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Foreword 

While doing this study, I set out to examine CTCF, a candidate tumor 

suppressor gene that plays a putative regulatory role in the formation of 

cancer, which is a major burden of disease worldwide. For this purpose, my 

thesis work first examined the comprehensive protein-protein interaction 

network of CTCF and revealed its diverse potential functions. Second part 

of this study which covered 12 different cancer tissues, uncovered 

methylation-specific biomarker regions that are expected to illuminate future 

studies. As a technical novelty, a specific multi-omics approach, based on 

cutting-edge data mining techniques, was applied to the CTCF research field 

in this study. All in all, this academic effort demonstrated that the advanced 

data mining approach we used in this study complements previous findings 

and is applicable for future studies by providing new insights on CTCF's 

tumor suppressor candidacy. In truth, I couldn't complete this study without 

a strong support group. Firstly, to my thesis advisor Assist. Prof. Dr. Kıvanç 

Kök, who passionately guides every stage of this study with his extensive 

knowledge and guidance. Secondly the thesis defense jury members and 

instructors who contributed to my education, since they provide an 

enlightening learning environment throughout my graduate education. 

Finally, my dear family and friends who always support me with deep love 

and understanding. Thank you all for your unwavering support. I dedicate 

this thesis to my beloved father, the person with the most beautiful soul. 
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ÖZET 

CTCF ADAY TÜMÖR SÜPRESÖR GENİNİN MULTİOMİK VERİ 

MADENCİLİĞİ İLE ARAŞTIRILMASI 

Esra DURSUN 

Biyomedikal Mühendisliği ve Biyoinformatik Yüksek Lisans 

Tez Danışmanı: Dr. Öğr. Üye. Kıvanç KÖK 

Şubat, 2021 

CCCTC bağlanma faktörü (CTCF), omurgalılarda bulunan bir 11 çinko parmak 

proteinidir. Her dokuda ifade edilen bu çok işlevli transkripsiyon faktörü, genomdaki 

sayısız hedef bölgeye bağlanabilmektedir. Bu proteinin diğer ilişkilerinin yanısıra; 

transkripsiyon aktivitesinin düzenlenmesi, kromatin yapısının kontrolü ve embriyonik 

gelişimle alakalı olduğu görünmüştür. Önemli bir diğer husus ise, gün geçtikçe CTCF’in 

bir aday tümör süpresör gen olarak tanınmasının artmasıdır. Bu adaylık meselesini ele 

almak için yapılan çalışmalar artmasına rağmen, mevcut kanıtlar hala yetersizdir. Bunun 

esas sebebi deneysel bulguların eksikliğidir. Multi-omik verilerinin ortaya çıkışı, gelişi 

ve veri madenciliği tekniklerindeki gelişmeler, bu boşluğu doldurmak için benzeri 

görülmemiş bir fırsat sunmaktadır. Bununla ilgili olarak bu çalışma, çoklu omik veri 

madenciliği yaklaşımını kullanarak, CTCF’nin kanserle ilişkisine yeni bakış 

kazandırmayı amaçlamaktadır. Buna göre metilom, transkriptom ve interaktom olmak 

üzere üç moleküler karmaşıklık düzeyindeki alakalı veriler ilgili veritabanlarından elde 

edilmiştir. CTCF odaklı interaktomik seviyedeki analiz, CTCF’nin yaygın olarak bilinen 

kromatin organizasyonundaki rolünü doğrulamış ve yeni fonksiyonlarını tahmin etmiştir. 

Daha detaya inecek olursak, tamamlanan proteinprotein etkileşim ağ analizinde bağlantı 

yoluyla suç (GBA) yaklaşımı kullanılarak CTCF kanserle ilişkilendirilmiştir. DNA 

metilomu ve transkriptomdan hareketle yapılan analiz, CTCF regülasyonunun gelişim ve 

kanserle ilgili yönlerine yoğunlaşmıştır. İntegratif veri madenciliği yaklaşımı gelişim 

boyunca CTCF ile ilişkili belirgin prob seviyesindeki metilasyon-gen ifadesi korelasyon 

paternlerini ortaya çıkarmıştır. Ayrıca birçok kanser çeşidinin incelenmesi, CTCF ile 

bağlantılı, belirli metilasyon yerleri için doku çeşidine has bir şekilde kanser ve normal 

dokular arasında diferansiyel metilasyon-ekspresyon korelasyonunu ortaya çıkarmıştır. 

Bu yerler yeni aday kanser biyobelirteçler olarak belirlenmiştir. Prob seviyesinde hem 

yoğunluk hem de genomik konum farklılıklarını aynı anda hesaba katan bu tür bir 

korelasyon raporu CTCF üzerine yapılan böyle ilk çalışmadır. Genel olarak bu öncü 

çalışma, kullanılan çoklu omik veri madenciliği yaklaşımının uygulanabilirliğini 

göstermiş, ilgili deneysel bulguları tamamlamış ve CTCF'nin kanserdeki varsayılan 

rolünün açıklığa kavuşturulmasına katkı sağlamıştır. 

 

Anahtar Sözcükler: CTCF aday tümör süpresör geni, Multi-omik veri madenciliği, GBA 

paradigması, Gen fonksiyonunun tahmini, Diferansiyel korelasyon analizi, Aday 

metilasyon biyobelirteçler 
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ABSTRACT 

INVESTIGATION OF THE CANDIDATE TUMOR 

SUPPRESSOR  

GENE CTCF USING MULTI-OMICS DATA MINING 

Esra DURSUN 

M.S. in Biomedical Engineering and Bioinformatics 

Advisor: Assist. Prof. Dr. Kıvanç KÖK 

February, 2021 

 

CCCTC binding factor (CTCF) is a vertebrate, 11-zinc-finger protein. This ubiquitously 

expressed multifunctional transcription factor can bind to a myriad of target sites in the 

genome. It is involved, among others, in regulation of transcription activity, chromatin 

structure control, embryonic development. Importantly, CTCF has been increasingly 

recognized as a candidate tumor suppressor gene. Despite the growing body of research 

addressing this candidacy issue, the current evidence is still inconclusive. This is mainly 

due to the lacking experimental findings. The emergence of multi-omics data and recent 

advances in data mining techniques offer an unprecedented opportunity to fill this gap. 

Relatedly, this study aimed provide a novel insight into the CTCF’s implication in cancer 

using a multi-omics data mining approach. Accordingly, the relevant data on three levels 

of molecular complexity, namely the interactome, methylome, the transcriptome were 

retrieved from related repositories and explored. The CTCF-focused interactomics level 

analysis confirmed its widely known biological roles in chromatin organization and 

predicted novel functions. More specifically, the accomplished in-depth investigation of 

the protein-protein interaction network implicates CTCF in cancer using the guilt-by-

association (GBA) approach. The performed DNA methylome and transcriptome-driven 

analysis concentrated on the developmental and cancer-related aspects of CTCF 

regulation. The integrative data mining approach uncovered CTCF related distinct probe-

level methylation-gene expression correlation patterns across the development. 

Furthermore, examination of multiple cancer types revealed tissue-specific differential 

correlation between cancer and normal tissues for certain CTCF-associated methylation 

sites. These sites were proposed as novel candidate cancer biomarkers. This is the first 

such correlation report on CTCF, which simultaneously takes into account probe-level 

differences in both intensity and genomic location. Overall, this pioneering work 

demonstrates the applicability of the employed multi-omics data mining approach, 

complements related experimental findings and paves the way for the clarification of 

CTCF’s putative role in cancer.  

Keywords: Candidate tumor suppressor protein CTCF, Multi-omics data mining, GBA 

paradigm, Gene function prediction, Differential correlation analysis, Candidate 

methylation biomarkers 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Protein-protein Interactions and Interactome 

 

1.1.1 Protein-protein interaction networks 

 

Interactions networks have been extensively utilized in biomedical research to unravel, 

model and represent complex biological processes. The advent of Systems Biology 

accelerated research on interaction networks. The rapid proliferation in this domain has 

led to rise of novel research fields. One of such prominent and promising fields is 

Network medicine [1]. This field benefits from network techniques with the ultimate goal 

to address complex biomedical questions. Idea of projecting interactions among the 

components of complicated biological systems into network provided a useful platform 

not only for modelling biological mechanisms, but also for integrating diverse types of 

biomedical data in a combinatory manner. Protein-protein interactions network represent 

a specific type of interactions, which covers connections on protein level (Figure 1). Here, 

proteins (gene products) are represented as nodes and links between proteins are depicted 

as edges. Protein-protein interactions be reconstructed using, among others, co-

expression or physical interaction as data input. Proteins in the network can be 

automatically annotated using overrepresentation algorithms, based on functional 

annotation resources. This allows biologically meaning interpretation of the findings. 

Relatedly, other data types, such as differential expression values, can be mapped onto 

the network, enabling integration of multiple data types in a unified manner. 
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Figure 1:  Application layers in Network Medicine, corresponding to levels of biological 

complexity [1] 

1.1.2 Guilt by association paradigm 

The guilt by association paradigm (GBA) is used to predict a previously unknown 

function of a gene [2]. At the basis of this approach, networks created based on 

interactions between any two genes are used. By examining the functions of the genes 

with which this gene interacts in the network, it is thought to be a potential candidate for 

new roles that it was previously not associated with [3] (Figure 2). 

The GBA method is frequently used across many fields. An example of using this method 

to find new genes associated with known diseases is the study of Ke-Jun Ye et al. In China 

in 2018, using this paradigm to find new optimal genes for Fetal Growth Restriction 

(FGR). As a result of the study, they found new promising biomarkers to be used in the 

diagnosis of FGR [2]. 

Similarly, in a study conducted in 2019, the GBA method was used to unravel new genes 

that participate in the development of glucose homeostasis Type 1 diabetes mellitus 

(T1DM). As a result of this study, new potential cell pathways for the therapeutic or 

preventive treatment of the disease were found [4]. 
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As a different approach of the GBA paradigm instead of finding new candidate genes for 

diseases, examining the network of a gene, implicated in a disease, and trying to find 

potential new functions of this gene can be given as an example. An example of this 

approach can be given in a study conducted by Gloeckner et al. in 2020, to examine the 

widespread protein protein network of Leucine-rich repeat kinase 2 (LRRK2) protein. 

LRRK2 is a member of G protein family, associated with Parkinson's disease. In this 

study, they were found that the LRRK2 protein functions as a major scaffold protein, 

which is related to cytoskeletal dynamics and associated with vesicular transport [5]. 

Modelling of co-expression networks with the objective of unravelling novel disease 

biomarkers is among three common approaches for effectively combining biological 

interaction maps with phenotype-level biomedical data [1]. Network modelling can also 

be used to identify and prioritize novel candidate disease genes. The notion of GBA is 

central to modelling of the protein-protein interaction map, irregardless of the data source. 

In another words, this universal methodology can also be applied to other types of 

networks, such as physical interaction networks. The GBA frequently integrates 

functional annotation data and the knowledge of putative functional modules within the 

network in order to better predict gene function.  

 

 

 

Figure 2: Network modeling and the Guilt-by-association (GBA) approach [1] 

AA 
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1.2 Methylation and Methylome  

1.2.1 The biochemical basis of DNA methylation 

Changes in gene expression and function, which are driven by direct alterations of DNA 

sequence in an organism, are within the research scope of Genetics studies. 

Abnormalities, such as deletions and duplications in the genome, are some of among these 

changes, which can result into various diseases, such as cancer [6]. However, genetic 

studies alone are not sufficient to explain the basis of diseases. Apart from, genetic 

factors, epigenetic mechanisms, which modify gene activity without directly changing 

the DNA sequence, perform crucial regulatory function (Figure 3A). Among them, DNA 

methylation has been the most studied mechanism [7].  

While all cells within the organism possess the identical genetic information, gene 

expression in these cells is not static. This variation is partially mediated by epigenetic 

changes. On the one hand, DNA Methylation occurs by direct chemical modification of 

DNA. On the other hand, other epigenetic modifications, such as histone modifications, 

the length of the nucleosome along the DNA, ensure the balance of induction and 

reduction of gene expression by altering the structure of chromatin. In this way, regulation 

of DNA packaging plays a crucial role in DNA replication and in control of gene function 

[8]. The focus of this thesis is on DNA methylation, which is a type of epigenetic 

modification. 

Historically, in mammals, discovery of methylation concided approximately with the 

discovery of DNA inheritance unit [9]. In later studies, although most researchers 

suggested that methylation had an important effect on changing gene activity, this notion 

remained as a hypothesis until 1980 [10]. While modulation of mRNA expression level 

by DNA methylation is an established fact today [11] (Figure 3B), this research topic still 

maintains its popularity and methylation has been the most studied epigenetic mechanism 

[6]. Covalent binding of a methyl group to the 5th carbon of cytosine gives rise to DNA 

methylation. 

Most DNA methylation happens in cytosines, which precede a guanine nucleotide. These 

two nucleotides are collectively known as CpG sites. DNA methylation can affect gene 

activity differently based on the type of the genomic location, such as CpG regions, gene 

body and intergenic region. In another words, effect of DNA methylation is location-

dependent. Thus, it is an advantage to take into account such aspects by examining the 

mentioned regions separately in methylation studies. 
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Figure 3:  The reasoning behind differential DNA methylation-expression correlations 

in cancer A. Methylation as epigenetic regulatory mechanism. B. Identification of 

differential correlation of methylation and gene expression.[11] 

 

 

1.2.2 CpG islands 

The regions formed by the succession of cytosine and guanine nucleotides are called. 

CpG regions, and the regions where these regions are dense called CGI (CpG islands). 

Although these CpG islands are present in numerous locations throughout the genome, 

they are generally positioned in the promoter regions of genes. These promoter regions 

contain housekeeping genes and are thought to be crucial for the function of the genes as 

they are conserved throughout the course of evolution [12]. For this reason, in methylation 

studies, instead of examining the whole genome, important CpG regions in the promoter 

regions of the genes are focused. 

In terms of tissue specificity, CpG islands show low tissue specificity, whereas CpG shore 

regions 2 kb from the TSS region and CpG shelves regions 4 kb from the TSS region 

have high tissue specificity [13]. In addition, it appears that methylation in these regions 

have an effect on the reduction of gene expression [14]. 

1.2.3 Gene body 

The gene body is viewed as be the part where the gene crosses the first exon. Like 

promoter methylation, gene body methylation leads to gene silencing. However, studies 
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have shown that methylation in the dividing cells in the gene body increases gene 

expression. For this reason, methylation appears to be positively correlated with gene 

expression [15].  

However, in later studies, it has been observed that methylations in the gene body also 

reduce gene expression in the cells that divide slowly or do not divide.  As a result, the 

effect of methylation on the body expression is still uncertain [16], [17]. 

1.2.4 DNA methylation abnormalities  

Proper DNA methylation is critical for accurate gene expression and function. Any 

abnormation in methylome can cause a variety of diseases, (for instance, cancer). With 

hypermethylation, which means that methylation is more than normal, hypomethylation, 

which means that methylation is normally low, can both cause diseases.  

Hypomethylation seems to be especially high in cancerous cells. Oncogenes, which 

should normally be silenced by methylation, can be activated by hypomethylation and 

causing cancer. Similarly, by hypermethylation of tumor suppressor genes that prevent 

cancer formation, these genes are silenced and cause cancer [18]. 

Most of the promoters, which are influenced by loss of DNA methylation correspond to 

tissue-specific genes. For example, antigens normally found only in testicular cells appear 

to be actuated in other types of cancer by hypomethylation [19]. 

In addition to DNA hypomethylation, another methylation balance change is called as 

hypermethylation. It has been shown in many studies that tumor suppressor genes are 

inactivated by hypermethylation in tumors, causing cancer. This was first demonstrated 

in 1989 with the discovery of hypermethylation in the promoter of the retinoblastoma 

(RB1) tumor suppressor gene [20]. 

In this way, these genes can be used as markers in tumors formed by hypermethylation of 

genes that normally take part in regulating gene expression. For instance, cancer can be 

observed by hypermethylation of genes implicated in the mechanism of DNA repair. As 

an example, hypermethylation of BRCA1 gene, which is participates in DNA repair, has 

been frequently studied in ovarian cancer and breast cancer [21]. 
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Silencing genes involved in cell adhesion by DNA hypermethylation, for example CDH1 

(E-cadherin) and CDH13 (H-cadherin) can cause tumor development. Genes such as 

apoptose-related protein kinase 1 (DAPK1), which mediate apoptotic signaling pathways 

(Gordian), can be inactivated by hypermethylation, leading to immortalization of the 

cancer cell [22]. Each type of cancer creates a separate methylome, so that 

hypermethylation can be monitored to differentiate cancer types [7]. 

 

 

1.3 Gene Expression and Transcriptome 

1.3.1 mRNA expression level 

The RNA molecule is the main component of all living creatures. RNA research is 

essential for examining the functions of genes, which were previously shown with DNA 

level studies [23]. The RNA content, which varies between cell types, and is directly 

related to protein formation for many genes.  

The total number of all RNAs coding and non-coding in a cell is called transcriptome. In 

recent years, transcriptome studies have been carried out frequently to better examine the 

structure and function of the genes [24]. Transcriptome analysis is very important in 

protecting and maintaining the identity of cells, in the formation of gene expression 

regulatory complexes and especially in terms of being the main component of 

housekeeping complexes. In addition, misregulation on the gene expression level causes 

various developmental diseases. With these analyzes, questions that have been sought for 

years about the cell nature and tumorigenesis have been addressed [25].  

Analysis of mRNA allows us to examine tissue and cell-dependent gene expression 

characteristics. In this way, we can better examine the dissimilarities in the cells with the 

variation in the transcriptome profile and we can evaluate the causes of the diseases in 

detail and finally take a step towards treatment [24]. Much of the previously unknown 

point about eukaryotic genome and transcriptome has been clarified by conducting 

transcriptome studies, and it has been found that protein-encoding genes make up just 2% 

of the genome [26]. Regulation of gene expression is an essential mechanism, which is 

central to the functioning of our entire body, in diverse biological contexts [27].  
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1.3.2 Gene expression microarrays 

It is now possible to capture almost all of the transcripts using the microarray or sequence 

method, which are used to display DNA. The microarray method is less costly than RNA 

sequencing [28]. However, it has various limitations as it relies on the predetermined 

knowledge of the genome as a disadvantage. RNA sequencing, on the other hand, allows 

more comprehensive studies. 

In the gene expression microarray method, transcripts that are not covered by the designed 

probe sets will not be recognized because these microarrays are based on predetermined 

probes. However, the number of these probes is updated and expanded day by day. 

Although it contains probes needed to identify a large number of important transcript 

sites, it is not as comprehensive (in terms of transcriptome coverage) as RNA sequencing 

[24]. However, in terms of its cheap cost and speed, it is still used more than the 

transcriptome sequence method. Especially in online databases, they have more 

microarray data than sequence data. In this study, microarray data will be used since it 

covers larger datasets instead of RNA sequence data. 

1.3.3 Differential DNA methylation-gene expression correlation 

Differential DNA methylation-gene expression correlation, is a recently designed 

statistical method to decipther regulatory differences between different tissue types or 

conditions. Genes, which show such differential correlations are referred shortly as 

“differentially correlated genes”[11]( Figure 4). To the best of the author’s knowledge, 

this methodology has not been applied to investigate CTCF up until this thesis. Thus, this 

work represents the first such study. A straightforward method to compute Differential 

DNA methylation-gene expression correlation is to substracted two obtained correlation 

coefficients [29]. The most commonly used coefficient is the Pearson correlation 

coefficient. Other common methods, such as Spearman's Rank Correlation and Kendall 

Rank Correlation, are also applicable. Altogether, differences between tissues/conditions 

in their respective mRNA level correlation with DNA methylation level is a promising 

research avenue. 
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Figure 4: Example for computing differential correlation between DNA methylation and 

gene expression [29] 

Figure 4: 

1.4 Regulatory Protein CTCF 

1.4.1 Multifunctional protein CTCF 

The CCCTC binding factor (CTCF) is a ubiquitous, highly conserved 11-zinc-finger 

vertebrate protein. It performs multiple functions and binds to myriad of target sites in 

the genome (Figure 5). Phylogenetic analysis shows that CTCF protein emerged in the 

early evolution of Metazoa and is shared among bilaterians as a conserved protein [30]. 

