤ 𝑡 < 𝑇 that

𝑆(𝑢0) −
2

𝑟(𝑏 + 𝑑)
𝑅𝑏,𝑑 (𝑢(𝑡)) = 𝑆(𝑢(𝑡)) − 2

𝑟(𝑏 + 𝑑)
𝑄(𝑢(𝑡))

̃ 2
18

≲ 𝑆(𝑢(𝑡)) ≊ ‖𝑢‖𝑋𝛼 , 𝑅
where �̃� and 𝑟 are as in the proof of Lemma 5.1. Thus, we deduce from
5.3) that

lim
→𝑇−

𝑅𝑏,𝑑 (𝑢(𝑡)) = −∞.

Now, we infer from the continuity that there is 𝑡0 ∈ (0, 𝑇 ) such that
𝑏,𝑑 (𝑢(𝑡0)) = 0. Lemma 5.1 then implies 𝑆(𝑢(𝑡0)) ≥ 𝑚, which contradicts

the fact 𝑆(𝑢(𝑡)) = 𝑆(𝑢0) < 𝑚. □

To apply the concavity method, we need to show that 𝑅𝑏,𝑑 (𝑢(𝑡)) is
negative which is fundamental in our instability analysis.

Theorem 5.4. Let 𝜑 ∈ 𝑁0, 𝑏 ≥ 0, 𝑑 ≥ 𝑏 + 1 and 𝑢0 ∈ 𝛬−
𝑏,𝑑 ∩ 𝛬+

𝑏,𝑑−1.
Suppose that 𝑝1 ≥ 𝑝2 and

𝑝1 > 4max
{𝑑 − 𝑏
𝑏 + 𝑑

, 𝛼𝑏
𝑑 + 𝑏 − 1

}

+ 1,

if 𝜇2 < 0 while

𝑝1 ≥ 𝑝2 > 4max
{𝑑 − 𝑏
𝑏 + 𝑑

, 𝛼𝑏
𝑑 + 𝑏 − 1

}

+ 1,

when 𝜇2 > 0. Then the solution 𝑢(𝑡) of (1.5), corresponding to the initial
data 𝑢(0) = 𝑢0, satisfies

𝑅𝑏,𝑑 (𝑢(𝑡)) <
(1 − 𝑟)(𝑏 + 𝑑)

2
(𝑆(𝜑) − 𝑆(𝑢0)) (5.4)

for 0 ≤ 𝑡 < 𝑇 , where 𝑟 is as the same in the proof of Lemma 5.1. Moreover,
𝑢(𝑡) blows up in finite time. More precisely, there exists 0 < 𝜏 <∞ such that

lim
𝑡→𝜏−

‖𝑢𝑦(𝑡)‖𝐿2(R2) = +∞. (5.5)

Proof. Note from the virial identity (4.9) that

1
8

d2

d𝑡2
I(𝑢) = 𝑅𝑏,𝑑 (𝑢) − 𝑅𝑏,𝑑−1(𝑢). (5.6)

Then the proof of the theorem is similar to the one of Theorem 4.10 by
using the above identity and combining Lemmas 5.1 and 5.2. □

The following equivalence is useful to work with the critical points
of 𝑚.

Lemma 5.5. Let 𝑠 ≥ 𝛼 + 1. Then �̃� = 𝑚, where �̃� = inf𝑢∈�̃�0
𝑆(𝑢) and

̃ 0 = {𝑢 ∈ 𝑋𝑠 ⧵ {0}, 𝑃 (𝑢) = 0}.

roof. Clearly �̃� ≥ 𝑚. To see the converse, it suffices to show that for
ny 𝜖 > 0 and 𝑢∗ ∈ 𝑁0, there holds

(𝑢∗) ≥ inf
𝑢∈�̃�0

𝑆(𝑢) − 𝜖.

ince 𝑋𝑠 is dense in 𝑋𝛼 , we find a sequence {𝑢𝑛} ⊂ 𝑋𝑠 such that
∗ = 𝑢𝑛 + 𝑤𝑛 such that 𝑤𝑛 → 0 in 𝑋𝛼 as 𝑛 → ∞. Then we obtain from
𝑢∗ ≢ 0 and 𝑢∗ ∈ 𝑁0 that lim𝑛→∞ 𝑃 (𝑢𝑛) = 0 and

lim inf
𝑛→∞

‖𝑢‖𝑞
𝐿𝑞 (R2)

