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Abstract: In recent decades, there have been significant research efforts focusing on wireless indoor
localization systems, with fingerprinting techniques based on received signal strength leading the
way. The majority of the suggested approaches require challenging and laborious Wi-Fi site surveys
to construct a radio map, which is then utilized to match radio signatures with particular locations. In
this paper, a novel next-generation cyber-physical wireless indoor positioning system is presented that
addresses the challenges of fingerprinting techniques associated with data collection. The proposed
approach not only facilitates an interactive digital representation that fosters informed decision-
making through a digital twin interface but also ensures adaptability to new scenarios, scalability,
and suitability for large environments and evolving conditions during the process of constructing the
radio map. Additionally, it reduces the labor cost and laborious data collection process while helping
to increase the efficiency of fingerprint-based positioning methods through accurate ground-truth
data collection. This is also convenient for working in remote environments to improve human
safety in locations where human access is limited or hazardous and to address issues related to radio
map obsolescence. The feasibility of the cyber-physical system design is successfully verified and
evaluated with real-world experiments in which a ground robot is utilized to obtain a radio map
autonomously in real-time in a challenging environment through an informed decision process. With
the proposed setup, the results demonstrate the success of RSSI-based indoor positioning using
deep learning models, including MLP, LSTM Model 1, and LSTM Model 2, achieving an average
localization error of ≤ 2.16 m in individual areas. Specifically, LSTM Model 2 achieves an average
localization error as low as 1.55 m and 1.97 m with 83.33% and 81.05% of the errors within 2 m for
individual and combined areas, respectively. These outcomes demonstrate that the proposed cyber-
physical wireless indoor positioning approach, which is based on the application of dynamic Wi-Fi
RSS surveying through human feedback using autonomous mobile robots, effectively leverages the
precision of deep learning models, resulting in localization performance comparable to the literature.
Furthermore, they highlight its potential for suitability for deployment in real-world scenarios and
practical applicability.

Keywords: Internet of things (IoT); digital twins; cyber-physical systems (CPSs); smart space; indoor
localization; wireless LAN positioning; fingerprint matrix; received signal strength (RSS); deep
learning; long short-term memory (LSTM)

1. Introduction

Indoor positioning systems are an essential part of location-aware applications and
services in indoor environments, enabling localization, tracking, and monitoring of as-
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sets. These systems have diverse applications across various domains, including factory
logistics, healthcare, asset tracking in office environments [1,2], medical equipment [3],
and patients [4], as well as monitoring indoor activities and optimizing processes and
resource allocations [5]. They also enable the delivery of location-based services, such as
providing recommendations to tourists [6], assisting customers in navigating in indoor
environments [7], and offering directions in shopping malls [8]. To meet these demands,
extensive research has been conducted, utilizing a range of technologies such as visual [9],
geometric [10,11], ultrasonic [12], and RF-based sensors [13,14].

The wireless local area network (WLAN) positioning method is one of the most com-
monly used RF-based techniques for indoor positioning. It relies on the characteristics of
wireless signals, such as the angle of arrival (AOA), time of arrival (TOA), and received
signal strength (RSS) based on the transmit-receive relationship of radio signals, with-
out requiring connection to Wi-Fi networks [15]. However, modeling the relationship
between RSS and position is challenging due to environmental constraints, including
multipath interference or non-line-of-sight (NLOS) conditions. These factors can cause
unpredictable signal propagation and random variations of RSS samples, even at fixed
positions [16]. Furthermore, to tackle challenges like device height and heterogeneity,
an approach involves manually adjusting RSS values for various testing devices using
a linear transformation approach, incorporating diverse transformation functions such
as time-space sampling [17], Kullback–Leibler divergence [18], and the Gaussian fit sen-
sor model [19]. Because simple linear relationships may not effectively characterize the
difference across mobile devices [18], researchers also introduce calibration-free methods
where a new type of fingerprint is generated using absolute RSS values. For instance, RSS
differences (signal strength difference) [20] and signal strength ratios [21] between pairs of
access points (APs) serve as location fingerprints. Additionally, weighting schemes that
consider the relationship of RSS values for each RSS are employed without extra calibration
on test devices [22–24].

Fingerprint-based techniques [25,26] are a common approach for describing the rela-
tionship between RSS and position. These techniques rely on previously collected mea-
surement data, particularly in multipath-rich fading indoor environments, as compared
to distance-based trilateration and direction-based triangulation methods [27]. Therefore,
accurate data collection is important for ensuring fingerprint-based techniques’ effective-
ness and reliability to match radio signatures with specific locations. However, collecting
data for fingerprint-based methods is a labor-intensive, time-consuming, and error-prone
process, especially when working in large areas or scaling up systems [28].

The application of a smart space concept [29] to wireless indoor positioning can be
applied to address the challenge of data collection by semi- or fully autonomously cre-
ating a radio map with digital twin (DT) integration. This approach can also overcome
the scalability disadvantage of fingerprint-based systems [30,31] by providing a flexible
and easily deployable system that can be integrated with existing network infrastructure.
However, the implementation of a smart space setting involves cyber-physical systems
(CPSs) infrastructure along with other requirements such as security, privacy, safety, and
more [32]. CPSs are a new generation of integrated frameworks and mechanisms that
enable the creation of living virtual DTs that replicate the behavior of their physical counter-
parts. These systems can improve efficiency, productivity, and collaborative working and
enable the remote operation of complex physical systems [33]. This is facilitated through
the combination of the Internet of Things (IoT) and twinning technologies, which not
only provide simple synthetic representations but also enable synchronous bi-directional
streaming of up-to-date data between the physical and digital spaces [34].

Considering cyber-physically in indoor positioning can also improve the efficiency
and controllability of complex systems through intelligent human-machine interaction in
cyberspace through a user interface [32]. Human operators can utilize DTs to remotely
observe the real-time conditions in the operating environment and make better decisions.
This capability can be particularly useful for identifying potential problems or opportunities
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for improvement, guiding better planning of the physical space, APs, and/or reference
point (RP) layout decisions [35].

1.1. Contribution

This paper delivers new insights into wireless indoor positioning systems by ap-
proaching them from a cyber-physical perspective, focusing on fingerprinting techniques
associated with data collection. This new proposed concept addresses challenging and
laborious Wi-Fi site surveys to construct radio maps for a variety of indoor environments,
such as modern smart buildings or digital workplaces, as well as challenging and demand-
ing environments like nuclear facilities. In this regard, the research presents an innovative
concept in wireless indoor positioning systems by adopting a cyber-physical approach with
the following major contributions:

• We propose a cyber-physical wireless indoor positioning system framework to dynam-
ically address the labor-intensive, time-consuming, error-prone construction of radio
maps. This framework allows for regular radio map reconstruction and scalability of
fingerprint-based positioning methods through dynamic Wi-Fi RSS surveying using
(semi) autonomous mobile data collectors via digital twins.