CTCF owes its multifunctional to diverse molecular interactions, which are mediated by 

distinct CTCF domains. According to the current understanding, each function is 

mediated by a distinct set of interaction partners [31].Thus, knowledge, which available 

for the interaction partners, sheds light on CTCF functions. Some of these protein 

partners, also interact among each others, forming protein complexes. Notably, the notion 

of putative function modules is pivotal for untagling these complexes.  

In the early studies, CTCF protein was identified as a transcriptional suppressor of the 

Myc gene. In the subsequent inquiries, other notable functions such as enhancer blockage, 

inactivation of X-chromosome, gene expression suppression and activation or 

suppression of promoter were found [32], [33].  

There are domains in the structure of CTCF enable its binding to different DNA motifs 

and to a large number of various regulatory proteins [34]. These different roles of the 

CTCF are generally thought to be the result of regulating of chromatin loop establishment 
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in collaboration with the cohesine, which is involved in controlling the chromatin 

structure. Relatedly, although the studies CTCF research has frequently concentrated on 

the CTCF’s importance in the chromatin organization, more studies are needed on what 

role it plays in the developmental process [35]. 

 

Figure 5:  Summary of CTCF (A) functions, (B) network and (C) structure [31] 

 

 

 

1.4.2 CTCF's domain structure and binding to DNA  

CTCF consists of 3 main regions; It consists of a N-terminal site C-terminal site and a 

central zinc-finger (ZF) field, consisting of 11 C2H2. The ZFs have different roles. The 

ZF 3-7 binds to a 15 bp DNA motif. Other ZFs interact with adjacent DNA modules to 

regulate CTCF-binding stability [36]. All three areas of CTCF are open to rearrangement 
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of these interactions, with post-translational changes by interacting with other proteins or 

RNA [37].  

Studies conducted on breast cancer cells, demonstrated that abnormal 

polyADPribocylation of CTCF causes separation from the CDKN2A locus, leading to the 

tumor suppressor gene silencing in an abnormal manner and causing cancer [38]. 

Based on performed studies, transcriptional regulation of genes also seems appears to be 

cell type dependent CTCF. For instance, in primary mouse embryonic fibroblasts, 

misregulation of the 698 gene was shown to be caused by   inactivation of the CTCF gene 

[39]. As a similar example, inactivation of the CTCF gene was shown to alter the 

expression level of circa 400 and 800 genes in mitotic embryonic and postnatal neurons, 

respectively [40]. 

1.4.3 CTCF protein-protein interactiome 

Under certain conditions, such as changes in the cell, environmental conditions, the 

proteins which interacts with CTCF can change. Since the researchers have so far 

discovered new proteins that are reported to interact with CTCF every day, they have 

classified them into 4 main groups to make it easier to examine: DNA-binding proteins, 

chromatin proteins, multifunctional proteins, and miscellaneous proteins that not included 

in these groups [31]. 

If we first mention the group of DNA binding proteins, the proteins included in this group 

are: YB1, Yy1, KAISO, CIITA, RFX. The YB1 protein was shown to play crucial role in 

DNA replication, repair and transcription as DNA binding protein by interacting with 

Yy1 protein [41].  

Yy1 is a ZF transcription factor. In the Tsix center of the X chromosome inactivation, the 

CTCF-Yy1 binding sites are clustered. CTCF appeared to interact with the N terminal to 

transactivate Tsix of Yy1 [42]. 

KAISO protein, as a ZF transcription factors, is an important DNA binding protein in 

development and cancerogenesis process. It acts to reduce the blocking effect of the 

enhancer by binding to the unmethylated sequence region near the 5' β-globulin via the 

CTCF-C domain [43]. 
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The transcription factor RFX binds to the proximal promoters of the MHCII gene. CIITA 

Protein, on the other hand, is a transcriptional coactivator protein, which regulates 

expression by interacting with chromatin reformers and transcription factors. CTCF 

interacts directly with RFX and CIITA proteins, forming a triplex complex. This complex 

permits the expression of certain genes in a CTCF binding site-dependent manner [44]. 

Secondly, some of the proteins included in the group of chromatin proteins are H2A.Z 

SIN3A, Cohesins, Taf1/Set, CHD8, Suz12 proteins. H2A.Z and H2A protein are 

structural components of the nucleosome. H2A.Z protein, identified as CTCF cofactors 

by CTCF-affinity chromatography, has been found to be localized with CTCF across the 

genome [45] 

Suz12 protein is the main component of polycomb repressor complex 2 (PRC2), which 

provides the methylation of histone H3 in the Lysine 27 region. It binds to the maternal 

allele of the P2 and P3 promoters of suppressed Igf2 allele in the Igf2/H19 locus, and 

interacts directly with CTCF [46]. 

SIN3A is a transcriptional co-repressor protein. It plays a role in activation of histone 

deacetylase by connecting to CTCF via zinc finger domain [47]. 

CHD8 protein is a member of the chromodomain family, which plays a role in the control 

of chromatin formation and gene expression. This protein has been found to bind to 

known CTCF zinc finger domains such as the promoter of H19 ICR, BRCA1 and MYC, 

HS5 of the LCR of the 5’β-globulin gene family. Silencing of CTCF or CHD8 appeared 

to result in loss of ICR isolator activity in luciferase reporter plasmids. 

It also appeared that removal of CHD8 induced CpG hypermethylation and histone 

hypoacetylation in the BRCA1 and Myc promoters near the CTCF binding sites [48]. 

Taf1/Set proteins are molecular chaperones that are components of the INHAX complex 

that inhibits histone acetyltransferas. They have been identified as CTCF cofactors [45]. 

The cohesin protein, consisting of 4 subunits (Smc1, Smc3, Scc1 and Scc3), which 

together form the ring-like structure in sister chromatids, plays an important role in 

homologous recombination due to proper separation of chromosomes and DNA repair. 

Cohesin forms the control region of the main latent-associated transcript (LAT) gene of 

the herpesvirus associated with Kaposi's sarcoma, colocalized with CTCF [49]. Cohesin 

also functions as an isolator in H19 ICR and is required for the human p-globin locus in 

reporter plasmids [50]. Cohesin and CTCF bind to maternal DNA molecules, controlling 
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transcription in both the G1 and G2 cells at the Igf2 / H19 suppressed locus. The cohesin 

interacts with CTCF in the Myc isolator, and it appears that the uptake of the cohesin to 

the chromosomal regions (Igf2 / H19 and DM locus) depends on the presence of CTCF 

[51]. 

A third group of multifunctional proteins are PARP1, Nucleophosmin and Topo II. 

Finally, the protein group that cannot be included in any group is called miscellaneous 

proteins, and examples include Lamin A / C, Importins, RNAP II and CP190  [31]. 

CP190 is the centrosome binding protein. Studies in Drosophila have been shown to be 

essential for life but not essential for cell division. CP190 protein is required for direct 

functioning of CTCF binding to chromatin by directly interacting with CTCF [52]. 

DNA binding transcription factors (TFs) are among the most important regulators of gene 

expression. Even though TFs are usually classified into distinct categories to facilitate 

understanding, in reality they are constantly interacting and interconnected with each 

other [53]. 

The analysis of the molecular mechanisms interacting through CTCF (c-myc, hTERT, 

RB, RBL2, CDKN2A and TP53) found that the tumor suppressor role of CTCF depends 

on the cell type. As mentioned earlier, the ability of the CTCF to bind CTSs has been 

shown to depend on cell type-specific factors such as DNA methylation, BORIS binding, 

and CTCF PARylation [54]. 

When the interaction of CTCF with other proteins is examined, an additional strategy has 

been introduced that this protein has an important function during cell differentiation and 

this interaction can be regulated in various genomic regions. Although CTCF-mediated 

chromosome interaction has been found to contain many proteins such as Yin-Yang 1 

(YY1), Kaiso, CHD8, PARP1, Maz, JunD, ZNF143, Prdm5 and Nucleophosmin, to 

function properly and stably, only the cohesin has been shown to be required [49], [55], 

[56]. When the molecular mechanism of the interaction between the cohesin, which is 

shown to be important in this way, with the CTCF was examined, it was found that this 

interaction occurred through the carboxy terminal region of the CTCF and the SA2 

subunit of the cohesin. Just like CTCF, cohesin has been observed to be present in 

intergenase-regulating regions, promoters, introns, and 5'UTRs of genes during 

interphase. Depending on the cell type, 50-80% of CTCF regions also appeared to be 
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coated by cohesin, and down regulation of the cohine using RNAi was found to cause 

disruption of CTCF-mediated intra-chromosomal interactions [57]. 

Another factor that interacts with the CTCF is TFIIIC. This TFIIIC is a necessary factor 

for transcription of tRNAs, 5S rRNA, SINE B2 elements and other non-coding RNAs by 

RNA polymerase III (RNAPIII) [58]. TFIIIC appears to bind to many genomic regions 

that do not have RNAPIII and are called extra TFIIIC (VB) loci. This regulatory factor 

has been shown to cluster and bind DNA sequences of both tRNA genes and ETC loci to 

the nuclear environment in yeasts. As a result of all genome studies, it has been shown 

that CTCF and its binding partner, cohesin, are found in mouse and human cells near 

many tRNA genes and ETC loci [59], [60]. 

1.4.4 CTCF function in developmental process 

In mice, the lack of CTCF in the oocytes causes embryo mortality in the morula stage, 

while homozygous null mutant embryos cannot be implanted in the pre-implantation 

stage, resulting in their death [61]. In zebrafish, the deficiency of CTCF in the unicellular 

phase results in a fatal outcome 24 hours after embryo fertilization [62]. When the reason 

of these remedies are examined in detail in both organisms, it is seen that there is common 

apoptosis mediated by the p53 down regulation and the Puma up regulation. Both of these 

genes are the direct targets of CTCF. Based on these results, it can be concluded that the 

CTCF played an active role in the very early development period [63]. 

CTCF is also involved in brain and neural development. When levels of gene expression 

were examined during development, it was observed that the level of CTCF expression 

decreased in the process from birth to adulthood [64].  

CTCF is also known to play a pivotal role in limb development. In a mouse study, genes 

involved in limb development have been shown to have a large number of CTCF binding 

sites within their promoter regions hinting for CTCF’s function in establishing a 

regulatory complex [65]. The presence of CTCF has also been found in HOX genes, 

which coordinate limb development and generally participate in transcription regulation 

[66]. 
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Based on these studies, examining the CTCF in the course development is a a rational 

initial step to unravel how the 3D genome organization  incorporates numerous stimuli 

involved in the initiation and proper execution of transcription [67]. 

1.4.5 Diseases linked to CTCF 

Knowing that CTCF has such important functions, it is estimated that changes in the 

chromatin structure can lead to various pathologies due to mutations in mediated loop 

formation. It is anticipated that various diseases may occur due to the change of the CTCF 

profile. As an example, studies have found that polymorphisms that alter the CTCF 

binding motif increase the susceptibility to autoimmune diseases such as vitiligo, multiple 

sclerosis and systemic lupus erythematosus, by altering the expression of human 

leukocyte antigens (HLA). As a similar example, SNP (single nucleotide exchange) 

encoded with rs34481144 has been found to affect the severity of a flu virus infection 

[68]. When the molecular mechanism of this is examined, with the change of C to T in 

Chr11, this SNP changes the CTCF binding motif, which increases the CTCF’s 

interaction with the promoter of Interferon-Induced Transmembrane Protein 3 and 

consequently a decrease in the expression of this gene. found to be [69]. 

Mutations in CTCF are have mostly been associated with and studied in context of the 

following diseases: mental retardation, Wiedemann syndrome, Silver-Russell syndrome 

and a variety of cancers. Germline loss of CTCF appears cause syndromic intellectual 

disability and autosomal dominant mental retardation 21 (MRD21). It has been observed 

that frame shift mutations can cause poor binding of CTCF to DNA [70]. 

1.4.6 Candidate tumor suppressor protein CTCF 

The involvement of CTCF in multiple cancer types has been demonstrated. Studies have 

shown that mutations in the CTCF sequence lead to truncated protein formation, which 

influences the progression of head and neck cancer. Similarly, changes in CTCF binding 

motif were observed in colorectal cancer. Changes in the organization of CTCF mediated 

chromatin have been causally linked to mutations of some cancer genes [71]. 
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CTCF gene has been associated with the following cancer types: testicular, colorectal , 

bladder and ovarian due to abnormal DNA methylation at the same loci. Similarly, the 

dysfunction of CTCF in the paternal allele resulted into the formation of different various 

cancer types, including (SRS), hepatocellular carcinoma [72], Wilms tumor [73], 

testicular cancer [74]and craniopharyngioma [75]. As a result of investigating CTCF-

cohesin binding sites (CBS) abnormalities in cancers, mutations have been found in 

gastrointestinal cancer and skin cancer, and these mutations have been associated with 

late replication [76]. Considering the important roles of CTCF and its relationship with 

diseases, it is thought that it may be a factor in tumorigenesis since it interacts with many 

tumor related genes. When the mechanisms related to tumorigenesis are examined, CTCF 

is directly involved in the transcription control of diverse critical factors of cellular 

growth, apoptosis, silenceing, aging and differentiation. In this way, studies have been 

carried out with the idea that CTCF can interact with genes involved in these mechanisms 

and act as a tumor suppressor [77].  

When the NCBI Pubmed literature on “tumor suppressor CTCF” was searched, it was 

seen that the studies increased over the course of the last years. The table, which included 

the search results (the number of PubMed records so far) was downloaded and updated 

to show the cumulative total and moving average by years (Table A.1). In order to analyze 

these results better, 2 different bar charts were created (Figure A.1). Part A and part B of 

this figure focus on the number of publication per year and the cumulative sum of 

publication (per year), respectively. 

1.5 Aims 

The aim of this study was to adopt a data mining approach, which was applied before to 

other field(s), for the research on CTCF. Previously designed methodologies were slightly 

modified and reformulated to suit the objectives of this study. The ultimate goal was to 

test the applicability of the employed approach and obtain novel insights in the context 

of the tumor suppressor protein CTCF. The first step to explore in details the CTCF 

protein-protein (PPI) interaction network using a series bioinformatics tools. These tools 

implement a range of data mining techniques and provide comprehensive visualizations 

for network analysis. This was an attempted to validate already known biological roles 

and uncover the unknown functions of this gene. The ultimate goal was to obtain new 
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indications implicating this regulatory protein in cancer. This functional prediction relied 

on the GBA paradigm and the notion of the putative functional modules. The topology-

based clustering and functional annotation analysis was essential for prediction of 

CTCF’s function in the reconstructed protein-protein interaction network. 

Secondly, impact of DNA methylation on CTCF expression was assessed by through 

computing the correlation of CTCF-associated methylation and gene expression data. 

Considerably strong correlation is indicative of methylation’s impact on CTCF function. 

In contrast to the common methodology of previous studies, which relied on averaging 

probe-level methylation levels, such intensities were considered separately in this 

comprehensive study. The rationale for this careful examination was to obtain a higher 

resolution view on methylation patterns and to identify novel candidate probe-level 

cancer markers. As such, all these aspects resulted into unprecedented level of scrutiny, 

which adds to the novelty of the employed approach the change of CTCF in the 

developmental process and subsequently the change of the CTCF profile in cancer cells 

compared to normal cells. 

 

 

 

CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Overall Design of the Multi-omics Data Mining Research 

This thesis utilized 3 different data types: interactome data, methylome data and 

transcriptome data (Figure 6). Of these, methylation and transcript level data were taken 

from the NCBI GEO repository. Interactome data was retrieved using the Cytoscape 

Genemania App. The cross-omic nature of the performed research and the selected data 

computational solution to the name of this thesis. 
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Figure 6: Multi-omics data mining workflow. Overview of the omic data types and data 

mining approaches used in this study 

 

 

 

2.2 Interactomics Analysis 

2.2.1 Cytoscape-based network analysis 

The Cytoscape tool (v.3.8.1) was used to examine the genes with which the CTCF 

interacts and to observe the biological pathways in which it is involved. Cytoscape is the 

most commonly used open source software platform for studying complex molecular 

networks [78]. This tool also includes additional plugins that provide a very 

comprehensive data visualization.  

GeneMANIA, a Cytoscape plug-in tool, was used for protein interaction analysis. 

GeneMANIA uses available genomic and proteomics data to best estimate the function 

of the protein in question and make a list of associated proteins and genes. Data for six 

different organism (human and five commonly used model organisms) is available in 

GeneMANIA. GeneMANIA collects the results of previous studies and presents the 
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network analysis, along with the detailed list of the functions of the associated proteins 

[79].  

Through the high accuracy of the GeneMANIA estimation algorithm, extensive database 

analysis and the additional tool integrated into the Cytoscape program, it is used in many 

studies [80]. This thesis implemented GeneMANIA App was used to retrieve and 

comprehensively examine genes related to the CTCF gene. 

As a first step of network analysis, GeneMania App (v.3.5.2)  was used to determine the 

gene list with which the CTCF gene interacts. As an alternative, an online version of this 

applications is also available. Gene full names, as further information about the members 

of the network, were obtained from the UniProt databases. Using the guilt-by association 

approach, Cytoscape enables to finding the putative functional modules, associated with 

the gene under investigation by applying topology clustering and functional annotation 

[80].  

Then, by using the NetworkAnalyzer App (v.4.4.6), the topology parameters of this 

network (including node degrees, average clustering coefficients, topological 

coefficients) were calculated. NetworkAnalyzer is a plug-in commonly used to calculate 

network topology parameters, including the mean number of interaction partners and the 

number of linked node pairs [81].  

With the cytoHubba App (v.0.1), the most important nodes in this network were found 

using the degree algorithm from the previously determined topology parameters. The 

top10 gene with the highest degree value was selected and visualized on the network with 

a color gradient. 

Then, MCODE App (v.1.6.1) was used to find gene clusters that are in similar pathways 

in a network entered as input and have similar functional roles in metabolism [82].  

The GOlorize App (v1.0.0.beta1) has been used to observe overrepresented gene 

ontologies in this network. The GOlorize plugin uses BINGO as the first step. It then 

highlights proteins related to the same category using color coding and creates an 

advanced representation of the interaction map [83]. By using Gene Ontology (GO) 

database, the most represented 5 GO categories were selected and the genes on the 

network were colored according to their inclusion of these categories. 
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In the results obtained by using the GO database, the ClueGO App (v.2.5.7) was used to 

filter the redundant biological terms and to determine the most important pathways and 

functions. This plugin defines the edges that show the interactions of terms in the network 

using kappa statistics. In addition to the GO source, this plugin also uses databases such 

as KEGG, WikiPathways and Reactome. In this plug-in, in addition to filtering redundant 

terms, similar results are fused to increase the significance of the results [84]. 

In addition to over representation analysis, ReactomeFI App (v.7.2.3) was used to perform 

pathway enrichment analysis. This plugin enables pathway enrichment analysis for the 

entered gene list by accessing Reactome pathways in databases and enables the 

investigation of the functional relationships of genes involved in hit pathways in this 

network [85]. The workflow (Figure 7) showing the summary of the tools used in this 

network analysis is shown below. 

 

 

Figure 7: Workflow of the Cytoscape based network analysis. 
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2.2.2 Complementary (online tools-based) network analysis 

Webgestalt (WEB-based Gene Set Analysis Toolkit) (accessed on 11 November 2020) is 

an online application, which provides functional enrichment analysis functionality. A 

commonly methods, known as Representation Analysis (ORA), was selected for 

enrichment analysis [86]. The ORA analyzes were performed using the Gene ontology 

and Reactome pathway databases of this tool.  GO-related findings were compare the 

results obtained with Cytoscape. 

Redundancy reduction option, which is an extra feature of this tool, has been used 

especially to reduce excessive results and to examine the most meaningful results. This 

redundancy reduction option is based on 2 methods, affinity propagation and weighted 

set cover. Shortly, the affinity propagation method uses Jaccard index for similarity 

measurement and creates a representative gene set containing significant p value for each 

cluster. Similarly, weighted set cover method creates the minimum gene subset that can 

cover all of the enriched genes by using significant p values [86]. 

Babelomics web tool (accessed on 12 November 2020) was used to do functional 

enrichment analyze. This web tool, is used for the analysis of the genomic data, which 

includes steps such as normalization, clustering and differential gene expression [87]. 

