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Abstract
SARS-2 virus has reached its most harmful mutated form and has damaged the world’s economy, integrity, health system and 
peace to a limit. An open problem is to address the release of antibodies after the infection and after getting the individuals 
vaccinated against the virus. The viral fusion process is linked with the furin enzyme and the adaptation is linked with the 
mutation, called D614G mutation. The cell-protein studies are extremely challenging. We have developed a mathematical 
model to address the process at the cell-protein level and the delay is linked with this biological process. Genetic algorithm is 
used to approximate the parametric values. The mathematical model proposed during this research consists of virus concen-
tration, the infected cells count at different stages and the effect of interferon. To improve the understanding of this model of 
SARS-CoV2 infection process, the action of interferon (IFN) is quantified using a variable for the non-linear mathematical 
model, that is based on a degradation parameter � . This parameter is responsible for the delay in the dynamics of this viral 
action. We emphasize that this delay responds to the evasion by SARS-CoV2 via antagonizing IFN production, inhibiting 
IFN signaling and improving viral IFN resistance. We have provided videos to explain the modeling scheme.
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Introduction

The impact of the CoViD-19 disease is devastating and 
scientific research seek to understand the mechanisms of 
infection to create vaccine with least side-effects and most 
promising results against the mutated virus. Scientists have 
reported that Arg-Arg-Ala-Arg (RRAR) is a cleavage site for 
furin enzyme. The furin action on S protein permit a faster 
activation and greatest rate of infection.. The furin site Is 
on SARS-COV2 but not in SARS-CoV or MERS-CoV. It 
is responsible for the high infection rates and transmission 
rates of SARS-CoV2. The presence of the this cleavage site 

is experimentally proven Walls et al. (2020) and the Activa-
tion of S requires proteolytic cleavage at two distinct sites: in 
the unique multibasic site motif RRAR, located between the 
S1 and S2 subunits, and within the S2 subunit (“S2”) located 
immediately upstream of the hydrophobic fusion peptide 
that is responsible for triggering virus-cell membrane fusion. 
This event, although not exclusive to SARS-CoV2, is impor-
tant because it is absent on the viral antigens of the same 
viral family Coutard et al. (2020); Yu et al. (2021). It is 
important to consider this characteristic because it implies 
a greater speed of action of SARS-CoV2 than, for example, 
SARS-CoV, so much so that some adaptive mutations such 
as D614G seem to carry out structural changes that more 
expose the cut site for furin Korber et al. (2020).

In this article, we are focusing on the speed of action of 
SARS-2 inspired by the experimental study of Papa et’al. 
Papa et al. (2021). The exclusive action of the cutting site 
of furin, that is present in SARS-2 is still an open problem.

The work of Buonvino and Melino (2020) identifies 
viral evolution from the RaTG13 genotype and shows 
how, for SARS-CoV2, the acquisition of the furin cleav-
age site implies greater instability of the S protein. This 
is a very important factor for understanding the dynamics 
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of the infection. For the infectious process to begin, some 
key enzymes play important role. For example, Furin” con-
tributes to split the S protein into two subunits: S1 and S2. 
Therefore, it facilitate the fusion between the viral mem-
brane and that of the host cell. SARS-CoV2 presents a fur-
ther modified cleavage site for furin, i.e. in the amino acids 
of this site, a proline is added that changes the sequence 
and allows a strong bending of the structure leading to the 
introduction of three glycans O-linked that line the site itself. 
Furthermore, the furin-promotes infection capacity as well 
as the adaptive mutation. SARS-CoV2 virus has acquired 
a cleavage site for furin between S1 and S2 that appears to 
promote pathogenicity. This fact, in addition to enhancing 
the viral pathogenic aspect, also seems to be responsible 
for the speed of infection, especially in connection with 
the presence of an adaptive mutation “D614G”. “D614G 
mutation” neither increases S protein affinity for ACE2 nor 
makes viral particle more resistant to neutralization and 
that TMPRSS2 and Furin of all species studied can cleave 
the SARS-CoV-2 S glycoprotein in a similar way, provided 
that they are well conserved proteases among many species 
Brooke and Prischi (2020). For further details, please see 
video S1 and S2.