• We develop a live synthetic 3D digital twin environment and user-friendly graphical
user interface that incorporate human feedback in multiple ways, including the deter-
mination of reference point placement for fingerprint layout, facilitating safety-critical
and remote missions, teleoperation of robots, and monitoring mission states and
robot operations.

• We validate the feasibility of the proposed framework in a representative real-world
nuclear environment and demonstrate the positioning performance of our framework
using various deep learning algorithms.

2. Related Work

IoT and DT solutions are increasingly being employed to address indoor positioning
challenges. This trend is expected to continue in the foreseeable future, as evidenced by a
growing number of publication trends on IoT-based applications for indoor positioning,
including review papers [36,37] and research articles (as shown in Table 1). Moreover,
commercial DT services offered to various sectors have emerged alongside recent research
activities [38–42].

Furthermore, research in the area of IoT and DT-enabled indoor positioning has
pursued several avenues. Early work was primarily focused on the potential usefulness of
the IoT concept for indoor positioning, rather than its practical applications. While some
papers, such as [43–45], mentioned Industry 4.0 and IoT in their title or abstract, they did not
discuss the development or practical implementation of these concepts. Table 1 presents a
review of research articles that focus on implementing indoor positioning through IoT or DT
infrastructure at different levels. Each paper is assessed and grouped by year, use case, the
technology used, signal characteristics, indoor positioning techniques, context, interactivity,
and application area. Additionally, each of them is evaluated based on different maturity
levels of DT. These maturity levels include hierarchical naming conventions for data twin,
asset twin, predictive twin, interactive twin, and cognitive twin [46,47].

As an example of IoT-based indoor positioning, Ref. [6] developed an indoor tracking
system for tourism applications that tracks visitor activities and gathers information about
their behavior and interests, such as the order in which they visit points of interest and
the level of interest they exhibit for each. The system uses range-based trilateration and
triangulation positioning techniques based on Bluetooth low energy (BLE)-based received
signal strength indication (RSSI) to determine the level of proximity to each interest point
rather than the precise location of a person. Although the study did not focus on interface
or visualization, it did capture useful real-time analytics for each visitor and provided a
tour report. Therefore, this study can be considered an example of a data twin in terms of
the various maturity levels of DTs.
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Table 1. A review of indoor localization techniques in the literature through IoT and DT deployment.

Ref. ID Year Use-Case Technology Metric Technique Method Context Interaction App.**Area

[48] 2017 Estimating
region of interest BLE RSS Localization Fingerprint

based IoT ✗ Campus

[49] 2020 Analysis
of visitor routes BLE RSS Proximity and

localization
Range
based IoT ✗ Museum

[6] 2021 Analysis
of visitor routes BLE RSS Proximity Range

based IoT ✗ Tourism

[5] 2021 Asset tracking BLE RSS Tracking Range
based DT ✗

Industry and
logistics

[1] 2021 Asset tracking BLE RSS Localization Fingerprint
based DT ✗

Industry and
logistics

[2] 2022 Asset tracking BLE and
UWB RSS Tracking Fingerprint

based
IoT and
DT ✗

Industry and
logistics

[35] 2022 Occupancy and radio
propagation analysis UWB TOA Proximity and

localization
Fingerprint
based DT ✓ Rectangular

open area

Proposed 2023 Occupancy and radio
propagation analysis Wi-Fi RSS Tracking Fingerprint

based CPS ✓ Rep.* nuclear
environment

* Representative, ** Application

Several researchers have focused on visualizing indoor positioning data and perform-
ing data analytics to enhance the traceability and visibility of physical objects, resulting
in what is known as an asset twin. For instance, in Ref. [48], an IoT-based design is devel-
oped to identify locations within indoor environments. The design includes a dashboard
interface, which allows users to gain insights into historical perceived data and estimated
location results. In the study, two different fingerprint-based k-nearest neighbors (KNN)
and K-means clustering classification algorithms are implemented using BLE-based RSSI.

Similarly, in Ref. [2], the implementation of industrial IoT and DT technology is
introduced to facilitate the inspection, maintenance, and packaging processes of finished
goods within a workshop setting. The study proposed a set of DT services, including a
dynamic map, overtime alarm, and mobile application, to improve operational efficiency
and enhance information traceability and visibility of physical objects. Moreover, the study
proposed a long short-term memory (LSTM)-based indoor positioning system that uses
both ultra-wideband (UWB) and BLE technologies to leverage the RSSI signal characteristics
for real-time tracking of finished goods.

Furthermore, in Ref. [5], a comprehensive tool designed to support the integration
of IoT and DT with indoor positioning systems is demonstrated. The study addresses
communication technology, localization techniques, hardware components, and applica-
tion design. The researchers developed an attendance management system that uses a
BLE-based indoor positioning system, utilizing RSSI in the path loss model to track em-
ployees’ attendance and monitor their presence. The concept involves using employees’
smartphones as identification markers with an Android application.

However, aside from asset twins, few studies have investigated utilizing predictive
or interactive capabilities to enhance recommendations for decision-making in indoor
positioning applications by incorporating dynamic and recurring data reception. For
instance, Ref. [49] developed an IoT-based indoor localization system to improve the user
experience in a museum. The system provides valuable information about exhibits or
collections by notifying nearby visitors through an Android application. It also collects
useful analytics of each visit and offers recommendations to users based on their historical
data. The trilateration method using BLE-based RSSI information, besides the Kalman
filter, is implemented as a positioning algorithm. In terms of providing recommendations
in addition to the user interface, this study may serve as an example of the next stage of DT,
known as predictive twins.

Likewise, another study [1] proposes a DT-enabled framework for real-time indoor
human safety tracking in airport cargo terminals. The framework visualizes and monitors
the health status and location information of humans on a dashboard, predicting abnormal
motionless behavior remotely for safety management. An algorithm for detecting abnormal
motionless behavior and self-learning genetic positioning is developed using BLE-based
RSSI in real-time. While these applications are successful in their respective fields, they are
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not yet true DTs because they lack bi-directional interaction or feedback to guide physical
space decision-making.