This tool was used to validate the ORA results obtained with Webgestalt and thus to check 

the consistency of the results. 

As the last functional annotation tool, DAVID, which stands for “The Database for 

Annotation, Visualization and Integrated Discovery”, v.6.8 web tool (accessed on 12 

November 2020) was used. It performs comprehensive functional annotation analysis 

using the input gene list [88]. The results obtained were displayed in 3 different ways: 

functional clustering, functional chart and functional table. According to the strength of 

the cluster, the most hit gene clusters were obtained. 

Finally, the CellWhere online tool (accessed on 24 October 2020) was used to examine 

the sub-cell localizations of the genes in the network [89]. For this, the file in xgmml 

format obtained from GeneMania was imported into the program. Then, firstly, with the 

default option, that is, "Screening by flavor" option was selected as muscle, and the 

analysis was made. Using "annotation frequency" as a second option, two figures showing 

the sub cell localizations of the genes are obtained. The workflow (Figure 8) showing the 

summary of the tools used in this network analysis is shown below.  
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Figure 8: Workflow of the Complementary (Online Tools-based) Network Analysis 

 

2.3 Integrated Mining of Methylation and Gene Expression Data 

2.3.1 Data selection and the integrative data mining approach 

Integration of methylation and gene expression data was achieved using the integrative 

data mining approach, which was mainly based on methylation-gene expression 

correlation analysis. Both types of data were retrieved from the related areas in the GEO 

database and match the same sample. The dataset covers specific representative 

tissue/condition type in order to demonstrate the flexible applicability of the employed 

approach. The overview of the selection procedure is summarized in the figure 9.  The 

compiled dataset is summarized in the table 1. Detailed description is available in 

Appendix. 
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Figure 9: Combined methylation and gene expression analyis. Modified PRISMA flow 

chart including selection of omic data and detailed steps of data analysis. 
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Research area Organ/phenotype 
Selected 

datasets 

Analyzed 

samples 

Table ID 

in 

Appendix 

Development fetal 9 196 B.1.1 

Development newborn 7 160 B.1.2 

Development infant 6 120 B.1.3 

Development childhood (5-17) 6 302 B.1.4 

Development early adulthood (18-40) 7 140 B.1.5 

Development late adulthood (41-80) 7 164 B.1.6 

Development senescence (80+) 6 52 B.1.7 

Cancer Tissue bladder cancer 6 60 B.2.1 

Cancer Tissue bone cancer 6 98 B.2.2 

Cancer Tissue brain cancer 6 506 B.2.3 

Cancer Tissue breast cancer 6 274 B.2.4 

Cancer Tissue colon cancer 6 72 B.2.5 

Cancer Tissue gastric cancer 6 288 B.2.6 

Cancer Tissue kidney cancer 6 406 B.2.7 

Cancer Tissue liver cancer 6 262 B.2.8 

Cancer Tissue lung cancer 6 406 B.2.9 

Cancer Tissue pancreas cancer 6 126 B.2.10 

Cancer Tissue prostate cancer 6 380 B.2.11 

Cancer Tissue small intestine cancer 6 128 B.2.12 

Healthy Tissue bladder 6 22 B.3.1 

Healthy Tissue bone 6 124 B.3.2 

Healthy Tissue brain 6 392 B.3.3 

Healthy Tissue breast 6 80 B.3.4 

Healthy Tissue colon 6 70 B.3.5 

Healthy Tissue gastric 6 116 B.3.6 

Healthy Tissue kidney 4 96 B.3.7 

Healthy Tissue liver 6 110 B.3.8 

Healthy Tissue lung 6 266 B.3.9 

Healthy Tissue pancreas 6 14 B.3.10 

Healthy Tissue prostate  6 26 B.3.11 

Healthy Tissue small intestine 7 18 B.3.12 

TOTAL (SUM)   191 5474   

Table 1: Summary of dataset annotations 
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2.3.2 Mining CTCF methylation data 

For methylation data, Illumina HumanMethylation450K BeadChip 

(HumanMethylation450_15017482) platform coded GPL13534 from NCBI GEO 

database was used. PRISMA protocol was applied while selecting methylome data to be 

used in this study. Accordingly, the PRISMA protocol is used to narrow the research area 

to the purpose, as databases contain a large number of data, including primary studies, 

clinical trials, and meta-analyzes, and most of them involve waste of information such as 

duplicate studies, incomplete or incorrect results [90].  

Since this study is a multi-omics study and includes many sub-research steps, the 

modified version of the PRISMA flowchart was used instead of the classical version. 

Likewise, in accordance with this protocol, duplicated and incomplete studies and studies 

with incomplete information about the relevant data were not included in the study. See 

figure 9 for a detailed illustration of how many datasets were included in the study. 

Illumina HumanMethylation450k BeadChip Array contains more than 480,000 CpG site 

probes. It was was made available by Illumina (CA, USA) in 2011 [91].  

It has numerous advantages over other methylation platforms. The first advantage that 

there will be no selective bias towards shorter fragments due to the lack of PCR. As 

another advantage is that it is much cheaper than other methylation platforms such as 

whole bisulfite sequencing. And through these advantages, a lot of scientific research has 

been done using this platform, and thus, the number of data obtained with this platform 

in online databases is very high [92]. Since we use online databases in this study and we 

do not want batch effects caused by platform differences, we only used the data obtained 

with this platform.  

2.3.3 Illumina Human Methylation 450k Array Analysis to Find Probe Regions of 

the CTCF Gene 

To create an annotation file, all informations about the cg probes such as; name, which 

chromosome is located, starting region, strand etc. was obtained using the 

"IlluminaHumanMethylation450kanno.ilmn12.hg19" package (v.0.6.0) and converted to 

Granges object by selecting only required informations [93]. The annotation file named 

as “TSS.human.GRCh37” found in the “ChIPpeakAnno” package (v.3.20.1) which 

contains start and end region of all genes according to the hg19 reference genome was 
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imported to R and the distance of all probes to TSS regions was calculated by 

“annotatePeakInBatch” function [94]. 

In this function, “output=both” option applied to find the distance of all probes to nearest 

gene instead of only distance of overlapping ones. The function that calculates the 

distance of the genes to the TSS region was updated to calculate the distance from the 

end points of the genes in the reverse strand and the starting points of the genes in the 

forward strand. Gene symbols corresponding to ensembl ids were obtained using the 

“org.Hs.eg.db” package (v.3.10.0) [95] . 

After finding the probe regions corresponding to all genes, probes in the CTCF gene were 

selected. Likewise, in the expression data, the ID corresponding to the CTCF gene was 

found and the results were filtered to include only the CTCF gene. 

Clustvis (accessed on 7 August 2020), an online web application, was used to create the 

PCA and heatmaps [96]. 

 

 

2.3.4 Mining CTCF gene expression data 

For the expression data, Affymetrix chip technology, referred as “Human Genome U133 

Plus 2.0 Array (HG-U133_Plus_2)”.  This platform is coded as “GPL570” in the NCBI 

GEO database was used. As mentioned above, the PRISMA protocol was followed while 

selecting the transcriptome data.  

This platform covers 47,000 transcripts [97]. Using the Power of the Probe Set, it includes 

multiple independent measurements for each transcript, providing the highest accuracy 

and repeatability of any microarray platform.  

In this study, the same platform selected for all gene expression trancript-level data to 

ensure consistency between samples. Similar, like the Illumina Human Methylation 450k 

array platform, this platform includes more probe sets than other gene expression 

platforms and enables the screening of approximately 14500 genes. It is much cheaper 

than whole genome sequencing platforms, so there are large numbers of samples in online 

databases.  
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2.3.5 Methylation- gene expression correlation analysis 

Simple correlation is a statistical method, which used to measure relation between two 

variables. Two basic methods are used to measure correlation: Pearson and Spearman. 

Pearson's correlation is the most commonly used method for investigating correlation. It 

is a parametric method. Spearman is a nonparametric correlation method. Accordingly, 

the first method to be used to measure the relationship of two variables, showing a normal 

distribution, is Pearson correlation. Spearman correlation is used among others, more 

often, in case of non-normal distribution and in examining outliers [98].  In this work, the 

correlation between methylation and gene expression were measured directly using the 

cor function in R(v.3.6.3) by using R Studio (v.1.1.456). This function uses the Pearson 

correlation method by default. The correlation coefficient shows the level and direction 

of the correlation. For cancer-related research steps, differential correlation was assessed, 

The studied difference was computed by substracting two correlation coefficients. The 

correlation results obtained in this study were visualized in the form of a scatter plot using 

the R ggplot2 (v.2) package. 

 

 

 

 

CHAPTER 3 

RESULTS 

3.1 Mining CTCF Interact 

3.1.1 Cytoscape-based network analysis 

3.1.1.1 Reconstruction of the CTCF network using GeneMania 

In this study, in order to comprehensively explore the CTCF protein-protein interaction. 

(PPI) network, we first identified the primary protein partners of the CTCF gene using 

Cytoscape's GeneMania plugin. According to the result, a network with 21 nodes (Table 

2; Figure 10) and 83 edges was obtained. 
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Gene Symbol   Gene Full Name 

CTCF   “CCCTC-binding factor” 

CHD8   “chromodomain helicase DNA binding protein 8” 

POU5F1   “POU class 5 homeobox 1”  

SMAD6   “SMAD family member 6”  

KANSL1   “KAT8 regulatory NSL complex subunit 1” 

      ZMYM2   “zinc finger MYM-type containing 2” 

SMAD4   “SMAD family member 4” 

SMAD5   “SMAD family member 5”  

      RPS6KB1   “ribosomal protein S6 kinase B1” 

IRAK2   “interleukin 1 receptor associated kinase 2” 

SET   “SET nuclear proto-oncogene” 

       ZMYM1   “zinc finger MYM-type containing 1”  

YBX1   “Y-box binding protein 1”  

NPM1 
ADNP 
LLPH 
FAU 
IFNG 

SMAD1 
THRB 

    EBNA1BP2 

  “nucleophosmin (nucleolar phosphoprotein B23  numatrin)” 
  “activity dependent neuroprotector homeobox”  
  “LLP homolog  long-term synaptic facilitation” 
  “Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed”   

“interferon  gamma” 
  “SMAD family member 1”  
  “thyroid hormone receptor beta”  
  “EBNA1 binding protein 2”  

Table 2: Nodes details in the network created with GeneMania 

 

 

 

Figure 10: Gene network obtained using the Cytoscape GeneMania plugin 
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3.1.1.2 Topology analysis and detection of hub genes using NetworkAnalyzer  

In order to find topology parameters such as degree, closeneess, radiality of this CTCF 

network, the NetworkAnalyzer plug-in was used (Table 3).  

 
gene name Degree ClosenessCentrality Radiality Eccentricity 
THRB 1 0.512820512820513 0.9525 2 
SMAD1 12 0.571428571428571 0.9625 2 
KANSL1 2 0.526315789473684 0.955 2 
LLPH 3 0.54054054054054 0.9575 2 
IFNG 3 0.54054054054054 0.9575 2 
FAU 5 0.555555555555556 0.96 2 
YBX1 7 0.555555555555556 0.96 2 
ZMYM2 11 0.625 0.97 2 
RPS6KB1 4 0.54054054054054 0.9575 2 
NPM1 9 0.571428571428571 0.9625 2 
EBNA1BP2 4 0.555555555555556 0.96 2 
SMAD5 15 0.606060606060606 0.9675 2 
SET 6 0.555555555555556 0.96 2 
IRAK2 2 0.526315789473684 0.955 2 
CHD8 5 0.54054054054054 0.9575 2 
CTCF 29 1 1 1 
ZMYM1 5 0.555555555555556 0.96 2 
SMAD4 17 0.588235294117647 0.965 2 
ADNP 9 0.606060606060606 0.9675 2 
POU5F1 5 0.571428571428571 0.9625 2 
SMAD6 12 0.588235294117647 0.965 2 

Table 3: NetworkAnalyzer topology parameters 

3.1.1.3 Topology analysis and detection of top 10 hub genes using cytoHubba  

According to this result, top10 hub gene containing the highest degree result was 

determined (Table 4). These hub genes are respectively; CTCF, SMAD4, SMAD5, 

SMAD6, SMAD1, ZMYM2, NPM1, ADNP, YBX1, SET. 

gene name Degree ClosenessCentrality Radiality Eccentricity 
CTCF 29 1 1 1 
SMAD4 17 0.588235294117647 0.965 2 
SMAD5 15 0.606060606060606 0.9675 2 
SMAD6 12 0.588235294117647 0.965 2 
SMAD1 12 0.571428571428571 0.9625 2 
ZMYM2 11 0.625 0.97 2 
NPM1 9 0.571428571428571 0.9625 2 
ADNP 9 0.606060606060606 0.9675 2 
YBX1 7 0.555555555555556 0.96 2 
SET 6 0.555555555555556 0.96 2 

Table 4: Top10 hub genes according to degree 

Using the cytoHubba plugin, both the results obtained with the NetworkAnalyzer were 

verified and the top10 hub genes were visualized (Figure 11). 
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Figure 11: Top10 hub genes colored by degree level 

3.1.1.4 Topology-based clustering using MCODE  

According to topology results, clusters in this network were detected using the MCODE 

plug-in. Accordingly, 2 different clusters were obtained in this network.  

The first of these, with a score number of 4, contains the following genes, respectively; 

SMAD4, SMAD1, SMAD6, SMAD5. (Table 5; Figure 12).  
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Table 5: Cluster1 determined by topology table 

 

Figure 12: Cluster1 determined by topology figure 

The second cluster with a score number of 3.429 contains the following 8 nodes: ADNP, 

ZMYM1, CTCF, CHD8, SET, EBNA1BP2, YBX1, FAU. (Table 6; Figure 13). 
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Table 6: Cluster2 determined by topology table 

 

Figure 13: Cluster2 determined by topology figure 
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3.1.1.5 Gene Ontology overrepresentation analysis using GOlorize  

Over-represented GO categories in this network were found using the GOlorize plug-in. 

In this plug-in as a first step, the most represented GO categories are determined by using 

the BINGO plug-in and additionally, the GOlorize plug-in provides coloring on the 

network. 

Overrepresentation analysis, based on the GO-BP (biological process) database, 

identified 463 enriched terms (FDR<0.05). 5 terms were selected (Figure 14) from this 

list and mapped on the network (GOlorozing the nodes) with the purpose of functional 

annotation. Selection was performed using the following criteria: some of these are the 

same or related to the categories obtained with the MCODE, since the focus of the thesis 

is cancer, categories related to cancer, categories related to regulation. 

               
Figure 14: 5 overrepresented GO categories by BP (Biological Process) 

Then, Overrepresented 5 GO-MF (molecular function) categories were selected among 

the 58 overrepresented terms, since they provide a comprehensive overview of the CTCF 

in terms of molecular function (Figure 15). 
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Figure 15: 5 overrepresented GO categories by MF (Molecular Function) 

3.1.1.6 Gene Ontology and Reactome pathway overrepresentation analysis using 

ClueGO  

The ClueGO plug-in was used to highlight specific biological roles and common 

approaches by reducing redundant repetitive results in the detailed CTCF network, 

including the GO annotations and clusters obtained by MCODE and GOlorize. The 

ClueGO network created with Kappa statistics uses ontology sources such as Gene 

Ontology, Reactome, KEGG, Wikipathways to find clusters in the input gene list and 

reveals the most important common biological roles by fusing similar results in selected 

categories.  

Using this plug-in, we have demonstrated the significant biological roles of CTCF on a 

single network, using the GO Biological Process and Molecular Function categories, 

which we previously created with two different analyzes with GOlorize (Figure 16). 

Gene list obtained from GeneMania was used as input to obtain this network. 
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Figure 16: Network created by using Gene Ontology Biological Process and 

Molecular Function options with ClueGO plugin. The most specific terms in these 

groups was considered as the group leader and highlighted in larger and bold font.  

As seen in this network, two functional groups/pathways are shown with two different 

colors. The table below (Table 7) contains detailed information about these functional 

groups, such as the detailed gene information, which biological function they roled in, 

and their p-values.  

Table 7: Detailed information of the network created using GO-BP and MF ontology 

sources from ClueGO plugin 

 

 

In addition, the obtained functional terms are shown as bar charts and the obtained groups 

as pie charts (Figure 17). On the bar chart, terms that belong to more than one group are 

marked with an “*” and how many number of times they were repeated is also shown as 

numbers at the end of the bars. The pie chart shows how many percent of terms each 

group contains. 
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Figure 17: A. Significant Reactome pathway and reactions terms identified with the 

Kappa score B. Percent number of terms of functional pathway 

With the ClueGO plugin, a network was created using Reactome Reactions and Reactome 

pathway options, a database that is frequently used in analyzing and displaying biological 

pathways (Figure 18). 

 

Figure 18: Network created using Reactome Reactions and Reactome Pathway options 
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As seen in this network, different pathways and reaction results are displayed in 4 

different colors. Similar results are combined as in the network created using Gene 

Ontology options, and the most important biological pathways are shown in highlighted 

and bold font as the group leader. The table below (Table 8) contains detailed information 

about these biological pathway, such as the detailed gene information, which pathway 

and reactions they belong to, and their p-values. 

  

Table 8: Detailed information of the network created using Reactome reactions and 

Reactome Pathway from ClueGO plugin 

Similar to the network prepared for gene ontology, the results are also shown as a bar 

chart showing the terms of Reactome pathway and reactions (Figure 19), and a pie chart 

showing how many percent of terms the groups contain. On the bar chart, terms that 

belong to more than one group are marked with an “*” and how many number of times 

they were repeated is also shown as numbers at the end of the bars. 

 

Figure 19: A. Significant Reactome pathway and reactions terms identified with the 

Kappa score  B. Percent number of terms of functional pathways 
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3.1.1.7 Reactome pathway enrichment analysis using ReactomeFIPlugIn  

Reactome pathway enrichment was done using ReactomeFI plugin. In total, 130 different 

pathways and hit genes included in them were obtained. Moreover, the following details 

for each term were obtained: “ratio of protein in pathway”, “number of protein in 

pathway”, “protein from gene set”, “p-value” and “FDR (false discovery rate) values”. 

The latter is a related with p value adjustment for multiple testing. The significant results 

(terms) were singled out using FDR 0.05 threshold. As a result, 5 significant pathways 

were obtained and are shown in the table 9. 

Table 9: FDR <0.05 Reactome pathways prepared by using ReactomeFI plugin 

By using the option of this plugin that enables to visualize the pathways, the hit pathways 

were displayed. Accordingly, the diagram of the main metabolic pathways was created. 

To obtain information about these pathways containing detailed gene clusters, they need 

to be examined on the Reactome web page. Below are the main diagrams that include 

these pathways. The figures of the main diagrams of these pathways are shown in the 

order below. 

Firstly, the diagram of the developmental biology pathway, which is the main title of the 

“transcriptional regulation of pluripotent stem cells pathway” was created (Figure 20). By 

looking at this, the sub pathways under the developmental biology pathway can also be 

examined. 
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Figure 20: Transcriptional regulation of pluripotent stem cells, the sub pathway under 

the developmental biology main pathway 

The transcriptional regulation by RUNX2 pathway shown in the second row in the table 

is examined under the gene expression main diagram. When a detailed pathway 

examination is performed from the Reactome web page, the metabolic pathways in which 

SMAD1, SMAD4, SMAD6 genes take part appear in detail. Also similarly, other 

pathways under the main title of gene expression can be examined from this figure (Figure 

21). 

 

Figure 21: Transcriptional regulation by RUNX2, the sub pathway under the gene 

expression main pathway 

 

 

Similarly, the RUNX2 regulates bone development pathway, shown in the 5th row in the 

table, also appears to be under the gene expression main diagram. The role of genes from 

the SMAD family in this pathway can be examined in detail from the Reactome Pathway 

Browser web page. 
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Signaling by TGF-beta family members shown in the 3rd row in the table are examined 

under the main title of pathway signal transduction. Figure showing detailed functions of 

genes included in this pathway is obtained (Figure 22). 

 

 

Figure 22: “Signaling by TGF-beta family members pathway” from Reactome Pathway 

Browser 

 

The roles of SMAD genes in signal transduction can be examined in this figure. Detailed 

pathway information of Signaling by BMP, which is in the 4th row in the table, is also 

shown in this figure. 