≠ 0

for any 𝑞 ≤ 2∗. It is easy to check that there exists a sequence {𝜈𝑛} ⊂ R
uch that 𝜈𝑛𝑢𝑛 ∈ �̃�0 and 𝜈𝑛 → 1 as 𝑛 → ∞. Denoting 𝑢∗ = 𝜈𝑛𝑢𝑛 + (1 −
𝑛)𝑢𝑛 +𝑤𝑛, we have from 1 − 𝜈𝑛 → 0 and 𝑤𝑛 → 0 in 𝑋𝛼 as 𝑛→ ∞ that
1
2
‖𝑢∗‖2𝑋𝛼 ≥ 1

2
‖𝜈𝑛𝑢𝑛‖𝑋𝛼

2 − 𝜖
3

and

𝐾(𝑢∗) ≤ 𝐾(𝜈𝑛𝑢𝑛) +
𝜖
3
.

On the other hand, the fact ‖𝑤𝑛‖�̇�𝛼 → 0 as 𝑛 → ∞ implies that
(𝑢∗) ≥ 𝑆(𝜈𝑛𝑢𝑛) − 𝜖 ≥ �̃� − 𝜖. □

emma 5.6. Let 𝑢,𝑤 ∈ 𝑋𝛼 be fixed and ‖𝑤‖𝑋𝛼 ≤ 𝐶. Then there exists
ositive numbers 𝐶𝑗 with 𝑗 = 1, 2, 3, independent of 𝑤, such that

(𝑢 +𝑤) < 𝑆(𝑢) + 𝐶1‖𝑤‖𝑋𝛼 ,
𝑏,𝑑 (𝑢) − 𝐶3‖𝑤‖𝑋𝛼 < 𝑅𝑏,𝑑 (𝑢 +𝑤) < 𝑅𝑏,𝑑 (𝑢) + 𝐶2‖𝑤‖𝑋𝛼 .
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Proof. The proof is similar to Lemma 4.7 in [16], so we omit the
details. □

Now we are in the position to show the strong instability of solitary
waves.

Theorem 5.7. Let 𝜇1 > 0 and 𝜑 be a solitary wave solution. Suppose that
1 ≥ 𝑝2 and 𝑝1 > 𝑠𝑐 if 𝜇2 < 0 and 𝑝1 ≥ 𝑝2 > 𝑠𝑐 when 𝜇2 > 0. Then for any
𝛿 > 0, there exists 𝑢0 ∈ 𝑋𝑠 (𝑠 ≥ 𝛼 + 1) with ‖𝑢0 − 𝜑‖𝑋 < 𝛿, such that the
solution 𝑢(𝑡) of (1.5) with initial data 𝑢(0) = 𝑢0 satisfies

lim
𝑡→𝑇−

‖𝑢(𝑡)‖𝑋𝛼 = +∞

for some 𝑇 > 0.

Proof. The proof is based on the application of Theorem 5.4. For
𝐵,𝐷 > 0 we set 𝑤(𝑥, 𝑦) =

√

𝐵𝐷𝜑(𝐵𝑥,𝐷𝑦), and

𝑟𝑗 = 4 +
𝑝𝑗 + 3

2
(𝛼 − 2), 𝑗 = 1, 2.

Then, we have from the Pohojaev identities

𝛼‖𝐷𝛼
𝑥𝜑‖

2
𝐿2(R2)

= 2‖𝜕−1𝑥 𝜑𝑦‖
2
𝐿2(R2)

,

‖𝜕−1𝑥 𝜑𝑦‖
2
𝐿2(R2)

= k1𝐾1(𝜑) + k2𝐾2(𝜑),

k1‖𝜑‖
2
𝐿2(R2)

=
𝑟1
2
‖𝐷𝛼

𝑥𝜑‖
2
𝐿2(R2)

− (𝑝2 − 𝑝1)𝐾2(𝜑),

k2‖𝜑‖
2
𝐿2(R2)

=
𝑟2
2
‖𝐷𝛼

𝑥𝜑‖
2
𝐿2(R2)

− (𝑝1 − 𝑝2)𝐾1(𝜑)

(5.7)

that

𝑆(𝜑) =
( 𝑟𝑗
2𝛼k𝑗

+ 1
2
+ 1
𝛼
− 1

k𝑗

)

‖𝜕−1𝑥 𝜑𝑦‖
2
𝐿2(R2)

.