An example of a bi-directional DT application with a feedback scheme is given in
Ref. [35]. The study uses the propagation characteristics of UWB signals to analyze oc-
cupancy in a building with the help of DTs and then guides AP layout decision-making
accordingly. This two-way communication enhances the planning of physical spaces, re-
duces NLOS situations, and results in improved positioning accuracy and increased value
of DTs. The study also develops a fingerprint-based neural network positioning algorithm
using the TOA signal characteristic of UWB. While this study is the first interactive and
mature DT in the field of indoor positioning that we found, it is not clear from the paper
how signal propagation or digitalization of occupancy analysis effectively aids AP location
or DT visualization.

To summarize, the progression of DTs across the various stages has already begun for
indoor positioning systems. Table 2 presents an assessment of the maturity of the current
state of studies in terms of DT deployment. The stages progress from data twin to cognitive
twin, meaning they advance from those that display only the current condition of an asset
to those incorporating technologies for autonomous and adaptive self-enhancements in
changing conditions. To the best of the authors’ knowledge, there have been no previous
instances of cognitive twin development for indoor positioning systems. This study aims
to fill this gap by proposing the development of cognitive twin capabilities. Specifically,
it (1) employs autonomous Wi-Fi RSS surveying to dynamically construct radio and heat
maps using mobile data collectors (e.g., robot(s)) with human-in-the-loop control through a
user interface. This facilitates adaptation to new scenarios, changes in the environment, or
AP locations. It will also make data collection easier to scale up and increase the efficiency
of fingerprint-based positioning methods. Additionally, this study (2) develops a graphical
user interface for visualizing, interacting with, and monitoring the cyber-physical indoor
environment to minimize the need for human intervention and enable remote applications.

Table 2. Various maturity levels of DT follow hierarchical naming conventions adapted from [46] for
indoor positioning systems. "+" refers to inclusion, while "-" denotes exclusion.

Ref. ID Data Twin Asset Twin Predictive Twin Interactive Twin Cognitive Twin

[6] + - - - -
[48] + + - - -
[2] + + - - -
[5] + + - - -
[49] + + + - -
[1] + + + - -
[35] + + + + -

Proposed + + + + +

For the rest of this paper, Section 3 describes the design methodology, defines the
components of the cyber-physical wireless indoor positioning system, and provides an
overview of the overall integration. In Section 4, the whole system is evaluated in an
experimental setup, and the results are presented, while Section 5 concludes the study with
a discussion.

3. Cyber-Physical Wireless Indoor Positioning System

This section presents the CPS infrastructure design methodology, an approach that
tackles the operational and planning decision challenges associated with indoor position-
ing problems.

3.1. Problem Formulation

Existing fingerprint-based indoor positioning systems face several challenges and lim-
itations. For instance, they often lack scalability, meaning that they are not easily adaptable
to different environments and may not work effectively in large evolving spaces such as of-
fice buildings, shopping malls, airports, and hospitals. Furthermore, the reliance on human
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presence in these systems can result in increased labor costs, time-consuming processes,
error-prone outcomes, and safety concerns, especially in extreme environments like nuclear
facilities, where human access may be restricted or hazardous. Additionally, these systems
lack situational awareness, which can hinder people’s ability to make informed decisions.
In this regard, the following problem statements are defined.

1. Scalability. The system should be adaptable and applicable to diverse indoor settings
as well as challenging remote environments.

2. Situational awareness. The system should augment situational awareness and sup-
port humans in making better decisions.

3. Minimize the reliance on human presence. The system should minimize human
presence in the field to both lower the costs of labor related to data collection and
improve the safety of personnel and facilities.

4. Precise and efficient data collection and model. The system should provide precise
ground-truth data collection for accurate positioning methods.

5. Efficient communication network. The system should provide acceptable latency
in updates to provide timely and actionable information for seamlessly integrating
physical and digital spaces.

3.2. System Requirements

A UML use-case diagram, given in Figure 1, identifies system requirements of prob-
lem formulation through various use cases and interactions coordinated by various types
of actors. The system involves three main actors: the human operator (DT user), the
researcher(s), and the mobile robot(s). In the development of a cyber-physical indoor posi-
tioning architecture, the initial step comprises identifying the robot types, their sensors, and
behaviors for the mission environment. This includes essential functionalities such as con-
trol, mapping, navigation, and other foundational capabilities like conducting autonomous
Wi-Fi site surveys, receiving motor commands from teleoperation data sources, providing
sensory data for visualization, and generating 2D mapping. Subsequently, the deployment
of a digital twin environment by researchers ensures that real-world assets are accurately
represented and timely updated through communication networks, along with the design
of user interface and the development of data analytics. Finally, the integration of DT and
its GUI enables oversight of mission states and operations of the robot(s), allowing human
operator (DT user) intervention such as teleoperation of robots and determining reference
points placement for fingerprint layout.

Recognizing the problem statements and system requirements emphasizes the need
for a holistic, advanced concept or solution that seamlessly integrates indoor positioning
and digital twinning technologies. In this context, a potential solution to overcome these
limitations involves developing a CPS architecture that integrates indoor positioning and
digital twin technologies.

Figure 2 illustrates the proposed components of the cyber-physical wireless indoor
positioning system, which involves three major elements: (1) constructing a physical space
or twin, (2) developing a DT, and (3) establishing a digital tissue or digital communication
network. Each of these components will be discussed in detail in the subsequent subsections.

3.2.1. Physical Twin

The physical twin is the real-world physical environment, including the spatial build-
ing structure, physical instances of robots, sensors, and a sensory network that includes
APs. The proposed physical twin is depicted in Figure 3. It consists of the physical envi-
ronment of the RAICo1 facility in West Cumbria, UK, depicted in Figure 4, which spans
approximately 20 m × 40 m. The facility is divided into three separate, fenced areas, each
equipped with representative equipment and tools. Furthermore, an Agilex Scout 2.0 four-
wheeled, differential-drive ground robot is employed, which is equipped with encoders
on its wheels and a 3D laser capable of perceiving its surroundings with a range of 100 m
and a sampling rate of 1875 @ 10 Hz. In addition, the existing wireless infrastructure of
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the facility is utilized for Wi-Fi RSS measurement from the APs. In summary, the physical
twin contains valuable information about the physical environment, such as Wi-Fi signals,
a radio map, and RP locations, which are accessible through the robotic platform.