In addition, the detailed diagram of the Signaling by activin pathway has been obtained 

directly from the ReactomeFI plug-in (Figure 23). 
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Figure 23: Signaling by activin diagram created using ReactomeFI plugin 

Among the genes in the CTCF network, those involved in the Signalization pathway by 

activin are highlighted in purple in the figure above. 

3.1.2 Complementary (Online Tools-based) network analysis 

The CTCF network, which is functionally annotated with Cytoscape plugins, was 

analyzed with frequently used web tools for this purpose, thus ensuring the comparison 

of the accuracy of the results and the completion of the missing parts. 

 

 

3.1.2.1 Gene Ontology and pathway overrepresentation analysis using WebGestalt  

First of all, over representation analysis was performed by using Gene ontology database 

in WEbGestalt online tool. The noRedundant option was used to reduce redundant results 

as used in the ClueGO plugin. First by using the Biological Process noRedundat option 

the table containing the p value and FDR values of each functional annotation and the bar 
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graph showing the FDR significance value of the enriched gene sets are created (Figure 

24). 

A 

 

B 

 

Figure 24:  A. GO Biological process reduncany functional annotation containing 

reduced p value and FDR values B. GO Biological process reduncany reduced, enriched 

gene sets bar chart sorted by FDR values 

 

 

Similarly, functional annotation results based on FDR values were displayed on a 

Volcano plot. In addition, the summary table containing the GO name of the enriched 

annotation result with the highest significance and the genes involved in this role in the 

network is shown (Figure 25).  This tool includes an interface suitable for selecting the 

gene sets whose details are to be viewed. 
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C 

 

D 

 

Figure 25: C. Visualization of functional annotation results of GO-BP on Volcano plot 

D. Detailed information of the most significant enriched GO set  

 

 

When these results were compared with the results obtained with ClueGO, the following 

GO categories appeared to be the same for the GO-BP database: "Positive regulation of 

transcription from RNA Polymerase II promoter involved in cellular response to chemical 

stimulus”, “Pri mRNA transcription by RNA Polymerase II”, “Regulation of protein 

acetylation”.  

 

Second, by using the GO Molecular function noRedundant option  the table containing 

the p value and FDR values of each functional annotation and the bar graph showing the 

FDR significance value of the enriched gene sets are created (Figure 26). 
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A 

 

B 

 
Figure 26: A. GO Molecular function redundancy functional annotation containing 

reduced p value and FDR values B. GO Molecular function redundancy reduced, 

enriched gene sets bar chart sorted by FDR values 

 

 

 

As performed in GO-MF analysis, functional annotation results based on FDR values 

were displayed on a Volcano plot. In addition, the summary table containing the GO name 

of the enriched annotation result with the highest significance and the genes involved in 

this role in the network is shown (Figure 27).  
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C 

 

D 

 

Figure 27:  C. Visualization of functional annotation results of GO-MF on Volcano plot 

D. Detailed information of the most significant enriched GO set 

 

When these results were compared with the results obtained with ClueGO, the following 

GO set appeared to be the same for the GO-MF database: "SMAD binding”. It is also 

understood from the relevant figures that this is the most significant gene set for GO-MF. 

 

As a last analysis generated using the GO database, by using the GO Cellular components 

noRedundant option the table containing the p value and FDR values of each functional 
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annotation and the bar graph showing the FDR significance value of the enriched gene 

sets are created (Figure 28). 

A 

 

B 

 

Figure 28: A. GO Cellular component redundancy functional annotation containing 

reduced p value and FDR values B. GO Cellular component redundancy reduced, 

enriched gene sets bar chart sorted by FDR values 

F 

 

As performed in GO-CC analysis, functional annotation results based on FDR values 

were displayed on a Volcano plot (Figure29-C). In addition, the summary table containing 

the GO name of the enriched annotation result with the highest significance and the genes 

involved in this role in the network is shown (Figure29-D). 
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D 

 

Figure 29: C. Visualization of functional annotation results of GO-CC on Volcano plot 

D. Detailed information of the most significant enriched GO set. 

 

 

When these results were compared with the results obtained with ClueGO, it appears that 

there are no results for this GO category in ClueGO. 

In addition to the Gene Ontology database, the pathway databases KEGG and Reactome 

were used for functional annotation analysis. Similar to the GO results, the table and bar 

chart containing p-value and FDR values are shown (Figure 30). Then the Volcano plot 

and figure showing the details of the most significant gene set result (Figure 31) are 

shown. 
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A 

 

B 

 

 

 

C 

 

Figure 30: A. KEGG functional annotation containing p value and FDR values B. 

KEGG pathway, enriched gene sets bar chart sorted by FDR values C. Visualization of 

functional annotation results of KEGG on Volcano plot  
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D 

  Figure 31: D. Detailed information of the most significant enriched KEGG set.  

 

When these results were compared with the results obtained with ClueGO, it appears that 

there are no results for KEGG pathway in ClueGO. 

In addition to the KEGG pathway, the same analyzes were performed for the Reactome 

pathway (Figure 32; Figure 33). 

A  

B  

Figure 32: A. Reactome pathway functional annotation containing p value and FDR 

values B. Reactome pathway, enriched gene sets bar chart sorted by FDR values 
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When these results were compared with the results obtained with ClueGO, the following 

Reactome pathways appeared to be the same: "Signaling by BMP, RUNX2 regulates bone 

development”. On the other hand, when compared with the results obtained with the 

ReactomeFI plugin, it was seen that the results completely overlap. 

 

C 

 

D 

 

Figure 33: C. Visualization of functional annotation results of Reactome pathway on 

Volcano plot D. Detailed information of the most significant enriched Reactome 

pathway gene sets 

In addition to the KEGG and Reactome pathway, the same analyzes were performed by 

using the Wikipathway cancer database (Figure 34; Figure 35). 
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A 

 

B 

 

C 

 

Figure 34:  A. Wiki cancer pathway functional annotation containing p value and FDR 

values B. Wiki cancer pathway, enriched gene sets bar chart sorted by FDR values C. 

Visualization of functional annotation results of Wiki cancer pathway on Volcano plot 
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D 

 

Figure 35: D. Detailed information of the most significant enriched Wiki cancer 

pathway gene sets 

3.1.2.2 Overrepresentation analysis using Babelomics  

Using the Babelomics web tool, GO-BP analysis has been performed in order to compare 

it with other results obtained. A table showing functional annotation terms and genes 

involved was created (Table 10). 

Table 10: Functional annotation results of GO-BP databases by using Babelomics 
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In addition to this table, GO-BP's network has been obtained (Figure 36). 

 

Figure 36: GO-BP annotation network by using  

Babelomics No results were obtained from Babelomics for other GO databases.  

 

 

3.1.2.3 Overrepresentation analysis using DAVID 

DAVID was implemented for functional annotation enrichment analysis. In order to 

observe the annotations better and to examine the most significant results, the enrichment 

score was filtered as the highest. The following table consisting of 3 clusters was obtained 

(Figure 37). 

 

Figure 37: Functional annotation clustering results by using DAVID online tool 
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As it appears in this table pathways such as "SMAD domain”, “BMP signaling pathway”, 

“transforming growth factor beta receptor signaling pathway”, “positive regulation of 

transcription from RNA polymerase II promoter involved in cellular response to chemical 

stimulus" were obtained using the DAVID online tool, similar to the results we have 

achieved so far. 

 

 

3.1.2.4 Graphical display of the network based on subcellular localization using 

CellWhere 

CellWhere, an online tool, is used to detect and visualize the subcellular localization of 

nodes in this network. In this tool, first visual graphic was created using default options 

(display localization based on: muscle) (Table 11; Figure 38).  

Table 11: Subcellular localization of the nodes table 
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Figure 38: Sub localizations of CTCF obtained by selecting "muscle" from the 

CellWhere 

Secondly, another graphical visual was created by selecting the display localization based 

on option as annotation frequency (Figure 39). According to the result, it was determined 

that most of the nodes in this network are located in the nucleus. 

Figure 39: Sub localizations of CTCF obtained by selecting "annotation frequency"   
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3.2 Mining Methylation and Gene Expression Data 

In order to perform combined methylation intensity and transcript abundance analysis, 

unlike previous studies, all probe regions that are methylation specific on the CTCF gene 

were analyzed separately in this study. The annotation information of these probes was 

determined using the "IlluminaHumanMethylation450kanno.ilmn12hg19" R package .  

Then, using the ChIPpeakAnno package, all probe regions within 5 kb of upstream and 

downstream lengths according to the TSS region of the CTCF were determined. 

Accordingly, 12 probe regions, 6 of which are upstream and 6 of which are inside of the 

CTCF gene, were determined (Table 12). These 12 probe regions will be used in all future 

analyzes and “Inside Feature” column will be used as a reference in scatter plots. 

 

CG probe ID Ensembl ID HGNC 

Symbol 
Distance to TSS insideFeature 

cg23858565 ENSG00000102974 CTCF -608 upstream 

cg07967402 ENSG00000102974 CTCF -468 upstream 

cg08324636 ENSG00000102974 CTCF -442 upstream 

cg06241380 ENSG00000102974 CTCF -357 upstream 

cg10218542 ENSG00000102974 CTCF -326 upstream 

cg04487155 ENSG00000102974 CTCF -32 upstream 

cg10481400 ENSG00000102974 CTCF 126 inside 

cg01866162 ENSG00000102974 CTCF 203 inside 

cg27250362 ENSG00000102974 CTCF 1005 inside 

cg02215945 ENSG00000102974 CTCF 1063 inside 

cg16517579 ENSG00000102974 CTCF 1832 inside 

cg04545079 ENSG00000102974 CTCF 3613 inside 

Table 12: Probe regions on the CTCF gene 

Correlation analysis was performed to observe the impact of methylation of CTCF gene 

on gene expression in healthy samples.  

The same “Illumina 450K array (GPL13534) platform” was used for the methylation data 

and “Affymetrix Human Genome U133 Plus 2.0 Array (GPL570-HG- U133_Plus_2)” 

platform was used for the gene expression data for all different stages samples. 
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3.2.1 Age-Related Change of the CTCF Gene Methylation Profile and Its Effect on 

Gene Expression 

 

To examine the effect of development-associated variation in the CTCF methylation 

profile for the CTCF gene on gene expression, samples taken from online databases are 

divided into 7 different developmental age categories: fetal (prenatal), newborn, infancy 

(1-4), childhood (5-17), early adulthood (18-40), late adulthood (41-80) and senescence 

(80+).  

At least three different datasets were used for each stages sample, to minimize problems 

that may result from technical errors and to increase the consistency. The annotation files, 

which contain detailed information about which datasets are used and detailed 

information about this data set, has been prepared separately for each age group and is 

given in the appendices (Table:B.1.1-B1.7). 

Pearson and Spearman correlations were performed to examine assess the impact of 

CTCF methylation changes on CTCF mRNA level in different developmental stages. 

Scatter plots where each point represents a separate probe and the tables showing 

correlation values corresponding to each probe site were created separately for each age 

category.  

The scatter plots (Figure 42-48) and the correlation tables (Table 13-19) created for the 

categories in this developmental process are shown in the next section respectively. PCA 

plot (Figure 40) and heatmap (Figure 41) demonstrates which age group categories are 

closer to each other based on the methylation data. 
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Figure 40: PCA plot of the all developmental age categories 

 

 

 
                   Figure 41: Heatmap of the all developmental age categories 
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3.2.1.1 Fetal 

 
Figure 42: Scatter plot of probe sites in the CTCF gene of fetal samples 

CG probe ID Distance to TSS insideFeature Pearson 
correlation (r) 

Spearman 
correlation (rho) 

cg23858565 -608 upstream 0.10 0.10 

cg07967402 -468 upstream -0.11 0.03 

cg08324636 -442 upstream -0.07 -0.10 

cg06241380 -357 upstream NA NA 

cg10218542 -326 upstream NA NA 

cg04487155 -32 upstream -0.18 -0.12 

cg10481400 126 inside -0.01 -0.02 

cg01866162 203 inside NA NA 

cg27250362 1005 inside -0.17 -0.19 

cg02215945 1063 inside NA NA 

cg16517579 1832 inside NA NA 

cg04545079 3613 inside 0.00 -0.03 

Table 13: Correlation of probe regions in the CTCF gene of fetal samples 
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3.2.1.2. Newborn 

 

Figure 43: Scatter plot of probe sites in the CTCF gene of newborn samples 

 

CG probe ID Distance to 
TSS 

insideFeature Pearson 
correlation (r) 

Spearman 
correlation (rho) 

cg23858565 -608 upstream 0.75 0.59 

cg07967402 -468 upstream 0.72 0.43 

cg08324636 -442 upstream 0.75 0.52 

cg06241380 -357 upstream 0.65 0.52 

cg10218542 -326 upstream NA NA 

cg04487155 -32 upstream 0.69 0.57 

cg10481400 126 inside 0.48 0.40 

cg01866162 203 inside 0.67 0.60 

cg27250362 1005 inside 0.70 0.55 

cg02215945 1063 inside 0.70 0.49 

cg16517579 1832 inside 0.75 0.50 

cg04545079 3613 inside 0.44 0.39 

Table 14: Correlation of probe regions in the CTCF gene of newborn samples 

CTCF methylation in newborn babies appeared to be positively correlated with all probes. 
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3.2.1.3 Infancy (1-5) 

 

Figure 44: Scatter plot of probe sites in the CTCF gene of infant samples 

CG probe ID Distance to TSS insideFeature 
Pearson 
correlation (r) 

Spearman 
correlation (rho) 

cg23858565 -608 upstream -0.04 -0.03 

cg07967402 -468 upstream 0.03 0.06 

cg08324636 -442 upstream -0.07 -0.12 

cg06241380 -357 upstream -0.20 -0.17 

cg10218542 -326 upstream 0.19 0.24 

cg04487155 -32 upstream -0.09 -0.10 

cg10481400 126 inside 0.12 0.07 

cg01866162 203 inside -0.12 -0.10 

cg27250362 1005 inside 0.18 0.26 

cg02215945 1063 inside NA NA 

cg16517579 1832 inside NA NA 

cg04545079 3613 inside 0.03 -0.06 

Table 15: Correlation of probe regions in the CTCF gene of infant samples 

Very weak or no relationship between methylation and gene expression was observed. 
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3.2.1.4 Childhood (5-17) 

 

Figure 45: Scatter plot of probe sites in the CTCF gene of childhood sample 

CG probe ID 
Distance to 
TSS 

insideFeature 
Pearson 
correlation (r) 

Spearman 
correlation (rho) 

cg23858565 -608 upstream 0.15 0.12 

cg07967402 -468 upstream -0.03 -0.05 

cg08324636 -442 upstream 0.15 0.13 

cg06241380 -357 upstream 0.09 0.00 

cg10218542 -326 upstream -0.05 -0.11 

cg04487155 -32 upstream -0.08 -0.05 

cg10481400 126 inside 0.22 0.16 

cg01866162 203 inside -0.20 -0.17 

cg27250362 1005 inside 0.17 0.13 

cg02215945 1063 inside 0.10 0.04 

cg16517579 1832 inside -0.19 -0.26 

cg04545079 3613 inside -0.23 -0.26 

Table 16: Correlation of probe regions in the CTCF gene of childhood samples 

Similar to infants, very week or no correlation of methylation and between gene 

expression in childhood was observed at the stage. 
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3.2.1.5 Early adulthood (18-40) 

 

Figure 46: Scatter plot of probe sites in the CTCF gene of early adulthood samples 

CG probe ID 
Distance to 
TSS 

insideFeature 
Pearson 
correlation (r) 

Spearman 
correlation (rho) 

cg23858565 -608 upstream -0.11 -0.05 

cg07967402 -468 upstream -0.04 0.01 

cg08324636 -442 upstream -0.37 -0.33 

cg06241380 -357 upstream -0.02 -0.02 

cg10218542 -326 upstream -0.04 -0.04 

cg04487155 -32 upstream -0.18 -0.10 

cg10481400 126 inside 0.32 0.34 

cg01866162 203 inside NA NA 

cg27250362 1005 inside -0.45 -0.42 

cg02215945 1063 inside -0.63 -0.58 

cg16517579 1832 inside -0.56 -0.48 

cg04545079 3613 inside -0.69 -0.63 

        Table 17: Correlation of probe regions in the CTCF gene of early adulthood samples 

It was observed that almost all probes showed negative correlation in early adulthood. 
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3.2.1.6 Late Adulthood (41-80) 

 

Figure 47: Scatter plot of probe sites in the CTCF gene of late adulthood samples 

CG probe ID 
Distance to 
TSS 

insideFeature 
Pearson 
correlation (r) 

Spearman 
correlation (rho) 

cg23858565 -608 upstream 0.35 0.40 

cg07967402 -468 upstream 0.69 0.62 

cg08324636 -442 upstream 0.28 0.33 

cg06241380 -357 upstream 0.66 0.66 

cg10218542 -326 upstream 0.71 0.68 

cg04487155 -32 upstream 0.62 0.58 

cg10481400 126 inside NA NA 

cg01866162 203 inside 0.68 0.67 

cg27250362 1005 inside 0.31 0.36 

cg02215945 1063 inside 0.24 0.28 

cg16517579 1832 inside 0.55 0.52 

cg04545079 3613 inside -0.28 -0.28 

Table 18: Correlation of probe regions in the CTCF gene of late adulthood samples 

In late adulthood, unlike early adulthood, almost all probes were found to show a high 

positive correlation. 
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3.2.1.7 Senescence (80+) 

 

Figure 48: Scatter plot of probe sites in the CTCF gene of senescence samples 

CG probe ID 
Distance to 
TSS 

insideFeature 
Pearson 
correlation (r) 

Spearman 
correlation (rho) 

cg23858565 -608 upstream -0.06 0.17 

cg07967402 -468 upstream 0.08 0.26 

cg08324636 -442 upstream 0.00 0.25 

cg06241380 -357 upstream 0.10 0.29 

cg10218542 -326 upstream 0.03 0.26 

cg04487155 -32 upstream -0.03 0.08 

cg10481400 126 inside 0.40 0.61 

cg01866162 203 inside -0.03 0.12 

cg27250362 1005 inside 0.07 0.27 

cg02215945 1063 inside 0.08 0.29 

cg16517579 1832 inside 0.16 0.42 

cg04545079 3613 inside 0.19 0.23 

Table 19: Correlation of probe regions in the CTCF gene of senescence samples 

In senescence samples, weak relationship between methylation and gene expression of 

CTCF gene was observed. 
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3.2.1.8 Numerical summary of development-related correlation results  

A single scatter plot that shows correlation values across all age ranges were created for 

better comparison of all results (Figure 49). In this scatter plot, different displays were 

provided according to the age range, and different colors were provided according to the 

probes. 

 

Figure 49: Scatter plot showing all age categories together 

 

 

Looking at the scatter plot that included all age categories obtained, it was found that 

there was a similar positive correlation in the newborn and late adulthood, and conversely, 

there was a negative correlation in early adulthood. 
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3.2.2 Change of the Methylation Profile of the CTCF Gene in Cancerous Tissues 

and Its Effect on Gene Expression 

 

One of the purpose of this study was to asses the effect of methylation on CTCF 

expression in the context of cancer. To examine whether the methylations in methylation-

specific probe sites had an effect on the CTCF gene, cancer and healthy samples were 

collected for 12 different tissues (for both normal and cancer status): bladder, bone, brain, 

breast, colon, gastric, kidney, liver, lung, pancreas, prostate, and small intestine.  

At least three different datasets were used for each cancer tissue sample, to minimize 

problems that may result from technical errors and to increase the consistency. The 

annotation files, which contain detailed information about which datasets are used and 

detailed information about this data set, has been prepared separately for each tissue group 

and is given in the appendices (Table: B.2.1-B.2.12; Table: B.3.1-B.3.12). 

In the next step, the PCA and heatmap created by using Clustvis online tool will be shown 

first, using methylation data of cancer and healthy tissue types. Then, to evaluate the 

influence of methylations on CTCF gene expression, Pearson and Spearman correlation 

analysis was conducted for each tissue type, first using healthy tissue and then cancerous 

tissue. Correlation analysis results are shown on the scatter plot in the same order. 