By taking into account these properties of Furin, we have 
hypothesized that the high rate of infection occurs when 
there is the presence of this adaptive mutation together with 
a structural adaptation of the clevage site of the furin on the 
viral protein S.

It is highly desired to explore the complex mechanism 
of action of this highly infectious virus. The improved 

understanding of the structural features of SARS-COV2 (as 
provided in the supplementary videos) can help to design 
targeted therapies. Applied mathematical models can help 
to explore the dynamics of these interactions more accu-
rately Al-Utaibi et al. (2021); Yu et al. (2020); Abdel-Salam 
et al. (2021); Yu et al. (2021). In this manuscript, we have 
worked on a model that is linked with SARS-COV2 infec-
tion mechanism. The mathematical approach demonstrates 
how SARS-COV2 is more efficient and adapted to human 
cells. The model is developed with the aid of the cell-protein 
interaction studies, available in the literature. The concept of 
delay has not only proved to be an important, but a deadly 
weapon of this virus. Our mathematical model features this 
line of action of SARS-COV2 more accurately.

The rest of the manuscript is organized as follows: In 
Sect. 2, the mathematical model with delay is presented.

In Sect. 3, the stability analysis, HOPF bifurcation, hybrid 
genetic algorithm and important cases are presented.

In Sect. 4, important results are discussed and at the end, 
useful conclusions are drawn.

Model development

To develop the model, we need to first synchronize the bio-
logical phenomena with the mathematical modeling proce-
dure. For this the details are provided in videos S1 and S2. 
The schematic can also be understood with the aid of Fig. 1.

Scheme of the viral adaptation of SARS-CoV2 in the 
improvement of the infectious process. (A) Acquisition of 

Fig. 1   Schematic depiction of the model
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the adaptive mutation D614G; (B) Structural adaptive modi-
fication for the furin cleavage site; (C) Protein S structured 
from the complex of adaptive modifications that improves 
the rate of viral infection.

Computational tools have always helped to explore the 
biological phenomena in a cost effective manner Nutini and 
Sohail (2020). These methods includes modeling, simu-
lation and forecasting tools. The viral pathology can be 
interpreted with the aid of mathematical models Belz et al. 
(2002); Iftikhar et al. (2020). The treatment strategies can 
be explored with the aid of the mathematical models in an 
efficient manner, at different scales. Dynamics at cellular, 
subcelluar and molecular scales can be modeled with the 
aid of the hybrid modeling approaches Iftikhar et al. (2020).

In this manuscript, we have developed a model, inspired 
by the work of Pawelek et al. (2012); Sohail and Nutini 
(2020); Brooke and Prischi (2020); Bhowmik et al. (2020, 
2020); Hoffmann et al. (2020); Caufield et al. (2018); Chen 
et al. (2020); Kleine-Weber et al. (2018) and the references 
therein. The model is based on the virus concentration, the 
target cells, the infected cells at levels 1 & 2 (two levels of 
action are discussed in the introduction (see Fig. 1 as virus 
infected cells and virus spreading cells) and the IFN signal-
ing proteins.

With initial conditions

(1)

dV

dt
=

bZ

c2F + 1
− �V ,

dX

dt
= � − �VX − dX,

dY

dt
= �X

(

t − �1

)

V(t − �1) −
aY

c1F + 1
,

dZ

dt
=

aY

c1F + 1
− rZ

(

t − �2

)

F
(

t − �2

)

− �Z,

dF

dt
= rZ

(

t − �2

)

− �F.

(2)

V(�) = �1(�) ≥ 0,

X(�) = �2(�) ≥ 0,

Y(�) = �3(�) ≥ 0,

Z(�) = �4(�) ≥ 0,

F(�) = �5(�) ≥ 0,

� ∈ [−�, 0],

� = min{�1, �2}.

Description of variables and parameters is in Tables (1) and 
(2) and the dynamics can be well understood with the aid 
of Fig. 2.

Positivity of solutions specifies the existence of cells.

Theorem  2.1  Assume that initial solution V(0) ≥ 0 , 
X(0) ≥ 0 , Y(0) ≥ 0 , Z(0) ≥ 0 and F(0) ≥ 0 , then the solu-
tion of model (1) are non-negative ∀ t > 0.