CPS for Indoor Positioning

Monitor
 mission state

Teleoperate
robots

Deploy
simulation

environment

Provide
sensory data

Design
user interface

Develop
data analytics

<<include>>

<<include>>

Implement
communication

network

Develop
2D mapping of the

environment

<<include>>

Get
control commands

<<include>>

<<include>>

Perform
autonomous Wi-Fi

site survey

Develop
indoor positioning

algorithm

Design
reference points

pattern

<<include>>

<<include>>

<<include>>
<<include>>

<<extend>>

<<include>>Operator
(DT user)

Researcher

<<actor>>

Robots

<<actor>>

Aerial
<<actor>>

Legged
<<actor>>

Wheeled

Figure 1. A UML use-case diagram of the proposed system requirements.

Cyber-Physical System For
Indoor Positioning

Physical Twin
Environment/Space

Digital Tissue Digital Twin
Environment/Space

Spatial building
structure

Wi-Fi signals

Physical robot
and sensory

network

Radio map

Reference point
locations

Network Infrastructure
(e.g. wireless, 5G, cloud)

Visualization of
the digital models

RMSE
heatmap

Reference
waypoints pattern

determination
Positioning
algorithm

Figure 2. Diagrammatic visual conceptual model and components of the cyber-physical wireless
indoor positioning system, along with corresponding assets at the bottom level.

Wheel Encoders

3D Lidar

Physical Twin

Wi-Fi
Infrastructure

EnvironmentScout 2.0

Wi-Fi Signals

Figure 3. Elements of physical twin.
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10
 m

AP

Offices

9 m

AP

Kitchen
A

C
A

Area 1 Area 2 Area 3

B

AP

AP

AP

D

6 m 4 m

Scout 2.0
Robot A Representative equipment for Nuclear

B Laser cutter machine
C Water tank for aquatic robotic research
D Metal cupboard

Legend

(a) Physical twin environment (RAICo1 facility) (b) 2D occupancy map of the RAICo1 facility

Figure 4. RAICo1 physical real-world environment and corresponding 2D map.

3.2.2. Digital Twin

A DT is a virtual replica or representation of a physical system that is synchronized
with real-world assets and updated in near real-time [50]. When applied in the field of
indoor positioning, DTs can lead to more efficient, scalable, and adaptable positioning
systems by digitally representing physical systems and enabling interaction with humans.
In this study, a 3D DT is developed by digitally modeling the physical environment and
robots in a virtual or simulation environment to monitor the status of the robot while
planning and executing its mission.

Furthermore, a graphical user interface (GUI) is integrated to facilitate interaction
between users and the DT. This interactive interface assists in teleoperating the physical
twin element of a mobile robot while simultaneously guiding the robot for a radio map and
ground-truth locations, which are essential for developing fingerprinting-based techniques.
This process involves making RP layout decisions based on the generated 2D dynamic
occupancy map of the environment using the proposed interactive Wi-Fi site survey, which
is detailed in the subsequent subsections.

3.2.3. DT and Graphical User Interface

The DT environment is developed based on the 3D building plan of the RAICo1
facility and the Agilex Scout 2.0 mobile robot shown in Figure 4a. Figure 5 presents an
overview of the DT environment and GUI based on robot operating system (ROS) rqt [51].
The GUI provides multiple panels that support interactive Wi-Fi surveys and display live
visualizations for analyzing and gaining insights into the robot’s actions and the overall
system. Specifically, the GUI comprises the following windows:

1. Live mission monitoring and visualization window, which displays data collected
from the physical twin.

2. RP generation parameter reconfiguration window.
3. Remote teleoperation window, which includes a virtual joystick and speedometer.
4. Positioning RMSE heat map window.

These windows allow for overseeing and coordinating the Wi-Fi site survey mission,
as well as teleoperating the robot if necessary.

3.2.4. Interactive and Autonomous Wi-Fi Site Survey

Various methods have been proposed for conducting wireless site coverage surveys,
including passive, active, and predictive approaches [52]. In this study, a passive survey
approach is employed to identify and characterize the signal propagation of the existing
Wi-Fi infrastructure in the environment. The survey process is managed by a human-in-the-
loop using a GUI and autonomously executed by a mobile robot. This approach enables the
construction of highly adaptable radio maps for new scenarios or changes in environmental
conditions or AP locations, thereby overcoming the limitations of scalability and laborious
data collection typically associated with fingerprint-based methods.
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1

2

3

4

(a) DT environment (b) Graphical user interface

Figure 5. The DT environment together with the user interface.

Figure 6 illustrates the stages involved in the interactive Wi-Fi site survey. The initial
step includes digitally constructing the 2D spatial geometry of the area by exploring and
perceiving the indoor environment. In this stage, a robot equipped with a laser sensor
employs the simultaneous localization and mapping (SLAM) algorithm to scan and map
the unknown environment. The robot can be either remotely teleoperated or directed to
specific poses within the GUI.

Reference Point
Generation

Incrementally
assigned

waypoints

Collect RSS
measurement on

each point

Generate Wi-Fi
RSS Data

2D Map of the
environment

Set Goal Pose

Map Generation
using SLAM

Move Robot

Teleoperation

2nd Stage1st Stage

(a) (b)

Figure 6. Flowcharts of interactive Wi-Fi site survey steps: (a) 1st Stage: Generating the map of
the environment; (b) 2nd Stage: Generating RSS data on designated waypoints on the generated
map autonomously.

Once the mapping process is completed, the second stage involves distributing RPs
throughout the mapped area using the RP generation tool [53]. This tool utilizes a dynamically
adjusted marker pattern on a 2D grid map within the GUI, as shown in Figure 7. The RP
generation tool provides adjustable dynamic parameters through the interface, including:

• The number of interactive outer markers to draw the boundary for surveying.
• The number of loops inside the outer boundary.
• The number or distance of RPs between two vertices for each loop.

Depending on environmental factors and design knowledge, the determination of the
number of markers used to shape the outer boundary, the number of inner loops, and the
number of RPs is facilitated through a human-in-the-loop decision-making process guided
by the DT. After determining the number and placement of RPs through the GUI, these
RPs are incrementally assigned as waypoints to the robot for measuring RSS values. The
robot navigates these RPs and collects RSS measurements at each point. Ultimately, this
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results in obtaining a Wi-Fi RSS radio map of the environment along the traveled routes in
the designated waypoints.

(a) (b) (c) (d)

Figure 7. Examples of interactive reference point generation for Wi-Fi site surveys are presented
in various shapes and designs. (a) A triangle shape with three markers, one inner loop, and one
reference point between two vertices. (b) A rectangular shape with four markers, two inner loops,
and two reference points between two vertices. (c) A pentagon shape with five markers, three inner
loops, and three reference points between two vertices. (d) A hexagon shape with six markers, four
inner loops, and four reference points between two vertices.