In addition, in order to observe the correlation difference between cancerous tissues and 

healthy tissues more clearly, scatter plots showing these two results together were created 

for each tissue type. Then, the difference between healthy and cancerous correlation 

analysis was calculated for each probe region, and both “Pearson correlation difference” 

and “Spearman correlation difference” were shown on the table for each tissue type.  
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3.2.2.1 Colon 

PCA (Figure 50) and heatmap (Figure 51) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 50: PCA of colon methylation data  

 

 
Figure 51: Heatmap of colon methylation data 
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Scatter plots showing correlation analysis of methylation-gene expression data of 

correlation in healthy (Figure 52) and cancerous colon samples (Figure 53) are depicted 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: Scatter plot created using healthy colon data 

 

 

 

Figure 53: Scatter plot created using colon cancer data 
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The scatter plot (Figure 54) and table (Table 20) created to better observe the difference 

between healthy and cancerous tissues are shown below. 

 

Figure 54: Scatter plot showing both healthy and cancerous colon samples 

  
Table 20: Correlation of probe regions in the CTCF gene of colon cancer samples. In 

the columns showing the differences between healthy and cancerous correlation values, 

values exceeding the 0.5 cut-off threshold are highlighted. In both correlation analyzes, 

probes exceeding the cut-off threshold are shown as bold. 

 

Looking at this scatter plot, it seems clear that there is an entirely different correlation in 

cancerous tissue, as cancerous and healthy samples are clustered separately. When the 

Pearson correlation difference was examined, it was seen that 8 probes exceeded the cut-

off threshold, and when the Spearman correlation difference was examined, 4 probes 

exceeded the cut-off threshold. In addition, when probes that exceed the cut-off threshold 

were examined in both correlation analyzes, it was observed that 4 probes exceeded the 

cut-off threshold. 
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3.2.2.2 Bone 

PCA (Figure 55) and heatmap (Figure 56) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

 

 

Figure 55: PCA of bone methylation data 

 

 

 
Figure 56:  Heatmap of bone methylation data  
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Scatter plots showing correlation between methylation and gene expression in healthy 

(Figure 57) and cancerous bone samples (Figure 58) below. 

 

Figure 57: Scatter plot created using healthy bone data 

 

 

Figure 58: Scatter plot created using bone cancer data 

The scatter plot (Figure 59) and table (Table 21) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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                           Figure 59: Scatter plot showing both healthy and cancerous bone samples 

   
Table 21: Correlation of probe regions in the CTCF gene of bone cancer samples. In the 

columns showing the differences between healthy and cancerous correlation values, 

values exceeding the 0.5 cut-off threshold are highlighted. In both correlation analyzes, 

probes exceeding the cut-off threshold are shown as bold. 

While the correlation values of methylation in the CTCF gene in samples taken from 

healthy tissues in the bone appeared around 0, the correlation values were found to be 

high when looking at the cancerous tissue. When the Pearson correlation difference was 

examined, it was seen that 7 probes exceeded the cut-off threshold, and when the 

Spearman correlation difference was examined, 7 probes exceeded the cut-off threshold. 

In addition, when probes that exceed the cut-off threshold were examined in both 

correlation analyzes, it was observed that 5 probes exceeded the cut-off threshold. 
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3.2.2.3 Breast 

PCA (Figure 60) and heatmap (Figure 61) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 60: PCA of breast methylation data  

 
Figure 61: Heatmap of breast methylation data 

 

Scatter plots showing correlation between methylation and gene expression in healthy 

(Figure 62) and cancerous breast samples (Figure 63) are presented below. 
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Figure 62: Scatter plot created using healthy breast data 

 

 

Figure 63: Scatter plot created using breast cancer data 

 

 

The scatter plot (Figure 64) and table (Table 22) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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Figure 64: Scatter plot of probe sites in the CTCF gene of breast cancer and healthy 

samples 

 

Table 22: Correlation of probe regions in the CTCF gene of breast cancer samples. In 

the columns showing the differences between healthy and cancerous correlation values, 

values exceeding the 0.5 cut-off threshold are highlighted. In both correlation analyzes, 

probes exceeding the cut-off threshold are shown as bold. 

It was observed that cancer samples and healthy ones were clustered separately in the 

breast, similar to the colon. In the form of a serious distinction, positive correlation was 

seen in the cancerous tissue, whereas the healthy one had a negative correlation. When 

the Pearson correlation difference was examined, it was seen that 6 probes exceeded the 

cut-off threshold, and when the Spearman correlation difference was examined, 4 probes 

exceeded the cut-off threshold. In addition, when probes that exceed the cut-off threshold 

were examined in both correlation analyzes, it was observed that 4 probes exceeded the 

cut-off threshold. 
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3.2.2.4 Pancreas 

PCA (Figure 65) and heatmap (Figure 66) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 65: PCA of pancreas methylation data 

 
Figure 66: Heatmap of pancreas methylation data 

 

 

Scatter plots showing correlation between methylation and gene expression in healthy 

(Figure 67) and cancerous tissues pancreas samples (Figure 68) are shown below. 
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Figure 67: Scatter plot created using healthy pancreas data 

 

 

 

Figure 68: Scatter plot created using pancreas cancer data 

The scatter plot (Figure 69) and table (Table 23) created to better observe the difference 

between healthy and cancerous pancreas samples are shown below. 
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Figure 69: Scatter plot of probe sites in the CTCF gene of pancreas cancer and healthy 

samples 

Table 23: Correlation of probe regions in the CTCF gene of pancreas cancer samples. In 

the columns showing the differences between healthy and cancerous correlation values, 

values exceeding the 0.5 cut-off threshold are highlighted. In both correlation analyzes, 

probes exceeding the cut-off threshold are shown as bold. 

As in the breast and colon, healthy and cancerous probes were clustered separately. While 

it normally showed a positive correlation, it showed a negative correlation in cancerous 

cells. When the Pearson correlation difference was examined, it was seen that 5 probes 

exceeded the cut-off threshold, and when the Spearman correlation difference was 

examined, 4 probes exceeded the cut-off threshold. In addition, when probes that exceed 

the cut-off threshold were examined in both correlation analyzes, it was observed that 3 

probes exceeded the cut-off threshold. 
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3.2.2.5 Prostate 

PCA (Figure 70) and heatmap (Figure 71) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 70: PCA of prostate methylation data 

 
Figure 71: Heatmap of prostate methylation data 

 

Scatter plot showing outcome of correlation analysis of methylation and gene expression 

in normal (Figure 72) and cancerous prostate samples (Figure 73) are included below. 
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Figure 73: Scatter plot created using prostate cancer data 

 

The scatter plot (Figure 74) and table (Table 24) created to better observe the difference 

between healthy and cancerous prostate samples are shown provided below. 

Figure  72 :  Scatter plot created using healthy prostate data 
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Figure 74: Correlation of probe regions in the CTCF gene of prostate cancer samples 

Table 24: Correlation of probe regions in the CTCF gene of prostate cancer samples. In 

the columns showing the differences between healthy and cancerous correlation values, 

values exceeding the 0.5 cut-off threshold are highlighted. In both correlation analyzes, 

probes exceeding the cut-off threshold are shown as bold. 

Negative correlation was seen in the healthy prostate, while positive correlation was 

observed in prostate cancer. When the Pearson correlation difference was examined, it 

was seen that 5 probes exceeded the cut-off threshold, and when the Spearman correlation 

difference was examined, 5 probes exceeded the cut-off threshold. In addition, when 

probes that exceed the cut-off threshold were examined in both correlation analyzes, it 

was observed that 2 probes exceeded the cut-off threshold. 
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3.2.2.6 Bladder 

PCA (Figure 75) and heatmap (Figure 76) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 75: PCA of bladder methylation data 

 
Figure 76: Heatmap of bladder methylation data  

 

Scatter plots showing results of correlation analysis of methylation and gene expression 

in healthy (Figure 77) and cancerous bladder samples (Figure 78) are shown presented 

below. 
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Figure 77: Scatter plot created using healthy bladder data 

 

Figure 78: Scatter plot created using bladder cancer data 

 

The scatter plot (Figure 79) and table (Table 25) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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Figure 79: Correlation of probe regions in the CTCF gene of bladder cancer samples 

 

Table 25: Correlation of probe regions in the CTCF gene of bladder cancer samples. In 

the columns showing the differences between healthy and cancerous correlation 

values, values exceeding the 0.5 cut-off threshold are highlighted. In both correlation 

analyzes, probes exceeding the cut-off threshold are shown as bold. 

 

When the Pearson correlation difference was examined, it was seen that 3 probes 

exceeded the cut-off threshold, and when the Spearman correlation difference was 

examined, 4 probes exceeded the cut-off threshold. In addition, when probes that exceed 

the cut-off threshold were examined in both correlation analyzes, it was observed that 4 

probes exceeded the cut-off threshold. 
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3.2.2.7 Gastric 

PCA (Figure 80) and heatmap (Figure 81) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 80: PCA of gastric methylation data 

 
Figure 81: Heatmap of gastric methylation data 

 

Scatter plots showing results of correlation analysis of methylation and gene expression 

data of healthy (Figure 82) and cancerous gastric samples (Figure 83) are included 

below. 
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Figure 82: Scatter plot created using healthy gastric data 

 

 

Figure 83: Scatter plot created using gastric cancer data 

 

The scatter plot (Figure 84) and table (Table 26) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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   Figure 84: Correlation of probe regions in the CTCF gene of gastric cancer samples 

Table 26: Correlation of probe regions in the CTCF gene of gastric cancer samples. In 

the columns showing the differences between healthy and cancerous correlation values, 

values exceeding the 0.5 cut-off threshold are highlighted. In both correlation analyzes, 

probes exceeding the cut-off threshold are shown as bold. 

 

When the Pearson correlation difference was examined, it was seen that a probe exceeded 

the cut-off threshold, and when the Spearman correlation difference was examined, 5 

probes exceeded the cut-off threshold. In addition, when probes that exceed the cut-off 

threshold were examined in both correlation analyzes, it was observed that a probe 

exceeded the cut-off threshold. 
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3.2.2.8 Small intestine 

PCA (Figure 85) and heatmap (Figure 86) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 85: PCA of small intestine methylation data 

 
Figure 86: Heatmap of small intestine methylation data 

 

The outcome of correlation analysis of methylation and gene expression data in healthy 

(Figure 87) and cancerous small intestine samples (Figure 88) are presented in the scatter 

plots below. 
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Figure 87: Scatter plot created using healthy small intestine data 

 

 

Figure 88: Scatter plot created using small intestine cancer data 

 

The scatter plot (Figure 89) and table (Table 27) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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Figure 89: Correlation of probe regions in the CTCF gene of small intestine cancer 

samples 

Table 27: Correlation of probe regions in the CTCF gene of small intestine cancer 

samples. In the columns showing the differences between healthy and cancerous 

correlation values, values exceeding the 0.5 cut-off threshold are highlighted 

 

 

When the Pearson correlation difference was examined, it was seen that 2 probes 

exceeded the cut-off threshold, and when the Spearman correlation difference was 

examined, a probe exceeded the cut-off threshold. In addition, when probes exceeding 

the cut-off threshold were examined in both correlation analyzes, it was seen that no probe 

exceeded the cut-off threshold. 
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3.2.2.9 Brain 

PCA (Figure 90) and heatmap (Figure 91) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 90: PCA of brain methylation data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 91: Heatmap of brain methylation data  

 

Scatter plots for correlation analysis of methylation and gene expression in healthy 

(Figure 92) and cancerous brain samples (Figure 93) are provided below. 
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Figure 92: Scatter plot created using healthy brain data 

 

 

Figure 93: Scatter plot created using brain cancer data 

 

The scatter plot (Figure 94) and table (Table 28) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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Figure 94: Correlation of probe regions in the CTCF gene of brain cancer samples 

 
Table 28: Correlation of probe regions in the CTCF gene of brain cancer samples. In the 

columns showing the differences between healthy and cancerous correlation values, 

values exceeding the 0.5 cut-off threshold are highlighted. 

 

When the Pearson correlation difference was examined, it was seen that none of the 

probes exceeded the cut-off threshold, and when the Spearman correlation difference was 

examined, a probe exceeded the cut-off threshold. Therefore, there is no common probe 

crossing the cut-off threshold in both correlation analyzes. 
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3.2.2.10 Kidney 

PCA (Figure 95) and heatmap (Figure 96) created using methylation data of healthy and 

cancerous tissues are shown below. 

 

Figure 95: PCA of kidney methylation data  

 
Figure 96: Heatmap of kidney methylation data  

 

Scatter plots for correlation of methylation and gene expression in healthy (Figure 97) 

and cancerous kidney samples (Figure 98) are provided below. 
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Figure 97: Scatter plot created using healthy kidney data 

 

 

Figure 98: Scatter plot created using kidney cancer data 

 

 

The scatter plot (Figure 99) and table (Figure 29) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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Figure 99: Correlation of probe regions in the CTCF gene of kidney cancer samples 

 

 
Table 29: Correlation of probe regions in the CTCF gene of kidney cancer samples.  

 

When the Pearson and Spearman correlation differences were examined, it was seen that 

none of the probes exceeded the cut-off threshold.  
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3.2.2.11 Liver 

PCA (Figure 100) and heatmap (Figure 101) created using methylation data of healthy 

and cancerous tissues are shown below. 

 

Figure 100: PCA of liver methylation data 

 
Figure 101: Heatmap of liver methylation data 

 

Scatter plots showing results of correlation analysis of methylation and gene expression 

in healthy (Figure 102) and cancerous liver tissues (Figure 103) are provided below. 
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Figure 102: Scatter plot created using healthy liver data 

 

Figure 103: Scatter plot created using liver cancer data 

 

The scatter plot (Figure 104) and table (Table 30) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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Figure 104: Correlation of probe regions in the CTCF gene of liver cancer samples 

 

 
Table 30: Correlation of probe regions in the CTCF gene of liver cancer samples. 

  

When the Pearson and Spearman correlation differences were examined, it was seen that 

none of the probes exceeded the cut-off threshold. 

 

 

 

 

 

 

 

  



101 

3.2.2.12 Lung 

PCA (Figure 105) and heatmap (Figure 106) created using methylation data of healthy 

and cancerous tissues are shown below. 

 

Figure 105: PCA of lung methylation data 

 
Figure 106: Heatmap of lung methylation data  

Scatter plots visualizations of correlation between methylation and gene expression in 

healthy (Figure 107) and cancerous lung samples (Figure 108) are shown below. 



102 

 

Figure 107: Scatter plot created using healthy lung data 

 

 

Figure 108: Scatter plot created using lung cancer data 

The scatter plot (Figure 109) and table (Table 31) created to better observe the difference 

between healthy and cancerous tissues are shown below. 
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Figure 109: Correlation of probe regions in the CTCF gene of lung cancer samples 

 

 
Table 31: Correlation of probe regions in the CTCF gene of lung cancer samples. 

When the Pearson and Spearman correlation differences were examined, it was seen that 

none of the probes exceeded the cut-off threshold.  

3.2.2.13 Numerical summary of differential correlation results 

The final step was to find out in which tissues differential correlation pattern between 

methylation and gene expression of CTCF can be detected. For this, the difference of the 

correlation coefficient in healthy and cancerous samples in the same probe regions was 

calculated. Probes exceeding the 0.5 cut-off threshold were shown in the table 32. 
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Table 32: Probes exceeding 0.5 cut-off threshold for each cancer types. Probes that 

exceed the cut-off threshold in both correlations are shown in bold. 

Tissue CG probe 

ID
Distance to TSS insideFeaturePearson correlation 

difference (r1-r2)

Spearman correlation 

difference (rho1-rho2)

bladder cg04487155 -32 upstream 0.63 0.59

bladder cg06241380 -357 upstream 1.04 0.71

bladder cg07967402 -468 upstream 0.64 0.81

bladder cg10481400 126 inside 0.45 0.53

bone cg01866162 203 inside 0.75 1

bone cg02215945 1063 inside 0.38 0.56

bone cg04487155 -32 upstream 0.77 0.49

bone cg06241380 -357 upstream 0.73 0.54

bone cg08324636 -442 upstream 0.52 0.66

bone cg10218542 -326 upstream 0.75 0.79

bone cg10481400 126 inside 0.16 0.53

bone cg23858565 -608 upstream 0.62 0.7

bone cg27250362 1005 inside 0.52 0.38

brain cg10218542 -326 upstream 0.46 0.52

breast cg04545079 3613 inside 0.83 0.98

breast cg07967402 -468 upstream 0.60 0.48

breast cg08324636 -442 upstream 1.04 1.06

breast cg10481400 126 inside 0.57 0.43

breast cg23858565 -608 upstream 0.74 0.78

breast cg27250362 1005 inside 0.81 0.88

colon cg01866162 203 inside 0.79 0.2

colon cg04487155 -32 upstream 0.72 0.2

colon cg06241380 -357 upstream 0.68 0.59

colon cg08324636 -442 upstream 0.91 0.58

colon cg10218542 -326 upstream 0.55 0.48

colon cg10481400 126 inside 0.91 0.6

colon cg23858565 -608 upstream 0.67 0.48

colon cg27250362 1005 inside 0.88 0.65

gastric cg01866162 203 inside 0.29 0.51

gastric cg04487155 -32 upstream 0.39 0.61

gastric cg06241380 -357 upstream 0.49 0.7

gastric cg07967402 -468 upstream 0.57 0.59

gastric cg10218542 -326 upstream 0.30 0.57

pancreas cg02215945 1063 inside 1.00 0.35

pancreas cg08324636 -442 upstream 0.94 0.6

pancreas cg10218542 -326 upstream 0.47 0.77

pancreas cg10481400 126 inside 0.94 0.67

pancreas cg23858565 -608 upstream 0.62 0.31

pancreas cg27250362 1005 inside 0.87 0.72

prostate cg01866162 203 inside 0.47 1.03

prostate cg04487155 -32 upstream 0.53 1

prostate cg04545079 3613 inside 1.02 0.55

prostate cg10218542 -326 upstream 0.63 0.46

prostate cg10481400 126 inside 0.88 0.4

prostate cg16517579 1832 inside 0.90 0.45

prostate cg23858565 -608 upstream 0.21 0.54

prostate cg27250362 1005 inside 0.08 0.95

small_intestine cg10218542 -326 upstream 0.01 0.5

small_intestine cg10481400 126 inside 0.49 0.8

small_intestine cg23858565 -608 upstream 0.71 0.25

Count Percantage

upstream:
29 %58

inside:
21 %42

Sum
50 100%

upstream: 15 %65

inside: 8 %35

Sum 23 100%

TOTAL 

Probes exceeding 0.5 cut off 

threshold in at least one of the 

correlation types

Probes exceeding 0.5 cut off 

threshold in both correlation 

types
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As a summary of this table, the table (Table 33) showing how many probe regions of each 

tissue type exceed the cut-off threshold is shown below: 

Tissue >0.5_threshold_difference 

bone 5 

colon 4 

breast 4 

pancreas 3 

bladder 3 

prostate 2 

gastric 1 

small_intestine 0 

brain 0 

kidney 0 

liver 0 

lung 0 

Table 33: Probe region number that exceed the cut-off threshold in both types of 

correlation 

CHAPTER 4 

DISCUSSION 

4.1 Mining CTCF Interactome 

In this thesis, the CTCF gene, which is a candidate tumor suppressor gene, was 

investigated using multi-omic data mining. The analysis was performed on three levels, 

of molecular complexity, namely, protein-protein interaction (PPI) interactome, DNA 

methylome and transcriptome (whole genome expression). Conceptually, this work by 

design consists of 2 main components. The first part is about CTCF PPI network analysis 

and the second part is about correlation analysis of methylation and gene expression. 

In the first part, the network of the CTCF gene was examined, with the ultimate goal of 

predicting potential biological role of this gene using the guilt by association paradigm 
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(GBA). The functional role of CTCF was predicted as a result of this conducted network-

based enrichment analysis (overrepresentation of functional annotation terms among the 

genes comprising the network).  