Proof: From 2nd equation of model all the parameters 
has positive values, as 𝜌 > 0

By integrating we obtain

the above expression shows that X(t) depends on X(0). 
Therefore, X(t) is positive if X(0) is non negative.

First equation of model (1)

(3)
dX

dt
≥ −�VX − dX

(4)X(t) ≥ X(0) exp {−d − �V(t) t

(5)
dV

dt
=

bZ

c2F + 1
− �V , V(t) ≥ V(0) exp{−�t}.

Table 1   Description of Compartments

Symbols Description

V(t) Virus load
X(t) Uninfected target cells
Y(t) Populations of infected cells at first stage
Z(t) Populations of infected cells at second stage
F(t) The effect of interferon (IFN)

Table 2   Description of parameter

Symbols Description

� Constant infectivity rate of interaction 
of V(t) with X(t)

a Transition rate
c
1

Rate of effectiveness in transition
r Constant rate of F is secreted by Z(t)
b Virus production rate
� Constant degrades rate

�
Rate of Virus cleared from the cells

� Death rate of infected cells
c
2

Rate of effectiveness in virus production

Fig. 2   Schematic depiction of the model
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Similarly for third, four and fifth equation of the model we 
have following results

From equation 4, 5, and 6 it is easily seen that if initial solu-
tion is non negative then the solution for all values of time 
t is non negative.

Equilibrium points

The model (1) has infection free equilibrium point, gain by 
putting right hand side of equation of the model (1) equal 
to zero

(6)

Y(t) ≥ Y(0) exp{−
at

c1F + 1
},

Z(t) ≥ Z(0) exp{−�} + �
t

0

exp{−�}
aY(t)

c1F(t) + 1
dt,

F(t) ≥ F(0) exp{−�}.

(7)E0 = (V0,X0, Y0, Z0,F0) = (0,
�

d
, 0, 0, 0).

The linear stability of model is established with method of 
next-generation operator on model. The reproduction num-
ber of model, indicated by R0 , can calculated as

The capability of virus to produce infection or to be unin-
fected can be analyzed by basic reproductive number 
R0 =

b��

d��
 . With R0 < 1 refers to a decrease in virus produc-

tion of infected cells where as R0 > 1 infection produce due 
to the increase in virus infected cells production.

Existence of equilibrium points

Theorem 2.2  The model has exclusive endemic equilibrium 
point if and only if R0 > 1.

Proof: By calculating endemic equilibrium point, we get

where:

(8)R0 =
b��

d��
.

(9)E∗ = (V∗,X∗, Y∗, Z∗,F∗)

(10)

V∗ =
�

(

A − b�
(

2c2�r + ��

)

− d�r
(

r − c2�
))

2��r
(

�r − c2
(

c2�r + ��

)) ,

X∗ =
�

(

A� + b��
(

2c2�r + ��

)

+ d�r
(

�c2� + 2c2
2
�r − �r

))

2
(

b�� + c2d�r
)

2
,

Y∗ =
�

(

b3�2�3�
(

2r − c1�
)

−
(

c2 − c1
)

d2�2r2
(

A + d�r
(

c2� − r
)))

2ar
(

b�� + c2d�r
)

3

+
�

(

bd��r
(

d�r
(

�

(

−2�c2 + �c1 − c1c
2
2
�

)

+ r
((

2c2 − 3c1
)

c2� + �

))))

2ar
(

b�� + c2d�r
)

3

+
�

((

+b2
)

��
2
(

Ac1� + d�r
((

4c2 − 3c1
)

�r − �

(

2c1c2� + �

)))

+ Abd��r
(

c1c2� − �

))

2ar
(

b�� + c2d�r
)

3
,

Z∗ =
�

r
(
A − b��� − d�r

(

c2� + r
)

2r
(

b�� + c2d�r
) ),

F∗ =
A − b��� − d�r

(

c2� + r
)

2r
(

b�� + c2d�r
) ,

A =

√

4r2(b�� − d��)
(

b�� + c2d�r
)

+
(

b��� + c2d�r� + d�r2
)