3.2.5. Indoor Positioning Algorithm

Figure 8 presents the three main steps of a WLAN positioning system. The first step
involves storing RSS-position values obtained during the Wi-Fi site survey, which are later
used as separate training, validation, and test data sets. The next step is to process and
prepare the data as a radio map for input into the positioning models. The final step of
WLAN positioning involves training models and estimating the 2D spatial positions for
the tracking problem.

Wi-Fi survey

Collect RSS data

Data Collection

1

2

Data processing

Obtain Radio Map

Data Preperation

1

2

Apply models

Model performance

Indoor Positioning

1

2

Figure 8. Overview of RSS-based WLAN positioning.

Deep learning methods are used to learn a model of the RSS-position relationship in
order to accurately position a moving agent [54,55]. The methods utilized in this study
are based on two deep learning techniques, namely multi-layer perceptron (MLP) and
LSTM. These methods have been demonstrated to effectively tackle the Wi-Fi positioning
problem as a regression task [55], with the root mean square error (RMSE) loss function (L)
calculated by using Equation (1):

L =
√
E[x̂i − yi]2 (1)

where x̂i is the estimation for ith RP, and yi is the ground-truth position for ith RP.
Two different LSTM models are used: Model 1 takes as input a sequence of tempo-

rally consecutive lagged RSS observations. Given a time step t and the lag size l, this is
represented as given in Equation (2).

RSSseq = ΦModel 1

(
[RSSt−l , . . . , RSSt−1, RSSt]; θl

)
(2)

ΦModel 1(·; θl) is the packing function with lag size parameter θl which transforms
the sequence of RSS observations, RSSt, into multiple samples, where each sample has a
specified number of time steps, l, and is reshaped into three dimensions to match the input
dimensions expected by the LSTM model, as given in Equation (3):

LSTMinput = [RSSseq] ⇒ [samples = n, timesteps = l, features = d] (3)
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Likewise, Model 2 accepts lagged RSS observations along with the predicted position,
p̂t−1, from the previous time step as input, as given in Equation (4).

RSSseq = ΦModel 2

(
[RSSt−l , . . . , RSSt−1, RSSt, p̂t−1]; θl

)
(4)

The deep network models used in this study are presented in detail in Ref. [55].
Consequently, deep wireless LAN positioning is formulated as a regression problem,
and the performance of the model is evaluated based on the RMSE positioning error
(Equation (12)).

3.2.6. Digital Tissue

Digital tissue is another essential component of CPS and refers to the communication
network that enables data to be transferred between digital and physical twins. It facilitates
real (or right)-time and resilient sharing of data. The digital tissue framework also manages
system overload caused by excessive data through bandwidth management and/or smart
utilization of shared data. As for communication across pairs, Figure 9 shows the com-
munication infrastructure of the ROS Wi-Fi network [56]. The bandwidth consumption of
the entire system was measured at approximately 5.281 MB/s, equivalent to 42.253 Mbps,
which is lower than the available bandwidth estimated at around 60 Mbps during the
experimental setup, as shown in Table 3. Therefore, no further techniques for bandwidth
management or smart data management processes are considered.

Table 3. Approximate max. total bandwidth requirements.

Assets Bandwdith Consumption
(MB/s)

Network Speed
(Mbps)

Scout 2.0 (pose, joint states, LIDAR) 4.546 36.368
2D Map (occupancy grid) 0.709 5.672
Wi-Fi scan (RSS measurements) 0.00068 0.00544
RP generator 0.026 0.208

Total 5.281 42.253

Physical Twin
Robot Computer

Wireless AP

Digital Twin
Remote Computer

Figure 9. Wi-Fi communication infrastructure.

3.3. Overall Integration

In the preceding subsections, the main elements of the cyber-physical indoor posi-
tioning system were discussed, which were categorized into physical twins, DTs, and
digital tissue components. Figure 10 presents an overview of the proposed component
implementations, illustrating how data flows through the components and connects to the
human operator.

The physical robot instance provides ground-truth position data, which is estimated
using the Grid Mapping SLAM algorithm [57] with incoming laser scans. In addition,
the physical twin provides LIDAR and Wi-Fi RSS data through the robot’s sensors. The
RSS-position data sent from the physical twin is stored and used to create a radio map.
By performing 2D interpolation on positioning errors, a continuous RMSE heat map is
generated, which is displayed on a 2D map to visualize the performance of the Wi-Fi
positioning system.
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Physical Twin

Ground robot

LIDAR

Digital Tissue

Digital Twin

RMSE
Heatmap

Generation

2D Map

Wi-Fi site survey

Virtual
joystick

User
Interface

Remote
Teleoperation

Reference
Waypoints

Indoor
Positioning
Algorithm

Radio Map

ROS  Middleware

Navigation
Planner

SLAM

Controller

Odometry

Extended
Kalman Filter

Wheel
Encoders

LIDAR, RSS
and Position data

Sensor
Wrapper

Wi-Fi Adapter

ROS MasterWi-Fi Local
Area Network

Human
Operator

Figure 10. Proposed cyber-physical system design implementation and data flow diagram.

On the other hand, the DT user interface serves as the primary point of contact
between human operators and the physical assets, executing the live teleoperation and
displaying the current state of the physical robot. Furthermore, the RP pattern planner
tool allows operators to provide commands for desired measurement points on the map.
These points are assigned as waypoints or routes for the physical twin to navigate and
take RSS measurements. This tool facilitates more complex and demanding applications by
providing easy customization of survey behavior.

To ensure the bi-directional operability of the CPS, the ROS Middleware Wi-Fi network
architecture is utilized. This architecture enables data reception and transmission between
the physical twin and the DT.

4. Experimental Setup and Results

The calculation of RSS, as discussed in Ref. [16], presents a significant challenge due
to the dynamic nature of RSS in uncertain environments with spatio-temporal constraints.
Therefore, it can be challenging to fully characterize and apply the relationship between
RSS and position using theoretical or simulation radio propagation models, such as the
commonly used path loss and shadowing model described in Equation (5) [58] to general
environments. To address this limitation, the proposed CPS approach is evaluated based
on experimental RSS data collected from real environments in a DT case scenario. When
experimental RSS data are unavailable, the received power formulation in Equation (5)
includes γ, which represents the path loss exponent describing signal attenuation with
distance, and ϕ, which accounts for additional losses or gains. Typically, both γ and ϕ are
usually determined through experiments.