According to the literature screen, which was performed by the author, this thesis is the 

first such effort to examine CTCF's PPI network in the context of cancer. More 

specifically, the interactome level data mining addressed the long standing question about 

the candidate tumor suppressor CTCF from the perspective of its interaction partners 

based on the employed GBA approach. By and large, this is the most comprehensive 

scientific inquiry on the CTCF interactome until now. Particularly, the novelty is also 

underlined by the employed GBA approach.  

Accordingly, to determine the potential roles of CTCF and to create a roadmap for the 

data to be selected in the next step, Cytoscape which is the most frequently used tool for 

network analysis, was used.  

The searched and retrieved nodes (protein interaction partners) and edges (interactions) 

of the CTCF protein were used to reconstruct the CTCF PPI network. Interactions among 

the interaction partners were also obtained and included in the network to enable a more 

complete and mechanistic overview of the network. Accordingly, a network comprising 

21 nodes and 83 edges was reconstructed (Table 2). NetworkAnalyzer plugin was used 

to calculate the relationship of genes in this network with CTCF, and the results were 

sorted according to degree value with cytoHubba plugin and top10 related gene was 

determined: SMAD binding family (SMAD4, SMAD5, SMAD6, SMAD1), ZMYM2, 

NPM1, ADNP, YBX1, SET (Figure 11) Then, using the MCODE plugin, the 

overrepresented clusters in this network, which are closely related to each other, were 

determined according to their topology values. According to this result, this network 

basically consists of 2 clusters: the 1st cluster (Table 5) with SMAD binding family 

members and the 2nd cluster consisting of 8 nodes including CTCF (Table 6). 

The functional annotation roles of the SMAD genes in the 1st cluster generally contain 

the receptors involved in signal transmission. Especially TGFβ (transforming growth 

factor beta) receptor has been observed as the pathway in which they play a primary role 

in all SMAD genes. TGFβ is a growth factor and cytokine and is involved in paracrine 

signaling. It appears to be found in many different types of tissue, especially in the brain, 

heart, kidney, liver, bone, and testicles. High expression of TGFβ was previously shown 

to be associated with kidney diseases [99]. Based on this information, according to the 
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GBA approach, it is thought that CTCF, which appears to be in close relationship with 

the genes involved in these pathways, can also take part in these pathways. For this, tissue 

types specified to contain TGFβ mentioned above, will be examined in the next 

correlation stage of this study. 

In addition to this pathway, BMP signaling pathway (Bone morphogenetic proteins), 

which is a member of TGFβ, also appeared to be annotated. Based on this, bone samples 

will be examined in the next stage. 

In the 2nd cluster, the pathways that generally concern the structural formation of 

chromatin are annotated. These genes, including CTCF, participate in the nucleosome 

organization and function in chromatin assembly or disassembly. Thus, it appeared to be 

critical for the gene expression control. 

In addition to these, when another result found to be annotated, "post-transcriptional 

regulation", is examined, it is seen that the genes in this cluster also play a role in this 

mechanism in which RNA polymerase II regulates gene expression by binding to the 

promoter of the gene at the transcription stage. Based on this, we can say that the cluster 

mainly contains genes involved in the regulation of gene expression. In this case, 

according to the GBA approach, CTCF is also thought to play a role in these pathways, 

and appropriate data have been selected to test this in the next stage. 

Using a Gene Ontology (GO) source, a Cytoscape plugin GOlorize that enables the study 

of genes and gene products functions, was used to perform functional annotation of this 

network. The GO source basically includes 3 main domains: Cellular component (CC), 

which examines the cell and its extracellular environment, the molecular function (MF), 

which examines the activities of gene products at the molecular level, and finally the 

Biological process (BP), which studies the functioning of molecular events that have a 

beginning and an end [100].  

Among the overrepresented GO categories in this network, the first annotation was 

performed using the BP domain, and the results obtained were ranked as including the 

highest grades. As a result 5 GO categories were specified, these are respectively; 

“regulation of transforming growth factor beta receptor signaling pathway”, “chromatin 

assembly or disassembly”, “BMP signaling pathway”, “regulation of histone acetylation”, 

“regulation of cell death”. Looking at these results, it was seen that the first 3 annotations 

results were the same with the annotations in the clusters in the MCODE, which is of 
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great importance for the consistency of the results. When the 4th highly annotated 

category was examined, it was seen that acetylation, which is an epigenetic regulation 

mechanism, is similarly involved in the regulation of chromatin and indirectly in the 

regulation of gene expression. This result supports the importance of using methylation 

which is another important epigenetic mechanism in this study. 

The regulation of cell death, the last category of the 5 most annotated GO-BP domains, is 

a pathway that plays a very important role in cancer. Since we are working on CTCF, 

which is thought to be a tumor suppressor gene, finding that the genes with which it is 

closely related play such a vital biological role, supports the idea of CTCF's association 

with cancer. 

A second annotation was performed using the GO-MF domain, and the results obtained 

were ranked as including the highest grades. As a result 5 GO categories were specified, 

these are respectively; “binding”, “nucleic acid binding”, “DNA binding”, “transcription 

regulator activity”, “protein binding”. As can be seen from the results, the most important 

annotation results are the binding functions. These DNA binders include transcription 

factors that modulate transcription, various polymerases, histones that participate in 

packaging the chromosome. Looking at the transcription regulatory activity, another 

result of these annotation results, we can say that the molecular functions of genes in this 

network are effective regulators at the transcription level in general. 

Similarly, annotation analysis is performed using the GO source using the licensed tool 

ClueGO, which is another Cytoscape plugin. However, similar results are fused and 

displayed in a single category in this plug-in in order to prevent similar results from being 

displayed more than once, as in the GO-MF analysis conducted in GOlorize, and thus to 

give the most important biological roles in the network as a comprehensive summary. 

First, an annotation analysis by selecting GO BP and MF domain together was performed 

by using ClueGO plugin. A network of 2 different clusters was obtained and the most 

significant results were determined as group names: regulation of protein acetylation and 

SMAD binding. Similar to the result of GO-BP analysis obtained using GOlorize before, 

the first group consists of protein acetylation, histone acetylation, peptidyl-lysine 

acetylation, which are an epigenetic regulation mechanism. When looking at the barchart 

showing the detailed annotation values of the genes involved in these functions and which 

genes are involved in the specified pathways, it was seen that the CTCF, SET and SMAD4 

genes were involved in this acetylation mechanism. 
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The second group name, SMAD binding, is the only result generated term in these results 

using the MF domain. The reason for this is that the significant results obtained with MF 

are very similar to each other, so they may be fused. When the genes involved in this 

group are examined, as the name suggests, there are SMAD 1, 4 and 6 from the SMAD 

binding family. Looking at another annotated term in which these genes are involved, it 

was seen that the entire SMAD binding family was involved in the embryonic pattern 

specification. Based on the GBA approach, in order to examine whether CTCF, which 

works with genes that play an effective role in the embryonic development process, has 

an effect on this developmental process, a detailed examination of the change of CTCF 

in the developmental process has been carried out in the next step of this thesis. 

As other annotation results, it has been observed that there are pathways that function 

with RNA polymerase II and thus are effective in the regulation of transcription. One of 

these is transcribing miRNAs that play a role in regulating gene expression by processing 

pri mRNAs with RNA polymerase II. The other is the positive regulation of transcription 

from the RNA polymerase II promoter involved in the cellular response to chemical 

stimulus. Genes involved in these functional pathways: SMAD family and POU5F1 gene. 

The fact that genes in this network are generally effective in regulating transcription 

suggests that CTCF may also have this biological role. 

In addition to the GO source, annotation analysis was performed with the Reactome 

pathway option using the ClueGO plugin. 4 different clusters were obtained and the most 

significant terms were determined as the group name.  

Looking at the group names and the genes that play a role in this pathway, it seems that 

there are members of the SMAD binding family. In particular, when the signaling by 

BMP and RUNX2 regulates bone development pathways were examined, it was seen that 

SMAD1 and SMAD4 genes formed a complex with the RUNX2 gene in the nucleus as 

response to the BMP signalling and induced SMAD6 transcription. In this way, the 

development of intramembranous and endochondral bones is provided [101]. Based on 

the idea that CTCF, which is closely related to SMAD binding genes, may play an 

important role in bone development, bone tissue was selected as one of the primary 

investigations in this study. 

When looking at the other Reactome results, it was seen that the members of the SMAD 

binding family play a role in the BMP signal transmission pathway and form the 
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necessary complexes to ensure (Phospho-R-Smad1/5/8 complex [102]) or prevent (SKI 

complex, Ubiquitin-dependent [103]) this transmission. 

ReactomeFI plugin was used to increase the accuracy of these Reactome pathway 

annotations and to examine the main pathways to which they are connected. Among the 

obtained results, those with FDR value less than 0.05 were selected as cut-off threshold. 

Accordingly 5 results were obtained respectively; Transcriptional regulation of 

pluripotent stem cells, Transcriptional regulation by RUNX2, Signaling by TGF-beta 

family members, Signaling by BMP, RUNX2 regulates bone development.  

Considering these results, it was seen that the results were consistent and the same 

categories were annotated with the results obtained using ClueGO and MCODE. To 

summarize all the results, this network consists of 3 main domains; developmental 

biology, gene expression regulation, and signal transduction. It has been observed that 

they are enriched especially in signal transduction pathway necessary for bone 

development. Through this plugin, it is also possible to visualize the gene complexes 

involved in these pathways. 

In order to increase the accuracy of the results and highlight the missing points, online 

annotation tools have been used as a complementary second step of network analysis. 

Webgestalt was used first for this. Unlike other Cytoscape plugins, this tool automatically 

colors the results according to FDR values and uses high visualization techniques such as 

Volcano plot. First, overrepresentation analysis was performed using the GO source as 

previous. When the GO-BP result is examined, the results are very similar to the results 

obtained with other Cytoscape plugins. In addition as stated above, the results are shown 

on the barchart to be significant according to the FDR values. Accordingly, the most 

significant result is “positive regulation of transcription from RNA polymerase II 

promoter involved in cellular response to chemical stimulus”. In addition to the previous 

results, the result of urogenital system development was also obtained, but when the FDR 

value is considered, it can be said that it is less reliable than other terms because it is 

greater than 0.05. 

When the GO-MF results obtained using Webgestalt were examined, it was shown that 

the FDR values of all results were less than 0.05. This explains why ClueGO shows only 

one MF result which is SMAD binding. When these results were examined, like the 

previous results it was seen that binding and acetylation regulation were obtained in 

general, however their reliability was not as high as those in BP. 
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When Cellular Component was used at the end of the GO categories, it was seen that the 

FDR value of only one term was significant which is transcription factor complex. It can 

be said that this result is consistent as it contains the transcription regulatory complex 

similar to the results obtained with BP. The methyltransferase complex, which is 

observed as another remarkable result, seems to be an important inference since 

methylation will be used as a basis in this study. However, it cannot be said to be precise 

since the FDR value is greater than cut-off threshold. 

In addition to GO source overrepresentation analysis was performed using KEGG 

pathway by using Webgestalt. Looking at the results, it was observed that the signaling 

pathways were generally enriched. However, only 2 results were obtained significant 

which are TGFβ signaling pathway and signaling pathways regulating pluripotency of 

stem cells. Similar to other results, it has been observed that pathyways that are involved 

in developmental biology are annotated. In addition, although the FDR value was greater 

than the cut-off threshold, pancreatic cancer, colorectal cancer and gastric cancer were 

also annotated as a remarkable result. Since the tumor suppressor gene characteristic of 

CTCF will be tested in this study, these tissues are included among the primary tissues to 

be examined, just like bone. 

According to the result obtained using the Reactome pathway by using Webgestalt, 3 

pathways appeared to be significant which are “Signaling by BMP, RUNX2 regulates 

bone development, Signaling by TGFβ family members”. It can be said that the reliability 

of these results is very high because they both merge with the results obtained before and 

FDR values are also tested with this tool. 

According to the annotation results created using the Wikipathway database, which is a 

database that is not available in other tools, only one significant result was obtained which 

is TGFβ receptor signaling. Looking at other results, an interesting result was the 

pancreatic adenocarcinoma pathway, however the significance of this result is low 

because the FDR value cannot exceed the cut-off threshold. Nevertheless, as in the other 

results, pancreatic tissue was used as the primary research tissue in this study. 

A similar study was conducted using the Babelomics online tool. As a result, annotation 

of 5 different categories was obtained using GO-BP: “protein complex subunit 

organization”, “cellular component assembly”, “macromolecular complex assembly”, 

“cellular component biogenesis”, and “macromolecular complex subunit organization”. 

In general, when the results were examined, it was seen that similarly, the regulation of 
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binding and the formation of the structure of chromatin and thus, they took part in the 

complex structure organizations that regulate the control of gene expression. 

As a final online tool DAVID was used. Three categories were obtained when 

significance highest was selected. When the results were examined, it was seen that 

similar results were obtained such as “BMP signaling pathway”, “growth factor beta 

signaling pathway”, “cellular response via RNA polymerase II against chemical 

stimulus”. Therefore, in the second stage of this study, the change of CTCF in the 

developmental process, and in the formation of cancer and some diseases, which was 

determined by the GBA approach, was examined. 

The CellWhere online tool was used to find out where genes in this network play a role 

in metabolism. As a result, it has been observed that the CTCF is involved in the 

nucleolus, and the genes with which it is closely related are in the nucleus. 

4.2 Methylome and Transcriptome-driven Data Analysis 

Being a multi-omic effort, this thesis also deals with the epigenomic and transcriptomic 

aspects of the CTCF biology. The relationship between methylation and expression of 

genes is a long studied topic, which is usually researched only using methylation and gene 

expression levels, without considering other remaining possible factors. In contrast to 

previous approaches, this is the first study to take importantly into accounts location of 

methylation sites (distance from TSS) and compare various biological contexts, while 

examining relationship between CTCF methylation and its expression. In another words, 

the originality derives from including specifics of methylation sites and tissue specific 

differences in the analysis. Originality also comes from each methylation sites 

independently, instead of putting all of them into one bin. Consequently, instead of the 

averages, the site-level resolution was achieved. All together, this unique level of 

elaboration and scrutiny distinguishes this work from previous studies. 

The second stage of this thesis; deals with combined analysis of methylome and 

transcriptome. Here, the question of candidate tumor suppressor protein candidacy of 

CTCF is approached by adopting an integrated perspective, which attempts to link 

methylation with gene expression. To this end, correlation between methylation level and 

gene expression data (mRNA level) of CTCF was assessed in multiple biological 

contexts. With the purpose of this integrative analysis, the methylation and gene 

expression datasets, matching same samples, were selected as input. The data was divided 
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into the following categorizes: developmental process (spanning 7 different age ranges) 

and cancer (consisting of 12 different types). Each category was analyzed separately, in 

order to gain a detailed insight into the underlying molecular biology. 

 

 

4.2.1 Development-related methylation-gene expression correlation analysis 

Firstly the dependence of CTCF methylation to gene expression in the developmental 

process was measured by Pearson and Spearman correlation method. For this purpose, 7 

different age ranges have been studied separately in order to examine the change of CTCF 

methylation at each development stage. In this regard, the lifespan was divided into the 

following categories: fetal, newborn, infancy, childhood (5-17), early adulthood (18-40), 

late adulthood (41-80) and senescence (80+). 

In this study, unlike previous studies, the methylation level of CTCF was performed 

represented not by a single value, but by all probe regions located 5 kb upstream and 

downstream of the CTCF's TSS point. As a result, a total of 12 methylation-specific probe 

sites were determined and demarcated. Half of them were located in the upstream region 

of the CTCF gene and the remaining half were located inside of the gene. When the fetal 

result was examined in general, it was seen that the correlation level was obtained as ~0 

values. Based on this, it can be inferred that methylation of CTCF at the embryonic stage 

has no significant effect on gene expression. However, this initial observation should be 

viewed as rather preliminary result and interpreted with caution due to the following 

limitations in the input data. First of all, when during the inspection of “fetal samples” 

result, which comprised the correlation level of methylation and gene expression based 

on the 3 matched biological samples (corresponding to 3 data point), it was noticed that 

correlation could not be calculated for 5 probe regions. This is because the records 

corresponding to some probes in methylation input data contained “NA” (abbreviation 

for Not Applicable) instead of values. Furthermore, the number of analyzed samples was 

too limited, as result of the scarcity of fetal samples in the data sets. Thus, in order to 

reach a clear conclusion, a follow-up study using a larger sample size is necessary to 

confirm the accuracy of the result and arrive to a solid conclusions. When focusing on the 

newborns-related, correlation appears to be remarkably highly positive. To be more 

specific, the correlation was found to be close to 0.8 in almost all probe regions. In another 

words, gene expression tends to increase with the rising methylation. Based on this, it can 
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concluded that methylation importantly CTCF gene, is thought to play role in 

developmental biology.  

In the infant-related results, the correlation level was obtained as approximately 0. This 

findings suggests similarity to the fetal-related correlation pattern. Thus, for the inspected 

probes, methylation and gene expression appear to be unrelated in these two stages.  

Inspection of correlation scatter plot, which was generated using childhood data, revealed 

resemblance with the infant-related results. The correlation were weak (0-0.5), both 

negative and positive correlations were observed (with coefficients around 0.25). 

In sharp contrast to newborn, negative correlation between methylation and gene 

expression was observed in early adulthood. In another words, this observation (negative 

correlation) was quite opposite of to the mentioned finding (positive correlation) in 

newborn. Thus, apparently depending on the tissue type, two opposite effects of 

methylation on gene expression is possible. Moreover, methylations of the analyzed 

probe sites seems to have different effects on CTCF expression in across the studied age 

ranges of development. Remarkably, in early adulthood, negative correlation was 

detected for all investigated probe regions. Therefore, increase in the methylation of the 

investigated probes seems to consistently cause a decrease in CTCF gene expression at 

this developmental stage. Importantly, strong negative correlation was observed 

especially in the probe regions within the CTCF gene.  

Interestingly, a positive correlation was observed in late adulthood with a correlation 

profile similar to that in newborn. High positive correlation appears to be particularly in 

probes located in the upstream region. Based on this, it can be interpreted that the 

methylation profile of CTCF in the early stages of aging is very similar to the methylation 

profile in neonates. 

When the scatter plot of senescence samples was examined, it was observed that the 

correlation was low. However, although the values were low, there was a positive 

correlation. This methylation profile is also similar to that of the infant. Based on this, it 

can be assumed that CTCF plays an active role in the period when development or aging 

is active, metabolism is in high change, and it is more passive in other developmental 

stages. 

In the scatter plot created to better compare all results, especially when the values above 

0.4 were examined, it was seen that the CTCF profile was very similar in newborns and 

in late adulthood. In the early adulthood period, on the contrary, a high negative 

correlation was observed. 
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4.2.2 Cancer-related methylation-gene expression correlation analysis 

Secondly a similar comparison of methylation and gene expression correlations was 

carried out using cancer and healthy tissues.  Based on the integrated analysis approach, 

12 different cancer tissues have been used to test the hypothesis that CTCF can be 

effective role in cancer pathways.  

Bone, pancreas, gastric, colorectal which are determined by network analysis as the main 

research subject; In addition to these, the data of bladder, brain, breast, colon, kidney, 

liver, lung, prostate, and small intestine tissues were examined. 

Correlations of methylation and gene expression of colon samples were calculated for 

each probe in both cancerous samples and healthy samples, and red ellipses were shown 

as cancer and blue triangles as correlation values of healthy samples on the scatter plot. 

When this scatter plot was examined, a high positive correlation was observed in almost 

all probes in healthy samples, and a negative correlation was observed in cancerous 

samples. Based on this, it can be said that the CTCF methylation profile in colon cancer 

has completely changed and this caused the tissue to become cancerous. 

Similar results were obtained in the literature review of colon cancer, which was found as 

a result of annotation in the network analysis. In a study conducted in August 2020 [104], 

it was emphasized that overexpression of CTCF causes colorectal cancer. When we look 

at our results, the negative correlation in cancerous samples can be explained by the 

increase in gene expression due to low methylation, and consequently, overexpressed 

CTCF causes cancer. Similarly, in a study conducted in 2017 ([105], 5 regions in CTCF 

for colorectal cancer were identified as methylation specific biomarkers. In addition to 

this study, 4 biomarker regions can be used for colorectal cancer with the results obtained 

from this thesis. 

When correlation analysis was performed with bone data, another primary examination 

tissue, the results appeared to be completely different in cancerous tissues as expected. 