2.
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Results

Stability analysis and the Hopf bifurcation

Here we examine qualitative behavior of the model (1) by 
analyzing local stability of equilibrium points and Hopf 
bifurcation, which presents the behavior of model (1) by 
a small change of the solutions as reaction to changes in 
the particular parameter. As time delays have the significant 
effect in complexity and dynamics of this model (1), we 
will assume them as the parameter of bifurcation. Now we 
examine stability at endemic equilibrium point, the Jacobian 
matrix at E∗ is

where

The characteristic equation at endemic equilibrium point is

where

(11)

J∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−� 0 0 b 0

G1 − d 0 0 0

G2e
−��1 + G1 e−��1G3 − a 0 0

0 0 a e−��2G4 − � 0

0 0 0 re−��2 + r − �

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(12)

G1 = −
��

d
,

G2 = �X∗,

G3 = �V∗,

G4 = −F∗r − � .

(13)�1(�) + e−��1�2(�) + e−��2�3(�) = 0

(14)

�1(�) = �
5 + �1�

4 + �2�
3 + �3�

2 + �4� + �5,

�2(�) = �1�
4 + �2�

3 + �3�
2 + �4� + �5,

�3(�) = �1�
4 + �2�

3 + �3�
2 + �4� + �5.

The coefficients are

Here, we discuss stability of endemic equilibrium and Hopf 
bifurcation conditions of the threshold parameters such as 
�1 and �2 by assuming different cases.

Case 1. When both delay �1,and �2 are zero equation (13) 
become

Endemic equilibrium is asymptotically stable by Routh-
Hurwitz Criteria if

holds, then all the roots are negative. Where 
�
i
=
(

�
i
+ �

i
+ �

i

)

 and i = 1 ∶ 5.
Case 2. For �1 = 0 and �2 is a real positive number, equa-

tion (13) turn out to be

(15)

�
1
= a + � + d + � + � ,

�
2
= a(� + d + � + �) + �(� + �) + �� + d(� + � + �),

�
3
= −abG

1
+ a(�(� + �) + d(� + � + �) + ��) + ��� + d�(� + �) + �d�,

�
4
= −abG

1
(� + d) + �(a�(� + d) + a�d + �d�) + a�d�,

�
5
= a�d

(

�� − bG
1

)

,

�
1
= 0,

�
2
= 0,

�
3
= −abG

2
,

�
4
= −ab

(

G
2
(� + d) + G

1
G

3
),

�
5
= aab�

(

−dG
2
− G

1
G

3

)

,

�
1
= −G

4
,

�
2
= −G

4
(a + � + d + �),

�
3
= −G

4
(a(� + d + �) + �� + d(� + �)),

�
4
= −G

4
(a�(� + d) + a�d + �d�),

�
5
= a�dG

4
�.

(16)�
5 + �

4
�1 + �

3
�2 + �

2
�3 + ��4 + �5 = 0.

(17)

(R1)(𝛼i + 𝛽i + 𝛾i) > 0, 𝜗1𝜗2𝜗3 > 𝜗
2
2
+ 𝜗

2
1
𝜗4,

and

(𝜗1𝜗4 − 𝜗5)(𝜗1𝜗2𝜗3𝜗
2
3
− 𝜗

2
1
𝜗4) > 𝜗1𝜗

2
5
+ 𝜗5(𝜗12 − 𝜗

2
3
)

(18)
�
5 + �

4
(

�1 + �1

)

+ �
3
(

�2 + �2

)

+ �
2
(

�3 + �3

)

+ �

(

�4 + �4

)

+ �5 + �5+

e−��2
(

�1�
4 + �2�

3 + �3�
2 + �4� + �5

)

= 0.
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We suppose that there exists real positive number � for some 
value of �1 in such a way that � = i� is the root of (18), then 
we have two equations

After simplifying these equation we have

where the constants are

By rule of signs of Descartes, equation (19) has as a mini-
mum one positive root if (S1)

(

𝛼1 + 𝛽1

)

2
> 2

(

𝛼2 + 𝛽2

)

+ 𝛾
2
1
 

and 
(

𝛼5 + 𝛽5

)

2
< 𝛾

2
5
 holds.