Pr(dB) = Pt(dB) + 10log10K − 10γlog10(
d
d0

)− ϕ(dB) (5)
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4.1. Data Collection

Experimental data sets for this study are collected at the RAICo1 facility, which houses
fenced areas designated as Area 1, Area 2, and Area 3, as well as office areas and various
test fields (Figure 4). The study relies on the existing WLAN communication infrastructure
within the building, which orders the fixed number and placement of APs throughout
the facility.

Data collection involves performing a current scan of all visible APs in the vicin-
ity at each survey location. RSS measurements are collected using a laptop equipped
with an Intel(R) Core(TM) i7-10750H Hex core processor, an Intel AX201/ Killer Wireless
1650 2 × 2 AC adapter, and an Ubuntu 20.04 operating system placed on the robot. RSS
measurements are obtained through a publicly available Wi-Fi scan package [59] , provid-
ing RSS measurements from Channels 1, 6, and 11 on the 2.4 GHz band with a sampling
rate of approximately 1 sample/s, in line with a similar setup described in the existing
literature [16]. During each survey location, RSS measurements are expressed as integers
in decibel-milliwatt (dBm) on a scale ranging from 0 (indicating the maximum achievable
signal strength relative to 1 milliwatt) to −100 (representing an unusable signal).

The number and placement of RPs are determined individually for each area, both
for the training and test phases, through an interactive RP generator. Before starting the
data collection process, the outer markers and waypoints are frozen to prevent human
intervention. The layout and locations of RPs for training and test data sets are shown
in Figure 11. These RPs are positioned to account for the presence of walls and other
obstructions that may prevent navigating in certain areas. The spacing between RPs is set
at 0.9 m, and the number of RPs is distributed accordingly [55,60].

During the training phase, the mobile robot remains stationary at each RP for approxi-
mately 10 s to collect n = 10 RSS measurements from d detectable APs with a laptop placed
on the mobile robot. The locations of RPs pi were generated using the SLAM algorithm.
Therefore, the fingerprint matrix F(pi) can be mathematically formulated considering d
APs with n number of RSS samples received at the ith RP, as shown in Equation (6).

Fraw = F(pi) =


rss1

1 rss2
1 · · · rssd

1
...

...
. . .

...
rss1

n rss2
n · · · rssd

n

, pi =
[

px py

]T
(6)

In the case of collecting test data, a sequential traversal of a route of test points is
performed, reflecting the tracking scenario. At each point, while moving, an RSS sampling
is measured with a sample rate of 1 sample/s. Table 4 presents the number of train and test
points per area, along with the RP planner parameters (Figure 7) and the observed number
of APs. This set is used to evaluate the performance of the positioning methods used.

Table 4. Description of the number of reference points and APs for both train and test points across
different areas, along with the reference point planner parameters.

# Markers # Inner loops # RPs # APs

Area 1 Train 4 3 70 17
Test 6 1 39 17

Area 2 Train 4 2 41 19
Test 6 1 34 19

Area 3 Train 4 1 25 18
Test 6 1 26 18

# refers to the “number of”.
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(a) Area 1 (b) Area 2 (c) Area 3

(d) Area 1 (e) Area 2 (f) Area 3

Figure 11. Map of the experimental areas and designated measurement points visualized with
white arrows indicating the position and orientation of reference points during both the training
phases (a–c) and the testing phases (d–f).

4.2. Data Preparation

Indoor environments often encounter issues such as multipath fading, shadow fading,
and path loss, which are common characteristics of wireless propagation. Multipath fading
happens when there are multiple paths through which the signals travel, resulting from
transmission, reflection, and diffraction off various surfaces [61]. Moreover, shadow fading
and path loss conditions can occur due to changes in the environment or the movement of
people. These channel impediments vary over time, which means that the radio map used
during the training phase and the RSS values measured during the test phase (which is
a different time frame than training) of the positioning algorithm may not be consistent.
These inconsistencies can lead to a degradation in positioning accuracy because the position
estimators rely on the radio map to develop their perception of the environment.

To mitigate the negative impact of environmental uncertainties, three consecutive
steps denoted as S are taken, as shown in Equation (7):

S = [Φoutlier, Φmissing, Φselection] (7)

The first step is outlier threshold filtering, where Φoutlier(·; θoutlier) is applied to the
measurement samples taken from the same point to account for natural variations in RSS
data. This step can be represented, as given in Equation (8):

Foutlier = Φoutlier(Fraw; θoutlier) (8)

where Foutlier ∈ Rn×d represents the filtered samples with n RSS measurements and d
detectable APs. A defined threshold, θoutlier, is used to identify outlier samples, which are
then corrected by replacing them with the average of the samples collected at each RP from
each AP.

Secondly, considering that the set of visible APs can change over time, in the event
of no data reception at a particular AP, the missing values are filled with the average RSS
values, θmissing, from that sequence. This process is denoted as Φmissing(·; θmissing) and can
be expressed as in Equation (9):

Fmissing = Φmissing(Foutlier; θmissing) (9)
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Lastly, the AP selection step, denoted as Φselection(·; θselection), is performed based on
the statistics of the RSS sample distribution. The aim is to exclude a number (k) of APs that
do not contribute significantly. These APs are identified by their mean RSS value, which is
approximately −100 dBm, along with a low standard deviation represented by θselection.
As a result, the representation Ffinal ∈ Rn×(d−k) is obtained in Equation (10), where n
corresponds to the number of RSS measurements and (d − k) represents the remaining APs
after excluding the non-significant ones.

Ffinal = Φselection(Fmissing; θselection) (10)

Eventually, a radio map R is obtained from RPs, pi across the area, as given in
Equation (11):

R = {(pi, Ffinal(pi)) | i = 1, . . . , N} (11)

The resulting radio map serves as the input for training deep learning-based position-
ing models. As a result, two separate data sets (training and testing) are created, where
23% of the training data is reserved as the validation data set, which will be used for
parameter tuning.

4.3. Experimental Evaluation

One of the commonly used regression metrics, such as mean square error and mean
absolute error, in indoor positioning algorithms to evaluate the performance of deep
learning models is RMSE. While the RMSE loss function, as shown in Equation (1), is used
during the training phase of a machine learning model, the positioning error is evaluated
using the RMSE performance criteria, as indicated in Equation (12), on a test dataset.
It quantifies the standard deviation of prediction errors, which shares the same unit of
measurement as the actual positions, thus facilitating easier interpretation. This allows for
a direct comparison of the error magnitude with the actual position unit, which is reported
in meters.