Moreover, we consider 𝑑 = (1 + 𝛼)𝑏 to observe that

1
𝑏
𝑅𝑏,𝑑 (𝑤) = 𝛼

(

𝐵2𝛼 + 𝛼𝐷2

2𝐵2
−

k𝑗 (𝛼 + 2)(𝐵𝐷)k𝑗

2

)

‖𝐷𝛼
𝑥𝜑‖

2
𝐿2(R2)

− (𝛼 + 2)(−1)𝑗
(

k2(𝐵𝐷)k2 − k1(𝐵𝐷)k1
)

𝐾𝑗 (𝜑)

and

𝑆(𝑤) = 𝛼
2

( 𝑟𝑗
2𝛼k𝑗

+ 𝐵2𝛼

𝛼
+ 𝐷2

2𝐵2
−

(𝐵𝐷)k𝑗

k𝑗

)

‖𝐷𝛼
𝑥𝜑‖

2
𝐿2(R2)

− (𝛼 + 2)
(

(−1)𝑗 (𝑝2 − 𝑝1)
2k𝑗

+ (𝐵𝐷)k2 −
k2
k1

(𝐵𝐷)k1

)

𝐾𝑗 (𝜑)

for 𝑗 = 1, 2. Now, if 𝜇2 < 0, then by using 𝑗 = 1 in the above equations
and choosing 𝐵𝐷 > 1 and near to 1, we find after some calculations for
𝑏 > (𝛼 + 2)−1 that 𝑅𝑏,𝑑 (𝑤) < 0 and 𝑆(𝑤) < 𝑚 provided

𝑝1 > 1 + 4𝛼𝑏
(𝛼 + 2)𝑏 − 1

nd 𝑝2 ≤ 𝑝1. In the case 𝜇2 > 0, we get the similar inequalities if

1 ≥ 𝑝2 > 1 + 4𝛼𝑏
(𝛼 + 2)𝑏 − 1

.

We note from (5.6) and 𝑅𝑏,𝑑 (𝑤) < 0 that 𝑅𝑏,𝑑−1(𝑤) > 0 if we choose
𝑏 > 0 sufficiently large. Now, by choosing for 𝛿 > 0 the above function
𝑤 such that ‖𝑤 − 𝜑‖𝑋𝛼 < 𝛿∕2, we can find, from the density 𝑋𝑠 ↪ 𝑋𝛼 ,
he initial data 𝑢0 ∈ 𝑋𝑠 such that

𝑢0 −𝑤‖𝑋𝛼 < min{𝛿∕2,
𝛿1

𝐶1 + 𝐶2 + 𝐶3
},

where 𝐶𝑗 with 𝑗 = 1, 2, 3 are as in Lemma 5.6 and 𝛿1 = min{𝑚 −
𝑆(𝑤),−𝑅𝑏,𝑑 (𝑤), 𝑅𝑏,𝑑−1(𝑤), 𝛿∕2}. Therefore,

‖𝜑 − 𝑢0‖𝑋𝛼 ≤ ‖𝑢0 −𝑤‖𝑋𝛼 + ‖𝑤 − 𝜑‖𝑋𝛼 < 𝛿,

so that 𝑢0 ∈ 𝛬−
𝑏,𝑑 ∩ 𝛬+

𝑏,𝑑−1. Theorem 5.4 shows that the solution 𝑢(𝑡)
associated with the initial data 𝑢 blows up in a finite time. □
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6. Numerical results

In this section, we introduce a numerical approach that combines
the Fourier pseudo-spectral method with the integration factor method
and the Runge–Kutta method to solve the generalized KP equation,
specifically with 𝛼 = 1. This technique has proven successful in solving
the Korteweg–de Vries (KdV) equation as demonstrated in [55], and
the Kadomtsev–Petviashvili (KP) equation as shown in [56,57]. An
advantage of employing the integration factor method is its capability
to alleviate the impact of the strong stiff linear term, thus enabling the
use of larger time steps.

It is worth noting that for the case 𝛼 = 1, Eq. (1.5) can be
represented in the following form:

𝑢𝑡 + 𝑢𝑥𝑥𝑥 +
(

𝜇1𝑢
𝑝1 + 𝜇2𝑢𝑝2

)

𝑥 + 𝜀 𝜕
−1
𝑥 𝑢𝑦𝑦 = 0, (6.1)

where the antiderivative 𝜕−1𝑥 can be uniquely defined by

𝜕−1𝑥 𝑢(𝑥) = 1
2

(

∫

𝑥

−∞
𝑢(𝑠, 𝑦) d𝑠 − ∫

∞

𝑥
𝑢(𝑠, 𝑦) d𝑠

)