By eliminating sin �1� form equation (19) we have

where

Differentiating equation (18) with respect to delay (�2) with 
the assumption of � = �0 , then transversality form is obtain

where

(19)

�
4
(

�1 + �1

)

− �
2
(

�3 + �3

)

+ �5 + �5

= −�1�
4 cos �2� + �3�

2 cos �2�

− �5 cos �2� − �2�
3 sin �2� − �4� sin �2� ,

− �
3
(

�2 + �2

)

+ �

(

�4 + �4

)

+ �
5

= �2�
3 cos �2� − �4� cos �2� + �1�

4 sin �2�

− �3�
2 sin �2� + �5 sin �2� .

(20)�
10 + �

8�1 + �
6�2 + �

4�3 + �
2�4 + �5 = 0

(21)

�
1
=
(

�
1
+ �

1

)

2 − 2
(

�
2
+ �

2

)

− �
2

1
,

�
2
=
(

�
2
+ �

2

)

2 − 2
(

�
1
+ �

1

)(

�
3
+ �

3

)

+ 2�
4

+ 2�
4
− �

2

2
+ 2�

1
�
3
,

�
3
=
(

�
3
+ �

3

)

2 − 2
(

�
2
+ �

2

)(

�
4
+ �

4

)

+ 2
(

�
1
+ �

1

)(

�
5
+ �

5

)

− �
2

3
− 2

(

�
2
�
4
+ �

1
�
5

)

,

�
4
=
(

�
4
+ �

4

)

2 − 2
(

�
3
+ �

3

)(

�
5
+ �

5

)

− �
2

4
+ 2�

3
�
5
,

�
5
=
(

�
5
+ �

5

)

2 − �
2

5
.

(22)�2,j =
1

�0

arccos[
�1�3 + �2�4

�
2
1
− �

2
2

] +
2�j

�0

, j = 0, 1, 2,…

(23)

�1 = �2�
3 + �4� ,

�2 = �1�
4 − �3�

2 + �5,

�3 = −�3
(

�2 + �2

)

+ �

(

�4 + �4

)

+ �
5,

�4 = �
4
(

�1 + �1

)

− �
2
(

�3 + �3

)

+ �5 + �5.

(24)Re(
d�

d�2
)−1 =

T1T4 − T3T2

T4T2
,

The hopf bifurcation arise for delay (�2) if Re(
d𝜆

d𝜏2
)−1 > 0 . 

The above analysis is summarized in following theorem.

Theorem 3.1  Assume that R1 and S1 holds, where delay 
�1 = 0 , in that case, there exist 𝜏2 > 0 such that E∗ is locally 
asymptotically stable for 𝜏2 < 𝜏

∗
2
 and unstable for 𝜏2 > 𝜏

∗
2
 , 

where �∗
2
= min{�2,j} in equation (22). Furthermore, at 

�2 = �
∗
2
 the model (1) undergoes Hopf bifurcation at endemic 

equilibrium point.

Case 3. When 𝜏1 > 0 and �2 = 0 , in same procedure of 
case (2), we reach at subsequent theorem.

Theorem 3.2  For model (1) where �2 = 0 , in that case, there 
exist 𝜏1 > 0 such that E∗ is locally asymptotically stable for 
𝜏1 < 𝜏

∗
1
 and unstable for 𝜏1 > 𝜏

∗
1
 , where �∗

1
= min{�1,j} in 

equation (26). Furthermore, at �1 = �
∗
1
 the model (1) under-

goes Hopf bifurcation at endemic equilibrium point,

where

Case 4. When both �1 and �2 are positive. Then, suppose 
that �2 as variable and �1 is fixed parameter on stable interval. 
Assume that there exist a number � such that � = i� is the 
root of (13), we obtain

After simplifying we have

(25)

T1 =
(

−3�2
(

�2 + �2

)

+ �4 + �4 + 5�4
)

(

�
4
(

�2 + �2

)

− �
2
(

�4 + �4

)

+ �5 − �
6
)

,

T2 =
(

�
5
(

�1 + �1

)

− �
3
(

�3 + �3

)

+ �5�

)

2

+
(

−�4
(

�2 + �2

)

+ �
2
(

�4 + �4

)

− �5 + �
6
)

2,

T3 =
(

�4 − 3�2�
2
)(

�2�
4 − �4�

2
)

,

T4 =
(

�2�
4 − �4�

2
)

2 −
(

�1�
5 − �3�

3 + �5�

)

2.