RMSE ≜

√√√√ 1
Np

Np

∑
n=1

|pi − p̂i|2 (12)

4.4. Hyperparameter Optimization (HPO)

The process of tuning hyperparameter values, as shown in Table 5, is crucial for achiev-
ing efficient and accurate deep learning models. This process is often empirical and relies
on the specific characteristics of the input dataset. Cross-validated grid search is employed
to identify the best-performing hyperparameters within the following parameter grid:

• Neurons/memory unit: [32, 64, 128].
• Optimizer: [Adam, RMSprop].
• Learning rate: [0.001, 0.01].
• Batch size: [8, 16, 64, 128].
• Epochs: [20, 30].

This method involves evaluating all the required configurations by entirely testing
various combinations of hyperparameters using the cross-validation splitting strategy. To
account for the stochastic nature of the learning algorithms, empirical experimentation was
conducted by running the algorithms of interest ten times. In each case, the parameters
that yielded the smallest RMSE were selected, considering both the mean value and the
standard deviation. The best hyperparameter values found by grid search for MLP, LSTM
Model 1, and LSTM Model 2 models are presented in Table 5.
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Table 5. MLP, LSTM Model 1, and Model 2 hyperparameters and cross-validated grid search results.

Hyperparameters MLP LSTM Model 1 LSTM Model 2

lag_size - 4 4
hidden_layer 3 1 1
memory_unit 32 128 128
learning_rate 0.01 0.01 0.001

batch_size 16 8 128
optimizer Adam RMSprop RMSprop

epochs 30 20 20

4.5. Experimental Results and Analysis

The comparison of positioning results and statistics (min, max, std) for various deep
learning methods, obtained by running them 10 times in individual and combined test
areas, is presented in Table 6. The performance of the positioning algorithms differs across
each experimental area due to changes in the environment as seen in Table 6.

Table 6. The positioning RMSE performance statistics were obtained by running each technique of
interest (the LSTM Model 1, MLP, and LSTM Model 2) ten times. The results are reported in meters.

Area
LSTM Model 1 MLP LSTM Model 2

Average Min Max Std Average Min Max Std Average Min Max Std

1 2.16 2.12 2.22 0.03 1.96 1.88 2.08 0.05 2.00 1.39 2.37 0.26
2 2.13 1.94 2.52 0.15 1.80 1.72 1.84 0.03 1.55 1.11 2.08 0.31
3 2.06 1.96 2.29 0.09 1.93 1.75 2.48 0.22 1.71 0.95 2.77 0.61

(1, 2) 2.43 2.03 2.81 0.26 2.46 2.22 2.74 0.18 1.87 1.32 2.81 0.42
(1, 2, 3) 2.85 2.66 3.23 0.17 2.78 2.56 3.06 0.15 1.97 1.60 2.47 0.25

The values are given in meters (m).

From Table 6, it can be concluded that the average performance degrades by up to
2.06 m in LSTM Model 1, 1.80 m in MLP, and 1.55 m in LSTM Model 2. LSTM is capable
of capturing the correlated RSS measurements and positions over time. Additionally,
it indicates that the inclusion of additional position information in LSTM Model 2 has
a positive effect on location estimation. Based on these results, as shown in Figure 12,
LSTM Model 2 outperforms MLP and LSTM Model 1 in all areas except Area 1, where
MLP performs better. Furthermore, LSTM Model 2 also significantly improves positioning
accuracy, particularly in combined areas, Area (1, 2, 3).

Figure 13 depicts the positioning RMSE for varying numbers of test points (39, 34,
and 26) across Areas 1, 2, and 3, respectively, considering different algorithms. The errors
are represented by the z entries, extending from the xy-plane, where x and y correspond to
the locations of RPs in the xy-plane. To enhance clarity in the visualization, discrete test
errors are overlaid on a 2D map of the environment using a color-coded (blue–green–red)
style spectrum. A continuous, complete error map is generated by applying a radial basis
Gaussian function interpolation method [62] with parameters ϵ = 0.04 m and σ = 0.01 m.
Here, ϵ represents an adjustable constant for the Gaussian function, while σ controls the
smoothness of the approximation.

Figure 15 displays the RMSE error heat map for each algorithm in the mission areas.
In this representation, the blue color indicates lower RMSE values, while the red color
indicates higher RMSE values. From Figure 15, it is shown that MLP and LSTM Model 1
have high RMSE in Area 3, while LSTM Model 2 achieves better results across Areas 1, 2,
and 3. This improvement results from incorporating position information from the previous
additional step within LSTM Model 2. Additionally, higher RMSE values are observed
in areas with 90◦ turns and boundary regions that separate areas with fences made of
materials like metal, glass, and brenda. This is expected, as these areas and materials are
more prone to error sources such as multipath propagation and shadowing.
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Figure 12. Positioning performance of used algorithms per different mission areas.
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Figure 13. Comparison of the individual positioning errors in meters obtained from various test
points across different mission areas (a–c). The comparison is made between three models: MLP,
LSTM Model 1, and LSTM Model 2.

The cumulative density function (CDF) of the positioning RMSE errors for the posi-
tioning algorithms can be seen for both individual and combined mission areas, as depicted
in Figure 14. Moreover, as can be seen from Figure 14d, the accuracy of positioning is
significantly improved by employing the LSTM Model 2 algorithm for positioning perfor-
mance compared to the other algorithms used in the combined Area (1, 2, 3). In order to
provide an intuitive demonstration, the CDF values within 2 m of the positioning error
of the techniques used are also given in Table 7. The CDF value within 2 m of the MLP
algorithm is 85.29% in Area 2, which is better than the other algorithms as can be seen in
Table 7. On the other hand, LSTM Model 2 achieved the best results in all other areas, with
values higher than 80%.

Table 7. The probabilities of positioning errors for all models up to within 0–2 m in all areas.

Positioning Alg.
CDF Value (%)

Area 1 Area 2 Area 3 Area (1, 2, 3)

MLP 64.10 85.29 80.76 46.46
LSTM Model 1 65.71 73.33 72.72 46.31
LSTM Model 2 82.85 83.33 86.36 81.05
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Figure 14. CDFs of individual positioning errors in all areas for all models.
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Figure 15. Positioning RMSE heat map in meters for each positioning algorithm used. In this heat
map, lower RMSE values are indicated by the blue color, while higher RMSE values are represented
by the red color.
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5. Discussion and Conclusions

In this paper, we present the architecture of a cyber-physical wireless indoor position-
ing system and its components, aligning with the five properties that define a cognitive
digital twin compared to the literature. These properties, outlined in Section 3.1, include
scalability, situational awareness, minimization of reliance on human presence, precise and
efficient data collection, and an efficient communication network. The proposed cyber-
physical indoor positioning system demonstrated achievements to fill in the gaps in the
requirements for cognitive digital twins of indoor positioning systems, as can be seen from
Table 8.