. (6.2)

e choose the initial data in the Schwartz class (R2) of rapidly
decreasing smooth functions and we assume periodic boundary con-
ditions. If the Fourier transform is applied to (6.1), we obtain

̂𝑡 − i

(

𝑘3𝑥 − 𝜀
𝑘2𝑦
𝑘𝑥

)

�̂� + i𝑘𝑥(𝜇1𝑢𝑝1 + 𝜇2𝑢𝑝2 ) = 0, (6.3)

where 𝑘𝑥 and 𝑘𝑦 are dual variables to 𝑥 and 𝑦 and 𝜕−1𝑥 is defined via
its Fourier multiplier −𝑖∕𝑘𝑥. Here, the Fourier transform of 𝑢(𝑡, 𝑥, 𝑦)
is denoted by �̂� instead of �̂�(𝑡, 𝑘𝑥, 𝑘𝑦) for simplicity. Now, we multi-

ply Eq. (6.3) by the integration factor e
−i

(

𝑘3𝑥−𝜀
𝑘2𝑦
𝑘𝑥

)

𝑡
, one gets

�̂�𝑡 + i𝑘𝑥e
−i

(

𝑘3𝑥−𝜀
𝑘2𝑦
𝑘𝑥

)

𝑡
(𝜇1𝑢𝑝1 + 𝜇2𝑢𝑝2 ) = 0, (6.4)

where

�̂� = 𝑒
−i

(

𝑘3𝑥−𝜀
𝑘2𝑦
𝑘𝑥

)

𝑡
�̂�. (6.5)

In order to avoid the division by zero for 𝑘𝑥 = 0 in the Eqs. (6.4) and
(6.5), we add a small imaginary part to 𝑘𝑥 considering the sign of 𝜀. We
use the smallest floating point number such that MATLAB represents as
𝜆 = 2.2 × 10−16. Therefore, we replace 1

𝑘𝑥
by 1

𝑘𝑥+i𝜀𝜆
. We use the fourth-

rder explicit Runge–Kutta method to solve the resulting ODE (6.4) in
ime. Finally, we find the approximate solution by using the inverse
ourier transform.

Application of the numerical method requires truncation of the
𝑦-plane to a finite rectangular region [−𝐿𝑥, 𝐿𝑥] × [−𝐿𝑦, 𝐿𝑦]. We ap-

proximate the Fourier coefficients by discrete Fourier transform which
is efficiently computed with a fast Fourier transform (FFT). In order
to evaluate the discrete Fourier transform and its inverse, we use the
MATLAB functions ‘‘fft2’’ and ‘‘ifft2’’, respectively. We use 𝑁𝑥 and 𝑁𝑦
collocation points in 𝑥 and 𝑦, respectively. We assume 𝑁𝑥 and 𝑁𝑦 are
even, positive integers. The time interval [0, 𝑇 ] is divided into 𝑀 equal
subintervals with grid spacing 𝛥𝑡 = 𝑇 ∕𝑀 . The temporal grid points
are given by 𝑡𝑚 = 𝑚𝛥𝑡, 𝑚 = 0, 1, 2,… ,𝑀 . The approximate values of
𝑢(𝑥𝑗 , 𝑦𝑘, 𝑡𝑚), is denoted by 𝑈𝑚

𝑗,𝑘. In order to check the accuracy of our
code, we force the mass conservation error

𝛥 =
|

|

|

|

1 −
𝑀(𝑢(𝑡))
𝑀(𝑢(0))

|

|

|

|

(6.6)

s less than 10−4 at each time step, where the mass integral (1.7) is
approximated by the trapezoidal rule.
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Fig. 15. Long-time errors of the numerical method (left panel) and mass conservation error (right panel).
Fig. 16. The profile of 𝑢, 𝑢𝑥 and 𝑢𝑦 (top left, bottom left, bottom right) and Fourier coefficients at 𝑡 = 1.7188 × 10−6 (top right) for the nonlinearity 𝑓 (𝑢) = 𝑢5 + 𝑢6.
6.1. Numerical experiments

In this subsection, we first test the numerical accuracy of the method
through the following example. The scheme is used to solve the Gardner
equation given by

𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 +
1
12
𝑢2𝑢𝑥 = 0. (6.7)

The exact solution initially centered 𝑥0 = 0 of (6.7) is given by

𝑢(𝑥, 𝑡) = 6𝐴

1 +
√

1 + 𝐴
2 cosh

(
√

𝐴(𝑥 − 𝐴𝑡)
)