(26)�1,j =
1

�1

arccos{
�1�2 + �3�4

�
2
1
− �

2
3

} +
2�j

�1

, j = 0, 1, 2,…

(27)

�1 = �1

(

�4�1 − �2�
3
1

)

,

�2 = −�2
1

(

�2 + �2

)

+ �4 + �4 + �
4
1
,

�3 = −�1�
4
1
+ �3�

2
1
− �5,

�4 = �
4
1

(

�1 + �1

)

− �
2
1

(

�3 + �3

)

+ �5 + �5.

(28)

�1�
4 − �3�

2 + �5 +
(

�1�
4 − �3�

2 + �5

)

cos �1� +
(

�2�
3 + �4�

)

sin �1�

=
(

�2�
3 − �4�

)

sin �2� −
(

�1�
4 − �3�

2 + �5

)

cos �2� ,−�2�
3 + �4� +

(

�4� − �2�
3
)

cos �2� +
(

−�1�
4 + �3�

2 − �5

)

sin �2� + �
5

=
(

�2�
3 − �4�

)

cos �1� +
(

�1�
4 − �3�

2 + �5

)

sin �1� .
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Where:

By applying rule of signs of Descar tes equa-
tion (29) has minimum one positive root if (S2) 
𝛼
2
1
− 2𝛼2 + 𝛽

2
1
+ 2

(

𝛼1𝛽1 − 𝛽2

)

cos 𝜏1𝜓 − 𝛾
2
1
> 0 and 𝜍5 < 0 

holds. we have

with

For Hopf bifurcation �1 will be fixed and differentiate with 
respect to �2 in equation (28) by putting �2 = �2,0 at � = �3,

where

(29)�5 + �
10 + �

8
�1 + �

6
�2 + �

4
�3 + �

2
�4 = 0.

(30)

�1 = �
2
1
− 2�2 + �

2
1
+ 2

(

�1�1 − �2

)

cos �1� − �
2
1
,

�2 = �
2
2
+ �

2
2
+ 2

(

−�1�3 + �4 − �1�3 + �2�2 cos �1�
)

− 2
(

�3�1 + �1�3 − �4

)

cos �1� + 2�1�3 − �
2
2
,

�3 = 2
(

−�2�4 + �1�5 + �2�4 − �1�5

)

+ �
2
3
− �2�4

(

cos �1�
2 − sin �1�

2
)

+ 2
(

�1�5 +
(

�5�1 − �4�2 + �3�3 − �2�4 + �1�5

)

cos �1�
)

+ �
2
3
− �

2
3
,

�4 = �
2
4
+ �

2
4
+ 2

(

−�3�5 − �3�5 +
(

−�5�3 + �4�4 − �3�5

)

cos �1� + �3�5

)

− �
2
4
,

�5 = −�4�1 + �
2
5
+ �

2
5
+ 2�5�5 cos �1� − �

2
5
.

(31)�2,j =
1

�2

arccos{
�1�5 − �6�2

�
2
1
+ �

2
2

} +
2�j

�2

, j = 0, 1, 2,…

(32)
�5 = �2�

3
2
− �4�2 − �1 cos �1�2 − �3 sin �1�2 − �

5
2
,

�6 = �1�
4
2
− �3�

2
2
+ �5 + �3 cos �1�2 + �1 sin �1�2.

(33)
V1(

d�

d�2
|�2 = �2,0) + V2(

d�

d�2
|�2 = �2,0) = V3,

V2(
d�

d�2
|�2 = �2,0) − V1(

d�

d�2
|�2 = �2,0) = V4.