Table 8. Assessment of findings: Problem Statements vs. Experimental Results.

Problem Statements Assessments of Results

1. Scalability: The system should be adaptable and applicable to diverse
indoor settings as well as challenging remote environments.

1. The utilization of autonomous mobile data collectors guided by a digital
twin demonstrates the potential for scaling up the system in constructing
radio maps for fingerprinting-based methods. While a single mobile robot is
considered, the approach is adaptable to multi-robot fleets, making it suitable
for large indoor spaces with multiple floors.

2. Situational Awareness: The system should augment situational awareness
and support humans in making better decisions.

2. The system provides a synchronized 3D digital twin environment and a
graphical user interface to enhance human collaboration, contributing to an
improved understanding of indoor environments.

3. Minimize the reliance on human presence: The system should minimize
human presence in the field to both lower the costs of labor related to data
collection and improve the safety of personnel and facilities.

3. The system has reduced labor costs associated with data collection by re-
placing manual efforts with autonomous Wi-Fi site surveying. This minimizes
the manual effort required for data gathering and maintenance, consequently
improving human safety in hazardous environments.

4. Precise and efficient data collection: The system should provide precise
ground-truth data collection for more accurate positioning methods.

4. Utilizing interactive reference point decision-making and SLAM algorithm
for Wi-Fi site surveys resulted in more efficient and precise data collection.

5. Efficient communication network: The system should provide accept-
able latency in updates to provide timely and actionable information for
seamlessly integrating physical and digital spaces.

5. A de facto standard ROS framework is used for digitalization and software
tools. It helps to coordinate a cyber-physical indoor positioning ecosystem
with its distributed software communication architectures.

The integration of autonomous mobile data collectors guided by a digital twin show-
cased the adaptability and scalability of the fingerprinting-based systems for diverse indoor
settings and challenging remote environments. The synchronized 3D digital twin environ-
ment and graphical user interface enhanced situational awareness, empowering human
operators for informed decision-making. By successfully minimizing reliance on human
presence through autonomous Wi-Fi site surveying, the system not only reduced labor costs
but also improved safety. Moreover, the adoption of interactive reference point decision-
making and the SLAM algorithm provided precise and efficient data collection, ultimately
improving the accuracy of fingerprint-based positioning methods. The utilization of a
defacto standard ROS framework for efficient communication further coordinated the
system’s capabilities with its provision of standardized functionalities as an open-source
middleware and flexible framework designed for the development of robot software that
can easily scale and be interchanged.

The feasibility of the proposed CPS architecture is demonstrated by utilizing an
autonomous robotic platform connected to a DT through a communication network that is
coordinated by human-in-the-loop interaction. This approach enables remote operations
and allows for regular re-adjusting or updating to effectively address the challenge of radio
map obsolescence, aiming to mitigate the undesirable effects of time variations in RSS due
to environmental conditions. It can also make remote operations safer and more efficient,
particularly in environments where traditional fingerprinting systems may be ineffective
or impractical, such as remote or hazardous locations. For instance, in nuclear facilities
where human access is restricted or hazardous, the system can provide accurate positioning
information without the need for personnel to physically enter the facility.

Furthermore, the proposed approach takes advantage of the good precision of deep
learning models, resulting in localization performance comparable to that of prior
studies [16,55]. Three deep neural network fingerprinting techniques have been devel-
oped for indoor WLAN-based positioning, using a radio map obtained from a real-world
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environment. Experimental results indicate that the LSTM Model 2 network architecture
achieves the most accurate positioning performance in all areas except Area 1. Also, the
MLP outperforms the LSTM Model 1 significantly in Area 2 and Area 3 with a CDF of
more than 80% within a 2 m error, while the LSTM Model 2 achieved CDF values of more
than 80% in all fields. This highlights the significance of incorporating additional position
information in LSTM Model 2.

These results show the effectiveness of the proposed cyber-physical wireless indoor
positioning approach, characterized by the application of dynamic Wi-Fi RSS surveying
using autonomous mobile robots and the incorporation of human feedback through a
graphical user interface. This shows its practical applicability and suitability for deployment
in real-world scenarios. To improve positioning accuracy, additional information can be
incorporated into the training of deep learning models. This information may include the
receiver’s four orientations (north, south, east, and west), various signal characteristics
(such as angle of arrival and time of arrival with multipath profile), and knowledge of the
motion dynamics of the asset being tracked (e.g., human, robot, etc.).

Moreover, as a contingency plan for a potential issue of robot kidnapping, wherein
the robot cannot estimate its location through SLAM to label the fingerprint location, a
human-in-the-loop can engage in the process. They can take control to assist the robot in
relocating itself through teleoperation, utilizing a graphical user interface through a digital
twin. Once the robot is repositioned, it can resume its mission to collect the remaining
fingerprint locations. In the absence of a human observer, the following kidnapping
detection approaches [63,64] can be employed in SLAM to take action, such as defining
recovery motions, especially in the case of a short-range kidnapping situation.

One limitation of the proposed CPS design is its potential inadequacy in addressing the
resilience of the communication network and computing resource constraints in different
environments. This can result in unexpected challenges, reliability issues, and performance
problems during system implementation. To overcome these limitations, several strategies
can be employed. Firstly, network design can be implemented to tolerate communication
disruptions, enabling the system to connect and disconnect as needed. This approach
ensures that the system can continue to function even in the event of temporary network
interruptions. Secondly, prediction strategies can be employed to compensate for dropped
or missed packets, thereby enhancing the system’s reliability. These strategies also allow the
system to proactively adapt and mitigate the impact of communication disruptions. Further-
more, smart data management techniques, combined with data minimization approaches
or computing at the edge, can be implemented to reduce bandwidth usage and optimize the
system’s reliability within bandwidth and computing resource-constrained environments.

Moreover, further research by conducting long-distance experiments that utilize cloud
or peer-to-peer network architectures can follow the current approach. Additionally, the a
priori RSS heat maps generated from the radio map on DT can be leveraged to effectively
deal with uncertainties in RSS measurements through proactive radio scene occupancy
analysis. These informed channel planning decisions can lead to physical environment
improvements in wireless coverage, such as the identification of wireless dead zones and
interference sources, as well as areas with varying Wi-Fi signal strengths. These insights
can then be combined with the adaptive determination of selecting RPs and APs used
around a region of interest for an improvement in positioning error.
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