, (6.8)

where 𝐴 is arbitrary in [58]. Here, we set 𝐴 = 1. The computations are
performed on the rectangular region [−60, 60]×[−30, 30] for times up to
𝑇 = 10. We choose the number of spatial grid points 𝑁𝑥 = 210, 𝑁𝑦 = 29,
and the number of temporal points 𝑀 = 10000. Fig. 15 shows the
variation of the 𝐿∞ error between the numerical and exact solution (left
panel) and the difference of mass 𝛥 for the numerical solution (right
panel). It shows that our proposed method is capable of high accuracy.
20
The conditions needed for uniform boundedness or blow-up of the
solutions for (1.5) have been discussed theoretically in Section 4 but
there remains a gap. Our aim is to remove the gap and to study the
qualitative behavior of the solutions for the generalized KP equation
with supercritical, subcritical, and critical nonlinearities.

6.2. The generalized KP equation with double supercritical nonlinearities

In this subsection, we test our scheme for the generalized KP equa-
tion with double supercritical nonlinearities given by 𝑓 (𝑢) = 𝑢5 + 𝑢6

with 𝜇1 = 1, 𝜇2 = 1. The problem is solved on the rectangular region
[−5𝜋, 5𝜋] × [−2𝜋, 2𝜋] using 𝑁𝑥 = 212 and 𝑁𝑦 = 214. We consider the
Gaussian initial condition

𝑢0(𝑥, 𝑦) = −4
(

e−(𝑥
2+𝑦2)

)

𝑥𝑥
(6.9)

satisfying 𝐸(𝑢0) = −88048 < 0. The program is stopped at 𝑡 = 1.7188 ×
10−6 since the quantity, measuring numerical mass conservation, be-
comes larger than 10−4. The accuracy of the approximation in space is
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Fig. 17. The variation of ‖𝑢‖∞ with time and the profile of the numerical solution at 𝑡 = 0.5 for the nonlinearity 𝑓 (𝑢) = 𝑢2 + 𝑢3∕2.
Fig. 18. The close-up look at the profile 𝑡 = 0.5 for the nonlinearity 𝑓 (𝑢) = 𝑢2 + 𝑢3∕2.

also controlled by the Fourier coefficients. Fig. 16 shows the profile of
𝑢, 𝑢𝑥 and 𝑢𝑦 and Fourier coefficients at the critical time 𝑡 = 1.7188 × 10−6

for the nonlinearity 𝑓 (𝑢) = 𝑢5 + 𝑢6. As is seen from the figure, the
gradient of 𝑢 at the critical time diverges more rapidly than the solution
itself. The numerical result indicates that the solution blows up in a
finite time. This numerical result is in complete agreement with the
analytical result given in Theorem 4.10, part (i).

6.3. The double subcritical nonlinearities

For the generalized KP equation with double subcritical nonlinear-
ities 𝑓 (𝑢) = 𝑢2 + 𝑢3∕2, the computations are carried out on the larger
rectangular region [−25𝜋, 25𝜋] × [−4𝜋, 4𝜋] using 𝑁𝑥 = 214 and 𝑁𝑦 = 212

by taking the initial condition

𝑢0(𝑥, 𝑦) =
(

e−(𝑥
2+𝑦2)

)

𝑥𝑥
. (6.10)

The variation of ‖𝑢‖∞ with time and the profile of the numerical
solution at 𝑡 = 0.5 are illustrated in Fig. 17. As is seen from the figure,
‖𝑢‖∞ decreases as time increases. Fig. 18 gives a closer look at the
profile. We observe the decreasing oscillations and tails at 𝑡 = 0.5.
The profile of the KP I equation with single quadratic nonlinearity
at 𝑡 = 0.15 is presented in Figure 30 of [59]. The behavior of the
solution for the single quadratic nonlinearity 𝑓 (𝑢) = 𝑢2∕2 is very similar
to the behavior of the generalized KP equation with the nonlinearity
𝑓 (𝑢) = 𝑢2 + 𝑢3∕2. There is no indication of a blow-up. The numerical
result is compatible with Theorem 4.5.