(34)

V1 =
(

�2,0

(

�2�
3
3
− �4�3

)

− 4�1�
3
3
+ �3

(

�2�
3
3
− �4�3

)

+ 2�3�3

)

cos �2,0�3

+
(

�2,0

(

�1�
4
3
− �3�

2
3
+ �5

)

+ 3�2�
2
3
− �3

(

�1�
4
3
− �3�

2
3
+ �5

)

− �4

)

sin �2,0�3,

V2 =
(

�2,0

(

�1�
4
3
− �3�

2
3
+ �5

)

+ 3�2�
2
3
+ �3

(

�1�
4
3
− �3�

2
3
+ �5

)

− �4

)

cos �2,0�3

+
(

�2,0

(

�2�
3
3
− �4�3

)

− �3

(

�2�
3
3
− �4�3

)

+ 4�1�3 − 2�3�3

)

sin �2�3,

V3 = 3�1�
3
3
− 2�3�3 +

(

�1

(

�2�
3
3
+ �4�3

)

+ 4�1�
3
3
− 2�3�3

)

cos �1�3

+
((

3�2�
2
3
+ �4

)

− �1

(

�1�
4
3
− �3�

2
3
+ �5

))

sin �1�3,

V4 = −3�2�
2
3
+ �4 +

(

�1

(

−�1�
4
3
+ �3�

2
3
− �5

)

cos �1�3 − 3�2�
2
3
+ �4

)

+
(

−�1
(

�4�3 − �2�
3
3

)

− 4�1�
3
3
+ 2�3�3

)

sin �1�3 + 5�4
3
.

From equation (33) if d𝜆
d𝜏2

> 0 , then Hopf bifurcation occur 

at �2 = �2,0.

Theorem 3.3  If R1 and S2 holds with �1 ∈ (0, ��
1
) then, there 

exists �′
2
 such that endemic equilibrium point is asymptoti-

cally stable for 𝜏2 < 𝜏
′
2
 and 𝜏2 > 𝜏

′
2
 , where ��

2
= min{�2,j} in 

(31). Furthermore, the model (1) undergoes Hopf bifurca-
tion at �2 = �

�
2
.

Theorem 3.4  If endemic equilibrium point E∗ for �2 ∈ (0, ��
2
) 

then, there exists �′
1
 such that endemic equilibrium point 

E∗ is asymptotically stable for 𝜏1 < 𝜏
′
1
 and 𝜏1 > 𝜏

′
1
 , where 

�
�
1
= min{�1,j} in (35). Furthermore, the model (1) undergoes 

Hopf bifurcation at �1 = �
�
1
.

where
(35)

�1,j =
1

�0

arccos

{

(

�3�2 + �5�7

)

cos �2�0 − �3�2 + �6�7 +
(

−�3�1 − �7�2

)

sin �2�0

�
2

7
− �3

}

+
2�j

�0

.
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Parametric evaluation with hybrid genetic 
algorithm

A hybrid genetic algorithm combines the power of the 
genetic algorithm (GA) with the speed of a local optimizer.

The parametric approximation is the most challenging 
task after designing a mathematical model and after finding 
the intervals of stability, i.e. the parameters that satisfy the 
stability criteria. Optimizing parametric values for math-
ematical models has always remained a great challenge 
Abdel-Salam et al. (2021).

(36)

j = 0, 1, 2,… ,

�5 = �1�
4
0
− �2�

3
0
+ �4�0,

�7 = �
5
0
− �2�

3
0
+ �4�0,

�7 = �2�
3
0
+ �4�0.

With the advancement in the field of artificial intelligence 
and data sciences, the parametric approximation is made 
easier, keeping in view the stochastic, probabilistic and/or 
the randomized nature of the real data sets.

In this manuscript, we have used a hybrid optimization 
tool, partially based on the genetic algorithm, that works for 
several populations of the parametric mutated genes (sets of 
values). Matlab platform was utilized for this purpose. Fur-
thermore, the parametric values are selected by keeping in 
view the intervals imposed by the biological characteristics 
of the viral process of infection.

A continuous genetic algorithm, that can easily hybrid-
ize with the local optimizer, is used during this research. In 
simple words, the improved values from the genetic algo-
rithm are carried forward by the local optimizer to reduce 
the computational complexity.

Fig. 3   Impact of virus reproduction on: a virus load, b phase plot for 
healthy cells, virus load and Furin

Fig. 4   Impact of infection stages on: a virus load, b phase plot for 
healthy cells, virus load and Furin
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Numerical simulations

We have run some numerical experiments for the under-
standing of virus control and on the other hand, the bifurca-
tion, linked with the delay.