Although it cannot be said that there is a positive or negative correlation in the cancer 

patient, it is clear that a correlation appears to be the opposite of the healthy one. These 

results have proven that CTCF, which is a part of the network that is effective in bone 

development, also plays an active role in this pathway. 

The literature review, performed by the author of this thesis in order to interpret the 

results, highlights a demonstrated relationship between CTCF and osteosarcoma based 

on previous studies. Interestingly, CTCF was shown to function together with genes that 
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play a role in osteosarcoma formation, especially insulin-like growth factor 2 (IGF2) and 

H19 imprinted maternally expressed transcript (H19) [106]. Similarly, a study conducted 

in 2018 found that the change in the expression of the Glutamate metabotropic receptor 

4 (GRM4) gene is associated with osteosarcoma and that CTCF is influences regulate of 

this gene’s transcription [107]. However, previous studies have not specifically studied 

CTCF cooperates with. Accordingly, the following novel insight from this thesis was 

gained into this cancer type:  a total of 5 methylation probe sites in the CTCF gene can 

be used as biomarkers for osteosarcoma. 

Similar to colon and bone, another tissue type that manifests high alteration in terms of 

correlation between cancer and healthy tissue is breast. Combined breast tissue 

correlation scatter plot, which contains levels for both normal and cancer tissues, 

distinguishes cancerous samples from healthy samples. In another words, samples are to 

certain extend visually grouped together based on their cancer status (normal vs cancer). 

Such separation is accompanied by an overall difference in the correlation direction: 

cancerous tissues display positive correlation and healthy samples negative correlation. 

Thus, the relationship between methylation and gene expressions seems to differs 

between the normal breast tissue and cancer breast tissue. This is a demonstration for the 

phenomenon, which is referred to as “differential correlation pattern”. 

The literature was reviewed in order to interpret this result, CTCF has been shown to play 

a role in breast cancer based on its association with the Bax gene [108]. In a study 

conducted in 2017, it was found that activation of p53 in CTCF knockdown mice 

increased p21 and Bax expressions and this was found to be effective in breast cancer 

[109]. In the light of the results found in this thesis, it has been shown that 4 probe sites 

on CTCF can be used as breast cancer biomarkers. 

When the results of pancreas, which is one of the primary research tissues as a result of 

network analysis, were examined, it was observed that healthy and cancerous samples 

were clustered together, just like breast cancer. There was a high positive correlation in 

healthy tissues and a negative correlation in cancer patients. When a detailed literature 

review was performed, it was shown that CTCF was not directly associated with 

pancreatic cancer. Nonetheless, genes thought to be working together with CTCF were 

associated with pancreatic cancer [110].  

Based on these results, it can be said that CTCF acts as a tumor suppressor gene in 

pancreatic tissue, where its gene expression appears to be negatively correlated with 

methylation. As such, this thesis may be a pioneering study in inking CTCF to pancreatic 
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cancer. A total of 3 methyl specific probe regions on CTCF can be used as a pancreatic 

cancer biomarker. 

When the prostate data were examined, it could not be said that there was a positive or 

negative correlation in cancerous cells, but when compared with healthy results, it 

appeared to be an opposite correlation value. Generally, there was a negative correlation 

in healthy tissues. When a detailed literature review was performed, it was found that 

there is hypermethylation in the cancerous prostate tissue and therefore there is low 

expression of CTCF gene [111]. On the contrary in this study, it was found that CTCF 

was already low-expressed in normal tissues, and the opposite it was overexpressed in 

cancerous tissues. As a feature that distinguishes this thesis from previous studies, since 

its effect on gene expression can be examined more easily due to the fact that methylation 

alone was not examined, it was possible to examine genes that are normally upregulated 

or downregulated.  

Similar to the results in this study, the result that CTCF is upregulated in prostate cancer 

was shown in a study conducted in January 2020 [112]. However, although it was stated 

in this study that it could not be used as a powerful biomarker, in our study, 2 methylation-

specific prostate cancer biomarkers on CTCF were found that could properly discriminate 

the cancerous tissue, since probe regions was examined separately in our study. 

Similar to the prostate cancer in the bladder results, it was observed that there was a 

negative correlation in healthy tissues, and a positive correlation in cancer patients. 

When the literature searched, it was seen that there were very few studies on this subject. 

Only a study conducted in 2001 showed that there is an upregulation of CTCF in bladder 

cancer due to hypomethylation on CTCF [113]. There are not as many Noticeably, less 

candidate biomarker probe sites in were identified in the bladder when compared to the 

prostate. To be precise, only 3 methylation-specific probe sites have been identified as 

bladder cancer biomarkers. 

When the gastric cancer result was examined, it was observed that there was a negative 

correlation in healthy tissues (similar to bladder and prostate) in the scatter plot and a 

positive correlation in cancers. However, when the correlation values were examined, it 

was thought that it would not be appropriate to use it to make a strong distinction because 

they were very low. A strong cancerous tissue separation can be made with more than 0.5 

in only 1 probe area. Therefore only one probe site can be used as a biomarker. In the 

literature review, only one related article could be found, and it was stated without any 

detail that dysregulation of CTCF may cause gastrointestinal tumor [114]. 
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When the small intestine results were examined, it was seen that there were similar 

correlation values in generally cancerous and healthy tissues. Only one probe located in 

the upstream region appears to possess a discriminatory feature. 

Similarly, correlation values in brain, kidney, liver and lung were very close to each other 

in healthy and cancerous samples, so no distinction could be made. Although there are 

studies in the literature showing that there is cancer in brain tumors due to downregulation 

of CTCF [115], such a result was not obtained in our study. However, it should not be 

forgotten that although different studies are collected to increase the accuracy and a large 

number of samples are studied, since these results are obtained based on the data used, 

there may be a possibility of deviation in the results when using different samples. 

 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

CTCF is widely known as “master weaver of the genome” due to its role in chromatin 

organization as an architectural protein. The involvement of this protein has remained as 

an interesting open question. The current literature and genetic databases only loosely 

links CTCF gene to cancer as a candidate tumor suppressor gene. This inconclusive 

situation is mainly due to the lack of experimental findings with conclusive evidence. The 

complex nature of this multi functional protein and myriad of DNA bindings sites makes 

the issue even more complicated. This work aim to approach the issue of CTCF tumor 

suppressor candidacy. One of the benefits of data mining techniques is their power in 

extracting interesting patterns from the data, which otherwise remain elusive. To meet 

that objective in this effort, two approaches were employed with this purpose: the GBA 

approach for in-depth interactomics data mining (based mainly on topology based 

clustering and functional annotation-based over representation analysis) and the 

integrative approach for combined methylome and transcriptome data-mining (based 

mainly on correlation analysis and taking into account distances from the transcription 

start site). While the former aimed to detect functionally-relevant patterns in the 

interaction network, the latter concentrated on identifying methylation-gene expression 
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correlation patterns in diverse tissues/conditions. To the best of the authors knowledge, 

the accomplished network analysis is the most comprehensive study on the CTCF 

interactome up to date. Furthermore, it is the first cancer-focused interactomics study on 

CTCF. The overrepresentation analysis, based on functional enrichment tests, put the 

reconstructed network and the unraveled two functional modules into a mechanistic 

context. Remarkably cancer-related function annotation terms, such as “Signaling by 

TGF-beta family members pathway (Reactome Pathway)”, “SMAD Binding (GO-MF)” 

and “TGF-beta Receptor Signaling (Wiki cancer pathway)” were enriched in one for the 

modules. This finding highlight the potential cancer context and relevance of the 

reconstructed network and implicates CTCF in cancer by means of the GBA approach. 

Remarkably, this result also suggest that CTCF’s involvement in cancer may be mediated 

by the SMAD proteins. This observation was obtained by multiple bioinformatics tools, 

which increases the confidence on the obtained results. The described network is an 

important step towards more sophisticated interactomics studies. Especially the validation 

and in-depth elucidation of the SMADS-related functional module, using wet lab 

characterization studies, is of great importance. 

The link between CTCF methylation and CTCF gene expression was studied separately 

in two biological contexts, namely, development and cancer. Two correlation methods, 

namely Pearson correlation and Spearman correlation used to compute the correlation 

coefficients. Only consensus results (when both coefficients are higher than 0.5) were 

considered as substantial and regarded as influential (impacting mRNA level). This level 

of scrutiny adds novelty to this work and enhances the outcome. The first step in 

integrated methylation and expression data analysis was to investigate the possible effect 

of CTCF in developmental biology, by focusing on the specific age ranges. As result of 

the carried out research, similar probe-level (methylation site-related) CTCF correlation 

patterns was observed especially in newborns and late adulthood. Such similar patterns 

apparently reflect commonalities between the CTCF activity in the two developmental 

stages, when compared to other investigated stages. Concordantly, these results suggest 

that this gene could be functioning especially in the early stages of development and 

aging. Subsequently, comparison of the methylation and expression CTCF correlation 

patterns between normal and cancer status of the same tissues types, highlight 

considerable probe-level differential correlation pattern (which indicates differential 

regulation of CTCF activity) in the following cancer types: osteosarcoma, colorectal, 
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breast, pancreatic, bladder, and prostate. While some CTCF-associated methylated sites 

were observed to be positively correlated in colorectal and pancreatic tissues (with normal 

status), the same sites appears to be negatively correlated in the cancer counterparts, 

meaning that gene expression decreases with methylation of this sites in these cancerous 

tissues. In the latter, methylation supposedly results into reduction of gene expression, 

which is evident from the lower mRNA levels. Based on this, CTCF’s regulation 

mechanism could be different between some cancer and normal condition at least for 

some distinct tissue types. On the contrary, certain CTCF-related methylation site were 

observed to be negatively correlated in bone, breast, prostate and bladder tissues (all with 

normal status), but positively correlated in the respective cancer tissues counterparts. 

Based on this, it can be concluded that methylation in these cancer tissues results into 

CTCF over-expression (Table 32). In sum such differential correlation patterns could be 

underlying separate regulatory mechanisms for regulating CTCF activity between normal 

and cancer tissues. Such a regulatory remodeling, in its turn, hints fort CTCF’s supposed 

tumor suppressor role. Since probe-level analysis was preferred over averaging of probe 

values (as a summary gene methylation level), the overall differential correlation pattern 

(for all probes at once) remains unknown. Consequently, more work is needed to 

confidently conclude whether CTCF is a differentially correlated gene (DCG) or not. 

Thus, this report can be regarded as a initial effort in this new exciting direction. 

Importantly, the results demonstrated the of the employed multi-omics data mining 

approach. To this end, potential novel DNA methylation biomarkers for cancer have been 

identified in each mentioned step of the accomplished integrated analysis. Relatedly, the 

differential correlation patterns can be explored further as DNA methylation signatures. 

In future studies, wet lab experiments, focusing on the highlighted methylation specific 

probe regions, will be helpful in confirming the accuracy of obtained data mining results 

and for validating the made predictions. Overall, the undertaken pioneering line of action, 

demonstrated the applicability of the employed approach, complemented previous 

findings, and yielded novel insights into the tumor suppressor candidacy of CTCF. The 

methodology can be extended into a broader workflows and frameworks. Additionally, it 

can be applied to other candidate tumor suppressor genes and other cancer types. As such, 

this work is a step towards more advanced data mining approaches, which are required 

for a broader elucidation of the putative CTCF tumor activity function. Future progress 

in the analytical tools for multi-omics, combined with the growing amount of biomedical 
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data, is expected to pave the way for unraveling the molecular mechanisms, which 

underlie activity of the multifunctional protein CTCF in health and disease. 
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Appendix 

Appendix A 

Numerical Summary of the Literature Related with the Candidate Tumor 

Suppressor Gene CTCF 

 

Year Specific year Average 
Running 
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Cumulative sum 
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Table A.1: Numerical Summary of the Literature Related with the Candidate Tumor 

Suppressor Gene CTCF. Table shows the yearly number, average (arithmetic mean), 

running average and cumulative sum of the number of publications, related to the CTCF 

tumor suppressor gene, in the NCBI Pubmed database 

(https://pubmed.ncbi.nlm.nih.gov/). Numbers were obtained by a simple search (using 

default options) using the query term “tumor suppressor CTCF”. The yearly 

chronological record covers the timeline 1998 and 2019. 
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A B 

 

Figure A.1: Growing Body of the Literature Related with the Candidate Tumor 

Suppressor Gene CTCF. The figure is based on the data, presented in the Table A.1. A. 

Number of publication per year. In addition to the number of yearly publications, the 

average, the running average and the trend line (linear fit for the number of yearly 

publications) are shown. B.  Cumulative sum of publication per year. 

 

Appendix B 

B.1 Annotation for the Selected Development-related CTCF Microarray Samples 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Age range Cell type Selected file type 

2016 GSE79056 Methylation 36 36 fetal cord blood Series matix file (TXT) 

2018 GSE100197 Methylation 41 102 fetal Placental Tissue Cod whole 

blood  
Series matix file (TXT) 

2015 GSE74738 Methylation 21 79 fetal Placental chronic villi Series matix file (TXT) 

2008 GSE9984 Gene_expression 12 12 fetal Placental Tissue Series matix file (TXT) 

2015 GSE60403 Gene_expression 16 16 fetal cord blood Series matix file (TXT) 

2016 GSE83556 Gene_expression 18 40 fetal amniotic fluid Series matix file (TXT) 

2013 GSE48521 Gene_expression 16 16 fetal cell free mRNA Series matix file (TXT) 

2017 GSE101141 Gene_expression 20 20 fetal cell free mRNA  
amniotic fluid 

Series matix file (TXT) 

2017 GSE86171 Gene_expression 16 16 fetal villus cytotrophoblast Series matix file (TXT) 

Table B.1.1: Description of the selected microarray datasets of fetal samples 
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Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Age range Cell type Selected file type 

2019 GSE129841 Methylation 40 114 newborn cord blood Series matix file (TXT) 

2014 GSE62924 Methylation 20 38 newborn cord blood Series matix file (TXT) 

2012 GSE30870 Methylation 20 40 newborn cord blood Series matix file (TXT) 

2017 GSE3240 Gene_expression 29 29 newborn cord blood Series matix file (TXT) 

2012 GSE82155 Gene_expression 11 46 newborn epicardial adipose tissue Series matix file (TXT) 

2012 GSE35683 Gene_expression 30 30 newborn umbilical cord blood Series matix file (TXT) 

2012 GSE39840 Gene_expression 10 20 newborn umbilical cord blood Series matix file (TXT) 

Table B.1.2: Description of the selected microarray datasets of newborn samples 

 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Age range Cell type Selected file type 

2015 GSE64495 Methylation 6 113 infant whole blood Series matix file (TXT) 

2014 GSE60598 Methylation 29 43 infant whole blood Series matix file (TXT) 

2015 GSE67444 Methylation 25 70 infant whole blood Series matix file (TXT) 

2011 GSE26378 Gene_expression 15 103 infant whole blood Series matix file (TXT) 

2012 GSE32140 Gene_expression 22 147 infant whole blood Series matix file (TXT) 

2011 GSE26440 Gene_expression 23 130 infant whole blood Series matix file (TXT) 

Table B.1.3: Description of the selected microarray datasets of infant samples 

 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Age range Cell type Selected file type 

2017 GSE104812 Methylation 32 48 5-17  whole blood Series matix file (TXT) 

2015 GSE64495 Methylation 13 113 5-17  whole blood Series matix file (TXT) 

2015 GSE73103 Methylation 106 355 5-17  whole blood Series matix file (TXT) 

2013 GSE35571 Gene_expression 64 131 5-17 peripheral  blood Series matix file (TXT) 

2015 GSE72439 Gene_expression 51 60 infant whole blood Series matix file (TXT) 

2009 GSE14844 Gene_expression 36 36 infant whole blood Series matix file (TXT) 

Table B.1.4:  Description of the selected microarray datasets of childhood (5-17) samples 
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Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Age range Cell type Selected file type 

2012 GSE41169 Methylation 25 95 18-40 whole blood Series matix file (TXT) 

2019 GSE77056 Methylation 27 47 18-40 whole blood Series matix file (TXT) 

2015 GSE59509 Methylation 6 42 18-40 whole blood Series matix file (TXT) 

2017 GSE107737 Methylation 12 24 18-40 whole blood Series matix file (TXT) 

2018 GSE93272 Gene_expression 13 275 18-40  whole blood Series matix file (TXT) 

2019 GSE110551 Gene_expression 42 156 18-40  whole blood Series matix file (TXT) 

2018 GSE93777 Gene_expression 15 448 18-40  whole blood Series matix file (TXT) 

Table B.1.5:  Description of the selected microarray datasets of early adulthood (18-40) 

samples 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Age range Cell type Selected file type 

2018 GSE99624 Methylation 42 48 41-80 whole peripheral blood Series matix file (TXT) 

2015 GSE59509 Methylation 3 42 41-80 whole blood Series matix file (TXT) 

2014 GSE52113 Methylation 12 24 41-80 whole blood Series matix file (TXT) 

2015 GSE62003 Methylation 25 70 41-80 whole blood Series matix file (TXT) 

2018 GSE93272 Gene_expression 28 275 41-80  whole blood Series matix file (TXT) 

2017 GSE95233 Gene_expression 22 124 41-80  whole blood Series matix file (TXT) 

2019 GSE110551 Gene_expression 32 156 41-80  whole blood Series matix file (TXT) 

Table B.1.6: Description of the selected microarray datasets of late adulthood (41-80) 

samples 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Age range Cell type Selected file type 

2012 GSE30870 Methylation 11 40 80(+) whole blood Series matix file (TXT) 

2018 GSE99624 Methylation 4 48 80(+) whole peripheral blood Series matix file (TXT) 

2017 GSE67530 Methylation 11 144 80(+) whole  blood Series matix file (TXT) 

2017 GSE95233 Gene_expression 12 124 80(+)  whole blood  Series matix file (TXT) 

2014 GSE57065 Gene_expression 11 107 80(+)  whole blood  Series matix file (TXT) 

2018 GSE93272 Gene_expression 3 275 80(+)  whole blood  Series matix file (TXT) 

Table B.1.7: Description of the selected microarray datasets of senescence (80+) samples 
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B.2 Annotation for the Selected Cancer Tissue-related CTCF Microarray Samples 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2017 GSE52955 Methylation 25 83 bladder Series matix file (TXT) 

2015 GSE69463 Methylation 4 8 bladder Series matix file (TXT) 

2013 GSE41525 Methylation 1 8 bladder Series matix file (TXT) 

2011 GSE30522 Gene_expression 2 17 bladder Series matix file (TXT) 

2007 GSE7476 Gene_expression 9 12 bladder Series matix file (TXT) 

2013 GSE31189 Gene_expression 19 92 bladder Series matix file (TXT) 

Table B.2.1: Description of the selected microarray datasets of bladder cancer samples 

Table B.2.2:  Description of the selected microarray datasets of bone cancer samples 

 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2018 GSE103659 Methylation 148 181 brain Series matix file (TXT) 

2019 GSE128654 Methylation 35 74 brain Series matix file (TXT) 

2019 GSE123678 Methylation 70 78 brain Series matix file (TXT) 

2014 GSE50774 Gene_expression 21 66 brain Series matix file (TXT) 

2016 GSE43378 Gene_expression 50 50 brain Series matix file (TXT) 

2016 GSE73038 Gene_expression 182 182 brain Series matix file (TXT) 

Table B.2.3:  Description of the selected microarray datasets of brain cancer samples 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2015 GSE58770 Methylation 16 24 bone Series matix file (TXT) 

2017 GSE97529 Methylation 20 36 bone Series matix file (TXT) 

2020 GSE125645 Methylation 13 66 bone Series matix file (TXT) 

2017 GSE87437 Gene_expression 21 21 bone Series matix file (TXT) 

2011 GSE33458 Gene_expression 16 18 bone Series matix file (TXT) 

2019 GSE129091 Gene_expression 12 12 bone Series matix file (TXT) 
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Table B.2.4:  Description of the selected microarray datasets of breast cancer samples 

 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2017 GSE91370 Methylation 2 8 colon Series matix file (TXT) 