6.4. The supercritical and subcritical nonlinearities

Now, we test our scheme for the generalized KP equation with
supercritical and subcritical nonlinearities given by 𝑓 (𝑢) = −𝑢2 + 𝑢5
21
with 𝜇1 = −1, 𝜇2 = 1. The problem is solved on the rectangular region
[−5𝜋, 5𝜋] × [−2𝜋, 2𝜋] by taking the initial condition

𝑢0(𝑥, 𝑦) = 4
(

e−(𝑥
2+𝑦2)

)

𝑥𝑥
. (6.11)

The initial energy is negative such that 𝐸(𝑢0) = −12918 < 0. Therefore,
the conditions of Theorem 4.10, part (ii) are fulfilled. Fig. 19 shows
the profile of 𝑢, 𝑢𝑥 and 𝑢𝑦 and Fourier coefficients at the critical time
𝑡 = 3 × 10−5 for the nonlinearity 𝑓 (𝑢) = −𝑢2 + 𝑢5. Similar to Fig. 16,
the gradient of 𝑢 at the critical time diverges more rapidly than the
solution itself. The numerical result indicates that the solution blows
up in a finite time. This numerical result is also in complete agreement
with the analytical result given in Theorem 4.10, part (ii).

Now, we focus on the generalized KP equation with different super-
critical and subcritical nonlinearities where neither a uniform bound-
edness result nor a blow-up result is established theoretically. We start
with the KP equation with supercritical and subcritical nonlinearities
given by 𝑓 (𝑢) = 𝑢3−𝑢2 with 𝜇1 = 1, 𝜇2 = −1 and 𝑓 (𝑢) = 𝑢3 + 𝑢2 with 𝜇1 =
1, 𝜇2 = 1, respectively. We choose the initial condition (6.11) satisfying
𝐸(𝑢0) = −359 < 0 and 𝐸(𝑢0) = −200 < 0, corresponding respectively
𝑓 (𝑢) = 𝑢3 − 𝑢2 and 𝑓 (𝑢) = 𝑢3 + 𝑢2. The numerical experiments are
carried out from 𝑡 = 0 to 𝑡 = 0.03 taking the number of temporal grid
points 𝑀 = 10000. The problem is solved on the rectangular region
[−5𝜋, 5𝜋] × [−2𝜋, 2𝜋] using 𝑁𝑥 = 211 and 𝑁𝑦 = 213. Fig. 20 shows the
profile of the numerical solution at different times. We observe some
distortions at two humps and dispersive oscillations in the 𝑥 direction
as time increases. The amplitude of the solution increases very rapidly.
Fig. 20 indicates a blow-up. In Fig. 21, the variation of 𝐿∞−norm of the
solution 𝑢 with time and the profile of the numerical solution near the
critical time 𝑡 = 0.02105 are depicted for the nonlinearity 𝑓 (𝑢) = 𝑢3+𝑢2.
The numerical results indicate that the solution blows up in a finite
time.

6.5. The sub-critical and critical nonlinearities case

In the case of combined sub-critical and critical nonlinearity 𝑓 (𝑢) =
−𝑢2 + 𝑢7∕3 with 𝜇1 = −1, 𝜇2 = 1, we take

𝑢0(𝑥, 𝑦) = −10
(

e−(𝑥
2+𝑦2)

)

𝑥𝑥
(6.12)

satisfying 𝐸(𝑢0) = −1336 < 0. The experiment is carried out from 𝑡 = 0
to 𝑡 = 0.07 taking the number of temporal grid points 𝑀 = 10000. In the
left panel of Fig. 22, the variation of ‖𝑢‖∞ with time is presented. The
amplitude of the numerical solution increases as time increases. Fig. 22
indicates that the solution blows up in a finite time. The profile of the
numerical solution near the blow-up time 𝑡 = 0.056707 is depicted in
the right panel of Fig. 22.



Physica D: Nonlinear Phenomena 460 (2024) 134057A. Esfahani et al.
22
Fig. 19. The profile of 𝑢, 𝑢𝑥 and 𝑢𝑦 (top left, bottom left, bottom right) and Fourier coefficients at 𝑡 = 3 × 10−5 (top right) for the nonlinearity 𝑓 (𝑢) = −𝑢2 + 𝑢5.
Fig. 20. The variation of 𝑢 at different times for the nonlinearity 𝑓 (𝑢) = 𝑢3 − 𝑢2.
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Fig. 21. The variation of ‖𝑢‖∞ with time (left panel) and the profile of the numerical solution at 𝑡 = 0.02105 (right panel) for the nonlinearity 𝑓 (𝑢) = 𝑢3 + 𝑢2.
Fig. 22. The variation of ‖𝑢‖∞ with time and the profile of the numerical solution at 𝑡 = 0.056707 for the nonlinearity 𝑓 (𝑢) = −𝑢2 + 𝑢7∕3.
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