Figure 3 depicts the role of important parameter b, in 
understanding the virus spread. For different values of b, we 
have obtained different dynamics and since the virus replica-
tion rate is directly proportional to b, for increased values of 
b, the virus spread increases and the phase space provides a 
better understanding of increase in infection, relative to virus 
load, target cells and the Furin action (see arrow indicating 
the peak in amplitude). Similarly, Fig. 4 provides informa-
tion about the change in parameter, linked with the differ-
ent infection stages (i.e. moving from the compartment of 
infected cells at first stage to infected cells at second stage). 
The change in angle of the phase portrait provides useful 
information about the dynamics.

Figure 5 provides useful information about the impact of 
delay in transmission from one compartment to another, on 
the virus replication, infected cells and Furin. We can see 
that for increased delay, as anticipated analytically, there is 
bifurcation.

Summary of results

A mathematical model is analyzed with non-negativity of 
solution, equilibrium points and stability analysis. 

1.	 Theorem 2.1 shows that the values of compartments is 
always positive as the parameter is positive.

2.	 The Basic reproductive number is obtained. It is cal-
culated by the model of ordinary differential equa-
tions, using analytical approach and Matcont numerical 
approach.

3.	 If basic reproductive number R0 ≤ 1 , the infection free 
equilibrium point is stable and infection is completely 
vanished.

4.	 If the basic reproduction number R1 > 1 , endemic equi-
librium point is stable in feasible interval.

5.	 Here we use time delay as parameter of bifurcation to 
examine Hopf bifurcation.

6.	 The non negative endemic equilibrium point is sta-
ble when the time delay is very small as time delay 
increases, the instability occurs that is in accordance 
with the hopf bifurcation criteria.

	   Hopf bifurcation is use to find out the instability 
region in the neighborhood of endemic equilibrium 
point.

7.	 Considering both the D614G mutation and the facilitated 
action of furin in this process, we assume parameters 
inclusive of these characteristics.

Discussion

The impact of the SARS-CoV2 virus is devastating mainly 
due to its speed of infection. The proposed model analyzes: 

1.	 Action of enzyme “Furin” in the speed and spread of the 
virus.

2.	 Presence of D614G mutation (video S1).
3.	 Limiting value for � , i.e. the interaction rates.
4.	 Realistic connection of delay in time with the host and 

virus interactions.
5.	 Importance of delay in the interacting populations of 

infected cells at second stage, F(t) and the effect of inter-
feron (IFN).

During this research, it is observed that the model is sensi-
tive to the parameters. These parameters were taken from 

Fig. 5   Impact of delay on: a virus load, b phase plot for healthy cells, 
virus load and Furin
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the literature as mentioned in the introduction and the math-
ematical modeling section. The parameters are responsible 
for the furin action and SARS-COV2 action. This fact is 
demonstrated well, with the aid of the numerical simula-
tions, emerging from the Matcont software and genetic algo-
rithm toolbox. The software has the facility for the para-
metric approximation as well as for the simulations with 
parametric sweep. The numerical experiments for different 
values of the parameters and the delay variable are presented 
in the previous section.

Conclusion

The impact of the CoViD-19 pandemic is devastating and 
scientific research seek to understand the mechanisms of 
infection, to create an appropriate vaccine. This paper ana-
lyzes the characteristics of the SARS-CoV2 viral infection 
that shows a fundamental adaptation in the infection process. 
Arg-Arg-Ala-Arg (RRAR) cleavage site “RRAR” is a cleav-
age site for the“convertase furin” pro-protein, and is found 
in the spike protein (S), exclusively in SARS-COV2 virus 
and is involved in the activation of S protein. In this manu-
script, the action of Furin is demonstrated in detail with the 
aid of the IFN, virus and human cell interaction dynamics. 
Variable delay helped to link the model with the real dynam-
ics. We conclude that the modeling approach can be further 
improved by linking it with the forthcoming results from 
the clinical trials.
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literature review, AS did programming, AS, RA and ST did analysis 
and simulations. All the authors equally contributed to the manuscript.
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