2014 GSE59134 Methylation 12 21 colon Series matix file (TXT) 

2012 GSE42752 Methylation 22 63 colon Series matix file (TXT) 

2015 GSE62932 Gene_expression 15 68 colon Series matix file (TXT) 

2018 GSE92921 Gene_expression 6 59 colon Series matix file (TXT) 

2017 GSE85043 Gene_expression 15 29 colon Series matix file (TXT) 

Table B.2.5:  Description of the selected microarray datasets of colon cancer samples 

 

Table B.2.6:  Description of the selected microarray datasets of gastric cancer samples 

 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2018 GSE39451 Methylation 10 38 breast Series matix file (TXT) 

2017 GSE78758 Methylation 93 116 breast Series matix file (TXT) 

2017 GSE72245 Methylation 34 118 breast Series matix file (TXT) 

2018 GSE103668 Gene_expression 21 21 breast Series matix file (TXT) 

2018 GSE120129 Gene_expression 55 108 breast Series matix file (TXT) 

2017 GSE102907 Gene_expression 61 61 breast Series matix file (TXT) 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2018 GSE103186 Methylation 130 191 gastric Series matix file (TXT) 

2017 GSE89269 Methylation 11 22 gastric Series matix file (TXT) 

2019 GSE97686 Methylation 3 9 gastric Series matix file (TXT) 

2016 GSE79973 Gene_expression 10 20 gastric Series matix file (TXT) 

2015 GSE62254 Gene_expression 23 300 gastric Series matix file (TXT) 

2017 GSE54129 Gene_expression 111 132 gastric Series matix file (TXT) 
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Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2019 GSE92482 Methylation 24 24 kidney Series matix file (TXT) 

2018 GSE105288 Methylation 35 88 kidney Series matix file (TXT) 

2019 GSE113501 Methylation 144 144 kidney Series matix file (TXT) 

2010 GSE23629 Gene_expression 32 32 kidney Series matix file (TXT) 

2014 GSE46699 Gene_expression 67 130 kidney Series matix file (TXT) 

2017 GSE73731 Gene_expression 104 265 kidney Series matix file (TXT) 

Table B.2.7:  Description of the selected microarray datasets of kidney cancer samples 

 

Table B.2.8:  Description of the selected microarray datasets of liver cancer samples 

 

 

 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2019 GSE108124 Methylation 87 138 lung Series matix file (TXT) 

2015 GSE66836 Methylation 76 183 lung Series matix file (TXT) 

2017 GSE75008 Methylation 40 80 lung Series matix file (TXT) 

2019 GSE114761 Gene_expression 42 42 lung Series matix file (TXT) 

2017 GSE108492 Gene_expression 95 95 lung Series matix file (TXT) 

2017 GSE101929 Gene_expression 66 66 lung Series matix file (TXT) 

Table B.2.9:  Description of the selected microarray datasets of lung cancer samples 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2019 GSE112791 Methylation 67 329 liver Series matix file (TXT) 

2018 GSE67170 Methylation 49 89 liver Series matix file (TXT) 

2019 GSE99036 Methylation 15 32 liver Series matix file (TXT) 

2019 GSE101685 Gene_expression 24 32 liver Series matix file (TXT) 

2019 GSE112791 Gene_expression 72 329 liver Series matix file (TXT) 

2019 GSE88839 Gene_expression 35 38 liver Series matix file (TXT) 
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Table B.2.10:  Description of the selected microarray datasets of pancreas cancer samples 

 

 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2017 GSE84043 Methylation 86 233 prostate Series matix file (TXT) 

2017 GSE76938 Methylation 73 136 prostate Series matix file (TXT) 

2018 GSE112047 Methylation 31 47 prostate Series matix file (TXT) 

2009 GSE17951 Gene_expression 141 154 prostate Series matix file (TXT) 

2015 GSE46602 Gene_expression 36 50 prostate Series matix file (TXT) 

2014 GSE55945 Gene_expression 13 21 prostate Series matix file (TXT) 

Table B.2.11:  Description of the selected microarray datasets of prostate cancer samples 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2016 GSE73832 Methylation 22 133 small_intestine Series matix file (TXT) 

2013 GSE34387 Methylation 32 220 small_intestine Series matix file (TXT) 

2015 GSE61467 Methylation 10 56 small_intestine Series matix file (TXT) 

2008 GSE8167 Gene_expression 32 32 small_intestine Series matix file (TXT) 

2019 GSE132542 Gene_expression 29 29 small_intestine Series matix file (TXT) 

2008 GSE9576 Gene_expression 3 12 small_intestine Series matix file (TXT) 

Table B.2.12:  Description of the selected microarray datasets of small intestine cancer 

samples 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2018 GSE117852 Methylation 32 32 pancreas Series matix file (TXT) 

2014 GSE53051 Methylation 16 220 pancreas Series matix file (TXT) 

2017 GSE80241 Methylation 15 17 pancreas Series matix file (TXT) 

2017 GSE106189 Gene_expression 35 35 pancreas Series matix file (TXT) 

2018 GSE112282 Gene_expression 6 48 pancreas Series matix file (TXT) 

2014 GSE42404 Gene_expression 22 22 pancreas Series matix file (TXT) 
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B.3 Annotation for the Selected Healthy Tissue-related CTCF Microarray Samples 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2017 GSE52955 Methylation 5 83 bladder Series matix file (TXT) 

2014 GSE50192 Methylation 4 70 bladder Series matix file (TXT) 

2012 GSE31848 Methylation 2 153 bladder Series matix file (TXT) 

2011 GSE30522 Gene_expression 3 17 bladder Series matix file (TXT) 

2007 GSE7476 Gene_expression 3 12 bladder Series matix file (TXT) 

2013 GSE31189 Gene_expression 5 92 bladder Series matix file (TXT) 

Table B.3.1:  Description of the selected microarray datasets of bladder samples 

Table B.3.2: Description of the selected microarray datasets of bone samples 

 

Table B.3.3: Description of the selected microarray datasets of brain samples 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2013 GSE51759 Methylation 4 16 bone Series matix file (TXT) 

2015 GSE64490 Methylation 48 48 bone Series matix file (TXT) 

2014 GSE58477 Methylation 10 72 bone Series matix file (TXT) 

2010 GSE19429 Gene_expression 17 200 bone Series matix file (TXT) 

2018 GSE118985 Gene_expression 40 750 bone Series matix file (TXT) 

2014 GSE33075 Gene_expression 5 27 bone Series matix file (TXT) 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2015 GSE64511 Methylation 49 372 brain Series matix file (TXT) 

2016 GSE80970 Methylation 138 286 brain Series matix file (TXT) 

2016 GSE79122 Methylation 9 78 brain Series matix file (TXT) 

2008 GSE11882 Gene_expression 109 173 brain Series matix file (TXT) 

2006 GSE5281 Gene_expression 74 161 brain Series matix file (TXT) 

2013 GSE50161 Gene_expression 13 130 brain Series matix file (TXT) 
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Table B.3.4:  Description of the selected microarray datasets of breast samples 

 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2015 GSE66555 Methylation 6 65 colon Series matix file (TXT) 

2013 GSE32146 Methylation 10 25 colon Series matix file (TXT) 

2012 GSE42752 Methylation 19 63 colon Series matix file (TXT) 

2018 GSE92415 Gene_expression 6 183 colon Series matix file (TXT) 

2012 GSE38713 Gene_expression 13 43 colon Series matix file (TXT) 

2010 GSE20916 Gene_expression 16 145 colon Series matix file (TXT) 

Table B.3.5:  Description of the selected microarray datasets of colon samples 

 

Table B.3.6:  Description of the selected microarray datasets of gastric samples 

 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2019 GSE124367 Methylation 12 12 breast Series matix file (TXT) 

2015 GSE52865 Methylation 20 57 breast Series matix file (TXT) 

2011 GSE29290 Methylation 8 22 breast Series matix file (TXT) 

2011 GSE30010 Gene_expression 12 107 breast Series matix file (TXT) 

2015 GSE65194 Gene_expression 11 178 breast Series matix file (TXT) 

2013 GSE42568 Gene_expression 17 121 breast Series matix file (TXT) 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2016 GSE85464 Methylation 19 38 gastric Series matix file (TXT) 

2017 GSE99553 Methylation 32 84 gastric Series matix file (TXT) 

2013 GSE34387 Methylation 7 220 gastric Series matix file (TXT) 

2008 GSE13911 Gene_expression 31 69 gastric Series matix file (TXT) 

2010 GSE19826 Gene_expression 15 27 gastric Series matix file (TXT) 

2013 GSE44740 Gene_expression 12 26 gastric Series matix file (TXT) 
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Table B.3.7:  Description of the selected microarray datasets of kidney samples 

Table B.3.8:  Description of the selected microarray datasets of liver samples 

 

 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2017 GSE75008 Methylation 28 80 lung Series matix file (TXT) 

2014 GSE52401 Methylation 100 244 lung Series matix file (TXT) 

2015 GSE68825 Methylation 5 144 lung Series matix file (TXT) 

2020 GSE51024 Gene_expression 41 96 lung Series matix file (TXT) 

2014 GSE33532 Gene_expression 20 100 lung Series matix file (TXT) 

2013 GSE40791 Gene_expression 72 194 lung Series matix file (TXT) 

Table B.3.9:  Description of the selected microarray datasets of lung samples 

 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2014 GSE59157 Methylation 36 95 kidney Series matix file (TXT) 

2016 GSE70303 Methylation 12 24 kidney Series matix file (TXT) 

2010 GSE22459 Gene_expression 25 65 kidney Series matix file (TXT) 

2014 GSE53757 Gene_expression 23 144 kidney Series matix file (TXT) 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2019 GSE113017 Methylation 30 60 liver Series matix file (TXT) 

2019 GSE113019 Methylation 18 55 liver Series matix file (TXT) 

2016 GSE73832 Methylation 7 133 liver Series matix file (TXT) 

2019 GSE112790 Gene_expression 15 198 liver Series matix file (TXT) 

2018 GSE102079 Gene_expression 33 257 liver Series matix file (TXT) 

2014 GSE55092 Gene_expression 7 140 liver Series matix file (TXT) 
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Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2013 GSE48472 Methylation 4 56 pancreas Series matix file (TXT) 

2015 GSE64491 Methylation 2 64 pancreas Series matix file (TXT) 

2013 GSE52578 Methylation 1 31 pancreas Series matix file (TXT) 

2017 GSE46234 Gene_expression 2 8 pancreas Series matix file (TXT) 

2011 GSE32688 Gene_expression 3 96 pancreas Series matix file (TXT) 

2013 GSE46385 Gene_expression 2 47 pancreas Series matix file (TXT) 

Table B.3.10:  Description of the selected microarray datasets of pancreas samples 

 

 
Year GEO  

Accession ID 
Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2017 GSE52955 Methylation 5 83 prostate Series matix file (TXT) 

2013 GSE38240 Methylation 4 12 prostate Series matix file (TXT) 

2014 GSE47915 Methylation 4 8 prostate Series matix file (TXT) 

2014 GSE55945 Gene_expression 4 21 prostate Series matix file (TXT) 

2011 GSE32448 Gene_expression 4 80 prostate Series matix file (TXT) 

2011 GSE26910 Gene_expression 5 24 prostate Series matix file (TXT) 

Table B.3.11:  Description of the selected microarray datasets of prostate samples

 

Table B.3.12:  Description of the selected microarray datasets of small intestine samples 

Year GEO  
Accession ID 

Source name Analyzed 

samples 
All available 

samples  
Cell type Selected file type 

2016 GSE73832 Methylation 4 133 small_intestine Series matix file (TXT) 

2015 GSE67485 Methylation 2 19 small_intestine Series matix file (TXT) 

2014 GSE50475 Methylation 3 45 small_intestine Series matix file (TXT) 

2015 GSE56525 Gene_expression 6 12 small_intestine Series matix file (TXT) 

2013 GSE18490 Gene_expression 1 360 small_intestine Series matix file (TXT) 

2013 GSE43346 Gene_expression 1 70 small_intestine Series matix file (TXT) 

2012 GSE33846 Gene_expression 1 32 small_intestine Series matix file (TXT) 
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Appendix C 

R Scripts 

### Developmental CTCF ### 

## Selection CTCF gene from methylation data for all developmental stage 

colnames(age_range_methylation)[1] <- "cg_probe" 

CTCF_age_range <- merge(reference_met, age_range, by = "cg_probe") 

#reference_met contains all methylation probe on the CTCF gene 

age_range_methylation <- CTCF_age_range[,6:ncol(CTCF_age_range)] #selection 

numerical methylation data to make data ready to correlate. Other columns which 

contains probe and other detailed information prepared as annotation file 

CTCF_annotation <- age_range_methylation[,1:5] 

## Selection CTCF gene from gene expression data for all cancer type 

age_range_gene_expression <- age_range_gene_expression[,-1] #only the first column 

which contains CTCF gene symbol was deleted to make data ready to correlate. Gene 

expression data was already contains only CTCF gene.  

## Correlations correlation_age_range <- 

data.frame(diag(cor(t(age_range_methylation),t(age_range_gene_expression)))) #they 

first returned to transpose to correlate probes rather than samples then only diagnol 

samples were selected to avoid duplicate results. 

!! cor function default method is Pearson, for Spearman correlation, following argument 

was added: “method = “spearman”  

colnames(correlation_age_range) <- "correlation_level" 

CTCF_age_range <- cbind(CTCF_annotation, correlation_age_range) #probe 

informations were added to the correlation results 

# Scatter plot of CTCF gene for cancer type library(ggplot2) 

ggplot(CTCF_age_range, aes(x=distance_to_TSS, y=correlation_level, 

color=insideFeature, shape=insideFeature)) +   geom_point() +  

  geom_smooth(method=lm, aes(fill=insideFeature)) +   ggtitle("CTCF_age_range") 

# For 7 different developmental stages, this scripts were adjusted and run separately. 

# Scatter plot of the all developmental stages 

ggplot(developmental_CTCF, aes(x=distance_to_TSS, y=correlation_level, 

color=cg_probe, shape=age_Range)) + 

  geom_point() +   ggtitle("developmental_CTCF")+   

scale_shape_manual(values=1:nlevels(developmental_CTCF$age_Range))  

### PCA of the all developmental stages 
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rownames(pca_candidate_t) <- pca_candidate_t$age_Range 

pca_candidate_t$age_Range <- NULL 

PCA_raw <- prcomp(na.omit(pca_candidate_t), scale. = FALSE) percentVar <- 

round(100*PCA_raw$sdev^2/sum(PCA_raw$sdev^2),1) sd_ratio <- sqrt(percentVar[2] 

/ percentVar[1]) 

dataGG <- data.frame(PC1 = PCA_raw$x[,1], PC2 = PCA_raw$x[,2],                      

DevelopmentalStages = colnames(pca_candidate_t)) 

ggplot(dataGG, aes(PC1, PC2)) + 

  geom_point(aes(colour = DevelopmentalStages)) +   ggtitle("PCA plot of the CTCF in 

different developmental stages") +   xlab(paste0("PC1, VarExp: ", percentVar[1], "%")) 

+   ylab(paste0("PC2, VarExp: ", percentVar[2], "%")) +   theme(plot.title = 

element_text(hjust = 0.1))+   scale_color_brewer(palette = "Paired") 

### heatmap annotation_for_heatmap <- 

  data.frame(DevelopmentalStages = colnames(pca_candidate_t)) 

library(RColorBrewer) ann_colors <- list(group = brewer.pal(7, name = "Paired")) 

names(ann_colors$group) <- unique(DevelopmentalStages) 

rownames(annotation_for_heatmap) <- colnames(pca_candidate_t) 

pheatmap((pca_candidate_t), 

         annotation_col = annotation_for_heatmap,          annotation_colors = ann_colors,          

scale = "column",          legend = TRUE,          cluster_cols = T,          cluster_rows = T,          

show_rownames = T,          show_colnames = T,          clustering_distance_rows = 

"manhattan",          clustering_method = "complete",          main = "", fontsize_col = 10) 

### Tissue cancer related CTCF ### 

## Selection CTCF gene from methylation data for all cancer type 

colnames(cancer_type_methylation)[1] <- "cg_probe" CTCF_cancer_type <- 

merge(reference_met, cancer_type_methylation, by = "cg_probe") #reference_met 

contains all methylation probe on the CTCF gene cancer_type_methylation <- 

CTCF_cancer_type[,6:ncol(CTCF_cancer_type)] #selection numerical methylation data 

to make data ready to correlate. Other columns which contains probe and other detailed 

information prepared as annotation file CTCF_annotation <- 

cancer_type_methylation[,1:5] 

## Selection CTCF gene from gene expression data for all cancer type 

cancer_type_gene_expression <- cancer_type_gene_expression[,-1] #only the first 

column which contains CTCF gene symbol was deleted to make data ready to correlate. 

Gene expression data was already contains only CTCF gene.  
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## Correlation correlation_cancer_type <- 

data.frame(diag(cor(t(cancer_type_methylation),t(cancer_type_gene_expression)))) 

#they first returned to transpose to correlate probes rather than samples then only 

diagnol samples were selected to avoid duplicate results. 

!! cor function default method is Pearson, for Spearman correlation, following argument 

was added: “method = “spearman”  

colnames(correlation_cancer_type) <- "correlation_level" 

CTCF_cancer_type <- cbind(CTCF_annotation, correlation_cancer_type) #probe 

informations were added to the correlation results 

# Scatter plot of CTCF gene for cancer type library(ggplot2) 

ggplot(CTCF_cancer_type, aes(x=distance_to_TSS, y=correlation_level, 

color=insideFeature, shape=insideFeature)) +   geom_point() +  

  geom_smooth(method=lm, aes(fill=insideFeature)) +   ggtitle("CTCF_cancer_type") 

# For 12 different cancer type, this scripts were adjusted and run separately. 

## Selection highly correlated probes by 0.4 cut-off threshold 

cut-off threshold_all <- subset(cancer_tissue_related, correlation_level>=0.4 | 

correlation_level<=-0.4) #cancer_tissue_related file contains all correlation results of 

each cancer type in together. 

cut-off threshold_all_positive <- subset(cut-off threshold_all, correlation_level>=0) #all 

positive and negative correlation results were divided to examine all probes which 

exceeding cut-off threshold according to cancer types  

cut-off threshold_all_negative <- subset(cut-off threshold_all, correlation_level<=0) 

number_table_p <- data.frame(table(cut-off threshold_all_positive$Tissue)) #to get 

number of probes exceeding cut-off threshold table function used number_table_n <- 

data.frame(table(cut-off threshold_all_negative$Tissue)) colnames(number_table_p) <- 

c("Tissue", ">0.4_cut-off threshold") colnames(number_table_n)<- c("Tissue", 

"<0.4_cut-off threshold") 

final_table <- merge(number_table_p,number_table_n, by= "Tissue") #as a final table 

the number of all positively and negatively correlated probes passing cut-off threshold 

have been shown 

overall_table <- data.frame(table(cut-off threshold_all$Tissue)) colnames(overall_table) 

<- c("Tissue", "overall") 

final_table_up <- merge(final_table, overall_table, by= "Tissue") 
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ordered_final_table <- final_table_up[order(final_table_up[,4], decreasing = TRUE), 

drop = FALSE,] #results are ordered from greater to smaller, according to which cancer 

type has more probe passing the cut-off threshold. 

## Scatter plot for all cancer type together 

ggplot(cancer_tissue_related, aes(x=distance_to_TSS, y=correlation_level, 

color=cg_probe, shape=Tissue)) +   geom_point() +  

  ggtitle("cancer_related_CTCF")+ 

  scale_shape_manual(values=1:nlevels(cancer_tissue_related$Tissue))  

## The difference in correlation values between healthy and cancerous states for all 

cancer types was computed and combined. 

difference_cut-off threshold <- subset(cancer_tissue_related, Difference>=0.5) #the 

difference greater than 0.5 cut-off threshold were selected 

number_difference_cut-off threshold <- data.frame(table(difference_cut-off 

threshold$Tissue)) #the number of probes exceeding cut-off threshold were calculated 

for all cancer types 

colnames(number_difference_cut-off threshold) <- c("Tissue", ">0.5_cut-off 

threshold_difference") 

ordered_number_difference_cut-off threshold <- number_difference_cut-off 

threshold[order(number_difference_cut-off threshold[,2], decreasing = TRUE), drop = 

FALSE,]  
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